1 //===- Chunks.h -------------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLD_COFF_CHUNKS_H 10 #define LLD_COFF_CHUNKS_H 11 12 #include "Config.h" 13 #include "InputFiles.h" 14 #include "lld/Common/LLVM.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/PointerIntPair.h" 17 #include "llvm/ADT/iterator.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/MC/StringTableBuilder.h" 20 #include "llvm/Object/COFF.h" 21 #include <utility> 22 #include <vector> 23 24 namespace lld { 25 namespace coff { 26 27 using llvm::COFF::ImportDirectoryTableEntry; 28 using llvm::object::COFFSymbolRef; 29 using llvm::object::SectionRef; 30 using llvm::object::coff_relocation; 31 using llvm::object::coff_section; 32 33 class Baserel; 34 class Defined; 35 class DefinedImportData; 36 class DefinedRegular; 37 class ObjFile; 38 class OutputSection; 39 class RuntimePseudoReloc; 40 class Symbol; 41 42 // Mask for permissions (discardable, writable, readable, executable, etc). 43 const uint32_t permMask = 0xFE000000; 44 45 // Mask for section types (code, data, bss). 46 const uint32_t typeMask = 0x000000E0; 47 48 // The log base 2 of the largest section alignment, which is log2(8192), or 13. 49 enum : unsigned { Log2MaxSectionAlignment = 13 }; 50 51 // A Chunk represents a chunk of data that will occupy space in the 52 // output (if the resolver chose that). It may or may not be backed by 53 // a section of an input file. It could be linker-created data, or 54 // doesn't even have actual data (if common or bss). 55 class Chunk { 56 public: 57 enum Kind : uint8_t { SectionKind, OtherKind, ImportThunkKind }; 58 Kind kind() const { return chunkKind; } 59 60 // Returns the size of this chunk (even if this is a common or BSS.) 61 size_t getSize() const; 62 63 // Returns chunk alignment in power of two form. Value values are powers of 64 // two from 1 to 8192. 65 uint32_t getAlignment() const { return 1U << p2Align; } 66 67 // Update the chunk section alignment measured in bytes. Internally alignment 68 // is stored in log2. 69 void setAlignment(uint32_t align) { 70 // Treat zero byte alignment as 1 byte alignment. 71 align = align ? align : 1; 72 assert(llvm::isPowerOf2_32(align) && "alignment is not a power of 2"); 73 p2Align = llvm::Log2_32(align); 74 assert(p2Align <= Log2MaxSectionAlignment && 75 "impossible requested alignment"); 76 } 77 78 // Write this chunk to a mmap'ed file, assuming Buf is pointing to 79 // beginning of the file. Because this function may use RVA values 80 // of other chunks for relocations, you need to set them properly 81 // before calling this function. 82 void writeTo(uint8_t *buf) const; 83 84 // The writer sets and uses the addresses. In practice, PE images cannot be 85 // larger than 2GB. Chunks are always laid as part of the image, so Chunk RVAs 86 // can be stored with 32 bits. 87 uint32_t getRVA() const { return rva; } 88 void setRVA(uint64_t v) { 89 rva = (uint32_t)v; 90 assert(rva == v && "RVA truncated"); 91 } 92 93 // Returns readable/writable/executable bits. 94 uint32_t getOutputCharacteristics() const; 95 96 // Returns the section name if this is a section chunk. 97 // It is illegal to call this function on non-section chunks. 98 StringRef getSectionName() const; 99 100 // An output section has pointers to chunks in the section, and each 101 // chunk has a back pointer to an output section. 102 void setOutputSectionIdx(uint16_t o) { osidx = o; } 103 uint16_t getOutputSectionIdx() const { return osidx; } 104 OutputSection *getOutputSection() const; 105 106 // Windows-specific. 107 // Collect all locations that contain absolute addresses for base relocations. 108 void getBaserels(std::vector<Baserel> *res); 109 110 // Returns a human-readable name of this chunk. Chunks are unnamed chunks of 111 // bytes, so this is used only for logging or debugging. 112 StringRef getDebugName() const; 113 114 // Return true if this file has the hotpatch flag set to true in the 115 // S_COMPILE3 record in codeview debug info. Also returns true for some thunks 116 // synthesized by the linker. 117 bool isHotPatchable() const; 118 119 protected: 120 Chunk(Kind k = OtherKind) : chunkKind(k), hasData(true), p2Align(0) {} 121 122 const Kind chunkKind; 123 124 public: 125 // Returns true if this has non-zero data. BSS chunks return 126 // false. If false is returned, the space occupied by this chunk 127 // will be filled with zeros. Corresponds to the 128 // IMAGE_SCN_CNT_UNINITIALIZED_DATA section characteristic bit. 129 uint8_t hasData : 1; 130 131 public: 132 // The alignment of this chunk, stored in log2 form. The writer uses the 133 // value. 134 uint8_t p2Align : 7; 135 136 // The output section index for this chunk. The first valid section number is 137 // one. 138 uint16_t osidx = 0; 139 140 // The RVA of this chunk in the output. The writer sets a value. 141 uint32_t rva = 0; 142 }; 143 144 class NonSectionChunk : public Chunk { 145 public: 146 virtual ~NonSectionChunk() = default; 147 148 // Returns the size of this chunk (even if this is a common or BSS.) 149 virtual size_t getSize() const = 0; 150 151 virtual uint32_t getOutputCharacteristics() const { return 0; } 152 153 // Write this chunk to a mmap'ed file, assuming Buf is pointing to 154 // beginning of the file. Because this function may use RVA values 155 // of other chunks for relocations, you need to set them properly 156 // before calling this function. 157 virtual void writeTo(uint8_t *buf) const {} 158 159 // Returns the section name if this is a section chunk. 160 // It is illegal to call this function on non-section chunks. 161 virtual StringRef getSectionName() const { 162 llvm_unreachable("unimplemented getSectionName"); 163 } 164 165 // Windows-specific. 166 // Collect all locations that contain absolute addresses for base relocations. 167 virtual void getBaserels(std::vector<Baserel> *res) {} 168 169 // Returns a human-readable name of this chunk. Chunks are unnamed chunks of 170 // bytes, so this is used only for logging or debugging. 171 virtual StringRef getDebugName() const { return ""; } 172 173 static bool classof(const Chunk *c) { return c->kind() != SectionKind; } 174 175 protected: 176 NonSectionChunk(Kind k = OtherKind) : Chunk(k) {} 177 }; 178 179 // A chunk corresponding a section of an input file. 180 class SectionChunk final : public Chunk { 181 // Identical COMDAT Folding feature accesses section internal data. 182 friend class ICF; 183 184 public: 185 class symbol_iterator : public llvm::iterator_adaptor_base< 186 symbol_iterator, const coff_relocation *, 187 std::random_access_iterator_tag, Symbol *> { 188 friend SectionChunk; 189 190 ObjFile *file; 191 192 symbol_iterator(ObjFile *file, const coff_relocation *i) 193 : symbol_iterator::iterator_adaptor_base(i), file(file) {} 194 195 public: 196 symbol_iterator() = default; 197 198 Symbol *operator*() const { return file->getSymbol(I->SymbolTableIndex); } 199 }; 200 201 SectionChunk(ObjFile *file, const coff_section *header); 202 static bool classof(const Chunk *c) { return c->kind() == SectionKind; } 203 size_t getSize() const { return header->SizeOfRawData; } 204 ArrayRef<uint8_t> getContents() const; 205 void writeTo(uint8_t *buf) const; 206 207 uint32_t getOutputCharacteristics() const { 208 return header->Characteristics & (permMask | typeMask); 209 } 210 StringRef getSectionName() const { 211 return StringRef(sectionNameData, sectionNameSize); 212 } 213 void getBaserels(std::vector<Baserel> *res); 214 bool isCOMDAT() const; 215 void applyRelX64(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s, 216 uint64_t p) const; 217 void applyRelX86(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s, 218 uint64_t p) const; 219 void applyRelARM(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s, 220 uint64_t p) const; 221 void applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s, 222 uint64_t p) const; 223 224 void getRuntimePseudoRelocs(std::vector<RuntimePseudoReloc> &res); 225 226 // Called if the garbage collector decides to not include this chunk 227 // in a final output. It's supposed to print out a log message to stdout. 228 void printDiscardedMessage() const; 229 230 // Adds COMDAT associative sections to this COMDAT section. A chunk 231 // and its children are treated as a group by the garbage collector. 232 void addAssociative(SectionChunk *child); 233 234 StringRef getDebugName() const; 235 236 // True if this is a codeview debug info chunk. These will not be laid out in 237 // the image. Instead they will end up in the PDB, if one is requested. 238 bool isCodeView() const { 239 return getSectionName() == ".debug" || getSectionName().startswith(".debug$"); 240 } 241 242 // True if this is a DWARF debug info or exception handling chunk. 243 bool isDWARF() const { 244 return getSectionName().startswith(".debug_") || getSectionName() == ".eh_frame"; 245 } 246 247 // Allow iteration over the bodies of this chunk's relocated symbols. 248 llvm::iterator_range<symbol_iterator> symbols() const { 249 return llvm::make_range(symbol_iterator(file, relocsData), 250 symbol_iterator(file, relocsData + relocsSize)); 251 } 252 253 ArrayRef<coff_relocation> getRelocs() const { 254 return llvm::makeArrayRef(relocsData, relocsSize); 255 } 256 257 // Reloc setter used by ARM range extension thunk insertion. 258 void setRelocs(ArrayRef<coff_relocation> newRelocs) { 259 relocsData = newRelocs.data(); 260 relocsSize = newRelocs.size(); 261 assert(relocsSize == newRelocs.size() && "reloc size truncation"); 262 } 263 264 // Single linked list iterator for associated comdat children. 265 class AssociatedIterator 266 : public llvm::iterator_facade_base< 267 AssociatedIterator, std::forward_iterator_tag, SectionChunk> { 268 public: 269 AssociatedIterator() = default; 270 AssociatedIterator(SectionChunk *head) : cur(head) {} 271 bool operator==(const AssociatedIterator &r) const { return cur == r.cur; } 272 // FIXME: Wrong const-ness, but it makes filter ranges work. 273 SectionChunk &operator*() const { return *cur; } 274 SectionChunk &operator*() { return *cur; } 275 AssociatedIterator &operator++() { 276 cur = cur->assocChildren; 277 return *this; 278 } 279 280 private: 281 SectionChunk *cur = nullptr; 282 }; 283 284 // Allow iteration over the associated child chunks for this section. 285 llvm::iterator_range<AssociatedIterator> children() const { 286 return llvm::make_range(AssociatedIterator(assocChildren), 287 AssociatedIterator(nullptr)); 288 } 289 290 // The section ID this chunk belongs to in its Obj. 291 uint32_t getSectionNumber() const; 292 293 ArrayRef<uint8_t> consumeDebugMagic(); 294 295 static ArrayRef<uint8_t> consumeDebugMagic(ArrayRef<uint8_t> data, 296 StringRef sectionName); 297 298 static SectionChunk *findByName(ArrayRef<SectionChunk *> sections, 299 StringRef name); 300 301 // The file that this chunk was created from. 302 ObjFile *file; 303 304 // Pointer to the COFF section header in the input file. 305 const coff_section *header; 306 307 // The COMDAT leader symbol if this is a COMDAT chunk. 308 DefinedRegular *sym = nullptr; 309 310 // The CRC of the contents as described in the COFF spec 4.5.5. 311 // Auxiliary Format 5: Section Definitions. Used for ICF. 312 uint32_t checksum = 0; 313 314 // Used by the garbage collector. 315 bool live; 316 317 // Whether this section needs to be kept distinct from other sections during 318 // ICF. This is set by the driver using address-significance tables. 319 bool keepUnique = false; 320 321 // The COMDAT selection if this is a COMDAT chunk. 322 llvm::COFF::COMDATType selection = (llvm::COFF::COMDATType)0; 323 324 // A pointer pointing to a replacement for this chunk. 325 // Initially it points to "this" object. If this chunk is merged 326 // with other chunk by ICF, it points to another chunk, 327 // and this chunk is considered as dead. 328 SectionChunk *repl; 329 330 private: 331 SectionChunk *assocChildren = nullptr; 332 333 // Used for ICF (Identical COMDAT Folding) 334 void replace(SectionChunk *other); 335 uint32_t eqClass[2] = {0, 0}; 336 337 // Relocations for this section. Size is stored below. 338 const coff_relocation *relocsData; 339 340 // Section name string. Size is stored below. 341 const char *sectionNameData; 342 343 uint32_t relocsSize = 0; 344 uint32_t sectionNameSize = 0; 345 }; 346 347 // Inline methods to implement faux-virtual dispatch for SectionChunk. 348 349 inline size_t Chunk::getSize() const { 350 if (isa<SectionChunk>(this)) 351 return static_cast<const SectionChunk *>(this)->getSize(); 352 else 353 return static_cast<const NonSectionChunk *>(this)->getSize(); 354 } 355 356 inline uint32_t Chunk::getOutputCharacteristics() const { 357 if (isa<SectionChunk>(this)) 358 return static_cast<const SectionChunk *>(this)->getOutputCharacteristics(); 359 else 360 return static_cast<const NonSectionChunk *>(this) 361 ->getOutputCharacteristics(); 362 } 363 364 inline void Chunk::writeTo(uint8_t *buf) const { 365 if (isa<SectionChunk>(this)) 366 static_cast<const SectionChunk *>(this)->writeTo(buf); 367 else 368 static_cast<const NonSectionChunk *>(this)->writeTo(buf); 369 } 370 371 inline StringRef Chunk::getSectionName() const { 372 if (isa<SectionChunk>(this)) 373 return static_cast<const SectionChunk *>(this)->getSectionName(); 374 else 375 return static_cast<const NonSectionChunk *>(this)->getSectionName(); 376 } 377 378 inline void Chunk::getBaserels(std::vector<Baserel> *res) { 379 if (isa<SectionChunk>(this)) 380 static_cast<SectionChunk *>(this)->getBaserels(res); 381 else 382 static_cast<NonSectionChunk *>(this)->getBaserels(res); 383 } 384 385 inline StringRef Chunk::getDebugName() const { 386 if (isa<SectionChunk>(this)) 387 return static_cast<const SectionChunk *>(this)->getDebugName(); 388 else 389 return static_cast<const NonSectionChunk *>(this)->getDebugName(); 390 } 391 392 // This class is used to implement an lld-specific feature (not implemented in 393 // MSVC) that minimizes the output size by finding string literals sharing tail 394 // parts and merging them. 395 // 396 // If string tail merging is enabled and a section is identified as containing a 397 // string literal, it is added to a MergeChunk with an appropriate alignment. 398 // The MergeChunk then tail merges the strings using the StringTableBuilder 399 // class and assigns RVAs and section offsets to each of the member chunks based 400 // on the offsets assigned by the StringTableBuilder. 401 class MergeChunk : public NonSectionChunk { 402 public: 403 MergeChunk(uint32_t alignment); 404 static void addSection(SectionChunk *c); 405 void finalizeContents(); 406 void assignSubsectionRVAs(); 407 408 uint32_t getOutputCharacteristics() const override; 409 StringRef getSectionName() const override { return ".rdata"; } 410 size_t getSize() const override; 411 void writeTo(uint8_t *buf) const override; 412 413 static MergeChunk *instances[Log2MaxSectionAlignment + 1]; 414 std::vector<SectionChunk *> sections; 415 416 private: 417 llvm::StringTableBuilder builder; 418 bool finalized = false; 419 }; 420 421 // A chunk for common symbols. Common chunks don't have actual data. 422 class CommonChunk : public NonSectionChunk { 423 public: 424 CommonChunk(const COFFSymbolRef sym); 425 size_t getSize() const override { return sym.getValue(); } 426 uint32_t getOutputCharacteristics() const override; 427 StringRef getSectionName() const override { return ".bss"; } 428 429 private: 430 const COFFSymbolRef sym; 431 }; 432 433 // A chunk for linker-created strings. 434 class StringChunk : public NonSectionChunk { 435 public: 436 explicit StringChunk(StringRef s) : str(s) {} 437 size_t getSize() const override { return str.size() + 1; } 438 void writeTo(uint8_t *buf) const override; 439 440 private: 441 StringRef str; 442 }; 443 444 static const uint8_t importThunkX86[] = { 445 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // JMP *0x0 446 }; 447 448 static const uint8_t importThunkARM[] = { 449 0x40, 0xf2, 0x00, 0x0c, // mov.w ip, #0 450 0xc0, 0xf2, 0x00, 0x0c, // mov.t ip, #0 451 0xdc, 0xf8, 0x00, 0xf0, // ldr.w pc, [ip] 452 }; 453 454 static const uint8_t importThunkARM64[] = { 455 0x10, 0x00, 0x00, 0x90, // adrp x16, #0 456 0x10, 0x02, 0x40, 0xf9, // ldr x16, [x16] 457 0x00, 0x02, 0x1f, 0xd6, // br x16 458 }; 459 460 // Windows-specific. 461 // A chunk for DLL import jump table entry. In a final output, its 462 // contents will be a JMP instruction to some __imp_ symbol. 463 class ImportThunkChunk : public NonSectionChunk { 464 public: 465 ImportThunkChunk(Defined *s) 466 : NonSectionChunk(ImportThunkKind), impSymbol(s) {} 467 static bool classof(const Chunk *c) { return c->kind() == ImportThunkKind; } 468 469 protected: 470 Defined *impSymbol; 471 }; 472 473 class ImportThunkChunkX64 : public ImportThunkChunk { 474 public: 475 explicit ImportThunkChunkX64(Defined *s); 476 size_t getSize() const override { return sizeof(importThunkX86); } 477 void writeTo(uint8_t *buf) const override; 478 }; 479 480 class ImportThunkChunkX86 : public ImportThunkChunk { 481 public: 482 explicit ImportThunkChunkX86(Defined *s) : ImportThunkChunk(s) {} 483 size_t getSize() const override { return sizeof(importThunkX86); } 484 void getBaserels(std::vector<Baserel> *res) override; 485 void writeTo(uint8_t *buf) const override; 486 }; 487 488 class ImportThunkChunkARM : public ImportThunkChunk { 489 public: 490 explicit ImportThunkChunkARM(Defined *s) : ImportThunkChunk(s) { 491 setAlignment(2); 492 } 493 size_t getSize() const override { return sizeof(importThunkARM); } 494 void getBaserels(std::vector<Baserel> *res) override; 495 void writeTo(uint8_t *buf) const override; 496 }; 497 498 class ImportThunkChunkARM64 : public ImportThunkChunk { 499 public: 500 explicit ImportThunkChunkARM64(Defined *s) : ImportThunkChunk(s) { 501 setAlignment(4); 502 } 503 size_t getSize() const override { return sizeof(importThunkARM64); } 504 void writeTo(uint8_t *buf) const override; 505 }; 506 507 class RangeExtensionThunkARM : public NonSectionChunk { 508 public: 509 explicit RangeExtensionThunkARM(Defined *t) : target(t) { setAlignment(2); } 510 size_t getSize() const override; 511 void writeTo(uint8_t *buf) const override; 512 513 Defined *target; 514 }; 515 516 class RangeExtensionThunkARM64 : public NonSectionChunk { 517 public: 518 explicit RangeExtensionThunkARM64(Defined *t) : target(t) { setAlignment(4); } 519 size_t getSize() const override; 520 void writeTo(uint8_t *buf) const override; 521 522 Defined *target; 523 }; 524 525 // Windows-specific. 526 // See comments for DefinedLocalImport class. 527 class LocalImportChunk : public NonSectionChunk { 528 public: 529 explicit LocalImportChunk(Defined *s) : sym(s) { 530 setAlignment(config->wordsize); 531 } 532 size_t getSize() const override; 533 void getBaserels(std::vector<Baserel> *res) override; 534 void writeTo(uint8_t *buf) const override; 535 536 private: 537 Defined *sym; 538 }; 539 540 // Duplicate RVAs are not allowed in RVA tables, so unique symbols by chunk and 541 // offset into the chunk. Order does not matter as the RVA table will be sorted 542 // later. 543 struct ChunkAndOffset { 544 Chunk *inputChunk; 545 uint32_t offset; 546 547 struct DenseMapInfo { 548 static ChunkAndOffset getEmptyKey() { 549 return {llvm::DenseMapInfo<Chunk *>::getEmptyKey(), 0}; 550 } 551 static ChunkAndOffset getTombstoneKey() { 552 return {llvm::DenseMapInfo<Chunk *>::getTombstoneKey(), 0}; 553 } 554 static unsigned getHashValue(const ChunkAndOffset &co) { 555 return llvm::DenseMapInfo<std::pair<Chunk *, uint32_t>>::getHashValue( 556 {co.inputChunk, co.offset}); 557 } 558 static bool isEqual(const ChunkAndOffset &lhs, const ChunkAndOffset &rhs) { 559 return lhs.inputChunk == rhs.inputChunk && lhs.offset == rhs.offset; 560 } 561 }; 562 }; 563 564 using SymbolRVASet = llvm::DenseSet<ChunkAndOffset>; 565 566 // Table which contains symbol RVAs. Used for /safeseh and /guard:cf. 567 class RVATableChunk : public NonSectionChunk { 568 public: 569 explicit RVATableChunk(SymbolRVASet s) : syms(std::move(s)) {} 570 size_t getSize() const override { return syms.size() * 4; } 571 void writeTo(uint8_t *buf) const override; 572 573 private: 574 SymbolRVASet syms; 575 }; 576 577 // Windows-specific. 578 // This class represents a block in .reloc section. 579 // See the PE/COFF spec 5.6 for details. 580 class BaserelChunk : public NonSectionChunk { 581 public: 582 BaserelChunk(uint32_t page, Baserel *begin, Baserel *end); 583 size_t getSize() const override { return data.size(); } 584 void writeTo(uint8_t *buf) const override; 585 586 private: 587 std::vector<uint8_t> data; 588 }; 589 590 class Baserel { 591 public: 592 Baserel(uint32_t v, uint8_t ty) : rva(v), type(ty) {} 593 explicit Baserel(uint32_t v) : Baserel(v, getDefaultType()) {} 594 uint8_t getDefaultType(); 595 596 uint32_t rva; 597 uint8_t type; 598 }; 599 600 // This is a placeholder Chunk, to allow attaching a DefinedSynthetic to a 601 // specific place in a section, without any data. This is used for the MinGW 602 // specific symbol __RUNTIME_PSEUDO_RELOC_LIST_END__, even though the concept 603 // of an empty chunk isn't MinGW specific. 604 class EmptyChunk : public NonSectionChunk { 605 public: 606 EmptyChunk() {} 607 size_t getSize() const override { return 0; } 608 void writeTo(uint8_t *buf) const override {} 609 }; 610 611 // MinGW specific, for the "automatic import of variables from DLLs" feature. 612 // This provides the table of runtime pseudo relocations, for variable 613 // references that turned out to need to be imported from a DLL even though 614 // the reference didn't use the dllimport attribute. The MinGW runtime will 615 // process this table after loading, before handling control over to user 616 // code. 617 class PseudoRelocTableChunk : public NonSectionChunk { 618 public: 619 PseudoRelocTableChunk(std::vector<RuntimePseudoReloc> &relocs) 620 : relocs(std::move(relocs)) { 621 setAlignment(4); 622 } 623 size_t getSize() const override; 624 void writeTo(uint8_t *buf) const override; 625 626 private: 627 std::vector<RuntimePseudoReloc> relocs; 628 }; 629 630 // MinGW specific; information about one individual location in the image 631 // that needs to be fixed up at runtime after loading. This represents 632 // one individual element in the PseudoRelocTableChunk table. 633 class RuntimePseudoReloc { 634 public: 635 RuntimePseudoReloc(Defined *sym, SectionChunk *target, uint32_t targetOffset, 636 int flags) 637 : sym(sym), target(target), targetOffset(targetOffset), flags(flags) {} 638 639 Defined *sym; 640 SectionChunk *target; 641 uint32_t targetOffset; 642 // The Flags field contains the size of the relocation, in bits. No other 643 // flags are currently defined. 644 int flags; 645 }; 646 647 // MinGW specific. A Chunk that contains one pointer-sized absolute value. 648 class AbsolutePointerChunk : public NonSectionChunk { 649 public: 650 AbsolutePointerChunk(uint64_t value) : value(value) { 651 setAlignment(getSize()); 652 } 653 size_t getSize() const override; 654 void writeTo(uint8_t *buf) const override; 655 656 private: 657 uint64_t value; 658 }; 659 660 // Return true if this file has the hotpatch flag set to true in the S_COMPILE3 661 // record in codeview debug info. Also returns true for some thunks synthesized 662 // by the linker. 663 inline bool Chunk::isHotPatchable() const { 664 if (auto *sc = dyn_cast<SectionChunk>(this)) 665 return sc->file->hotPatchable; 666 else if (isa<ImportThunkChunk>(this)) 667 return true; 668 return false; 669 } 670 671 void applyMOV32T(uint8_t *off, uint32_t v); 672 void applyBranch24T(uint8_t *off, int32_t v); 673 674 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift); 675 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit); 676 void applyArm64Branch26(uint8_t *off, int64_t v); 677 678 } // namespace coff 679 } // namespace lld 680 681 namespace llvm { 682 template <> 683 struct DenseMapInfo<lld::coff::ChunkAndOffset> 684 : lld::coff::ChunkAndOffset::DenseMapInfo {}; 685 } 686 687 #endif 688