xref: /freebsd/contrib/llvm-project/lld/COFF/ICF.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. That is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
13 //
14 // On Windows, ICF is enabled by default.
15 //
16 // See ELF/ICF.cpp for the details about the algorithm.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "ICF.h"
21 #include "Chunks.h"
22 #include "Symbols.h"
23 #include "lld/Common/ErrorHandler.h"
24 #include "lld/Common/Timer.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/Parallel.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/xxhash.h"
30 #include <algorithm>
31 #include <atomic>
32 #include <vector>
33 
34 using namespace llvm;
35 
36 namespace lld {
37 namespace coff {
38 
39 static Timer icfTimer("ICF", Timer::root());
40 
41 class ICF {
42 public:
43   void run(ArrayRef<Chunk *> v);
44 
45 private:
46   void segregate(size_t begin, size_t end, bool constant);
47 
48   bool assocEquals(const SectionChunk *a, const SectionChunk *b);
49 
50   bool equalsConstant(const SectionChunk *a, const SectionChunk *b);
51   bool equalsVariable(const SectionChunk *a, const SectionChunk *b);
52 
53   bool isEligible(SectionChunk *c);
54 
55   size_t findBoundary(size_t begin, size_t end);
56 
57   void forEachClassRange(size_t begin, size_t end,
58                          std::function<void(size_t, size_t)> fn);
59 
60   void forEachClass(std::function<void(size_t, size_t)> fn);
61 
62   std::vector<SectionChunk *> chunks;
63   int cnt = 0;
64   std::atomic<bool> repeat = {false};
65 };
66 
67 // Returns true if section S is subject of ICF.
68 //
69 // Microsoft's documentation
70 // (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
71 // 2017) says that /opt:icf folds both functions and read-only data.
72 // Despite that, the MSVC linker folds only functions. We found
73 // a few instances of programs that are not safe for data merging.
74 // Therefore, we merge only functions just like the MSVC tool. However, we also
75 // merge read-only sections in a couple of cases where the address of the
76 // section is insignificant to the user program and the behaviour matches that
77 // of the Visual C++ linker.
78 bool ICF::isEligible(SectionChunk *c) {
79   // Non-comdat chunks, dead chunks, and writable chunks are not eligible.
80   bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
81   if (!c->isCOMDAT() || !c->live || writable)
82     return false;
83 
84   // Code sections are eligible.
85   if (c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
86     return true;
87 
88   // .pdata and .xdata unwind info sections are eligible.
89   StringRef outSecName = c->getSectionName().split('$').first;
90   if (outSecName == ".pdata" || outSecName == ".xdata")
91     return true;
92 
93   // So are vtables.
94   if (c->sym && c->sym->getName().startswith("??_7"))
95     return true;
96 
97   // Anything else not in an address-significance table is eligible.
98   return !c->keepUnique;
99 }
100 
101 // Split an equivalence class into smaller classes.
102 void ICF::segregate(size_t begin, size_t end, bool constant) {
103   while (begin < end) {
104     // Divide [Begin, End) into two. Let Mid be the start index of the
105     // second group.
106     auto bound = std::stable_partition(
107         chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) {
108           if (constant)
109             return equalsConstant(chunks[begin], s);
110           return equalsVariable(chunks[begin], s);
111         });
112     size_t mid = bound - chunks.begin();
113 
114     // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
115     // equivalence class ID because every group ends with a unique index.
116     for (size_t i = begin; i < mid; ++i)
117       chunks[i]->eqClass[(cnt + 1) % 2] = mid;
118 
119     // If we created a group, we need to iterate the main loop again.
120     if (mid != end)
121       repeat = true;
122 
123     begin = mid;
124   }
125 }
126 
127 // Returns true if two sections' associative children are equal.
128 bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) {
129   // Ignore associated metadata sections that don't participate in ICF, such as
130   // debug info and CFGuard metadata.
131   auto considerForICF = [](const SectionChunk &assoc) {
132     StringRef Name = assoc.getSectionName();
133     return !(Name.startswith(".debug") || Name == ".gfids$y" ||
134              Name == ".giats$y" || Name == ".gljmp$y");
135   };
136   auto ra = make_filter_range(a->children(), considerForICF);
137   auto rb = make_filter_range(b->children(), considerForICF);
138   return std::equal(ra.begin(), ra.end(), rb.begin(), rb.end(),
139                     [&](const SectionChunk &ia, const SectionChunk &ib) {
140                       return ia.eqClass[cnt % 2] == ib.eqClass[cnt % 2];
141                     });
142 }
143 
144 // Compare "non-moving" part of two sections, namely everything
145 // except relocation targets.
146 bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) {
147   if (a->relocsSize != b->relocsSize)
148     return false;
149 
150   // Compare relocations.
151   auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
152     if (r1.Type != r2.Type ||
153         r1.VirtualAddress != r2.VirtualAddress) {
154       return false;
155     }
156     Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
157     Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
158     if (b1 == b2)
159       return true;
160     if (auto *d1 = dyn_cast<DefinedRegular>(b1))
161       if (auto *d2 = dyn_cast<DefinedRegular>(b2))
162         return d1->getValue() == d2->getValue() &&
163                d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
164     return false;
165   };
166   if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(),
167                   b->getRelocs().begin(), eq))
168     return false;
169 
170   // Compare section attributes and contents.
171   return a->getOutputCharacteristics() == b->getOutputCharacteristics() &&
172          a->getSectionName() == b->getSectionName() &&
173          a->header->SizeOfRawData == b->header->SizeOfRawData &&
174          a->checksum == b->checksum && a->getContents() == b->getContents() &&
175          assocEquals(a, b);
176 }
177 
178 // Compare "moving" part of two sections, namely relocation targets.
179 bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) {
180   // Compare relocations.
181   auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
182     Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
183     Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
184     if (b1 == b2)
185       return true;
186     if (auto *d1 = dyn_cast<DefinedRegular>(b1))
187       if (auto *d2 = dyn_cast<DefinedRegular>(b2))
188         return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
189     return false;
190   };
191   return std::equal(a->getRelocs().begin(), a->getRelocs().end(),
192                     b->getRelocs().begin(), eq) &&
193          assocEquals(a, b);
194 }
195 
196 // Find the first Chunk after Begin that has a different class from Begin.
197 size_t ICF::findBoundary(size_t begin, size_t end) {
198   for (size_t i = begin + 1; i < end; ++i)
199     if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2])
200       return i;
201   return end;
202 }
203 
204 void ICF::forEachClassRange(size_t begin, size_t end,
205                             std::function<void(size_t, size_t)> fn) {
206   while (begin < end) {
207     size_t mid = findBoundary(begin, end);
208     fn(begin, mid);
209     begin = mid;
210   }
211 }
212 
213 // Call Fn on each class group.
214 void ICF::forEachClass(std::function<void(size_t, size_t)> fn) {
215   // If the number of sections are too small to use threading,
216   // call Fn sequentially.
217   if (chunks.size() < 1024) {
218     forEachClassRange(0, chunks.size(), fn);
219     ++cnt;
220     return;
221   }
222 
223   // Shard into non-overlapping intervals, and call Fn in parallel.
224   // The sharding must be completed before any calls to Fn are made
225   // so that Fn can modify the Chunks in its shard without causing data
226   // races.
227   const size_t numShards = 256;
228   size_t step = chunks.size() / numShards;
229   size_t boundaries[numShards + 1];
230   boundaries[0] = 0;
231   boundaries[numShards] = chunks.size();
232   parallelForEachN(1, numShards, [&](size_t i) {
233     boundaries[i] = findBoundary((i - 1) * step, chunks.size());
234   });
235   parallelForEachN(1, numShards + 1, [&](size_t i) {
236     if (boundaries[i - 1] < boundaries[i]) {
237       forEachClassRange(boundaries[i - 1], boundaries[i], fn);
238     }
239   });
240   ++cnt;
241 }
242 
243 // Merge identical COMDAT sections.
244 // Two sections are considered the same if their section headers,
245 // contents and relocations are all the same.
246 void ICF::run(ArrayRef<Chunk *> vec) {
247   ScopedTimer t(icfTimer);
248 
249   // Collect only mergeable sections and group by hash value.
250   uint32_t nextId = 1;
251   for (Chunk *c : vec) {
252     if (auto *sc = dyn_cast<SectionChunk>(c)) {
253       if (isEligible(sc))
254         chunks.push_back(sc);
255       else
256         sc->eqClass[0] = nextId++;
257     }
258   }
259 
260   // Make sure that ICF doesn't merge sections that are being handled by string
261   // tail merging.
262   for (MergeChunk *mc : MergeChunk::instances)
263     if (mc)
264       for (SectionChunk *sc : mc->sections)
265         sc->eqClass[0] = nextId++;
266 
267   // Initially, we use hash values to partition sections.
268   parallelForEach(chunks, [&](SectionChunk *sc) {
269     sc->eqClass[0] = xxHash64(sc->getContents());
270   });
271 
272   // Combine the hashes of the sections referenced by each section into its
273   // hash.
274   for (unsigned cnt = 0; cnt != 2; ++cnt) {
275     parallelForEach(chunks, [&](SectionChunk *sc) {
276       uint32_t hash = sc->eqClass[cnt % 2];
277       for (Symbol *b : sc->symbols())
278         if (auto *sym = dyn_cast_or_null<DefinedRegular>(b))
279           hash += sym->getChunk()->eqClass[cnt % 2];
280       // Set MSB to 1 to avoid collisions with non-hash classes.
281       sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
282     });
283   }
284 
285   // From now on, sections in Chunks are ordered so that sections in
286   // the same group are consecutive in the vector.
287   llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) {
288     return a->eqClass[0] < b->eqClass[0];
289   });
290 
291   // Compare static contents and assign unique IDs for each static content.
292   forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
293 
294   // Split groups by comparing relocations until convergence is obtained.
295   do {
296     repeat = false;
297     forEachClass(
298         [&](size_t begin, size_t end) { segregate(begin, end, false); });
299   } while (repeat);
300 
301   log("ICF needed " + Twine(cnt) + " iterations");
302 
303   // Merge sections in the same classes.
304   forEachClass([&](size_t begin, size_t end) {
305     if (end - begin == 1)
306       return;
307 
308     log("Selected " + chunks[begin]->getDebugName());
309     for (size_t i = begin + 1; i < end; ++i) {
310       log("  Removed " + chunks[i]->getDebugName());
311       chunks[begin]->replace(chunks[i]);
312     }
313   });
314 }
315 
316 // Entry point to ICF.
317 void doICF(ArrayRef<Chunk *> chunks) { ICF().run(chunks); }
318 
319 } // namespace coff
320 } // namespace lld
321