1 //===- Chunks.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Chunks.h" 10 #include "InputFiles.h" 11 #include "Symbols.h" 12 #include "Writer.h" 13 #include "SymbolTable.h" 14 #include "lld/Common/ErrorHandler.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/BinaryFormat/COFF.h" 17 #include "llvm/Object/COFF.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/Endian.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <algorithm> 22 23 using namespace llvm; 24 using namespace llvm::object; 25 using namespace llvm::support::endian; 26 using namespace llvm::COFF; 27 using llvm::support::ulittle32_t; 28 29 namespace lld { 30 namespace coff { 31 32 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h) 33 : Chunk(SectionKind), file(f), header(h), repl(this) { 34 // Initialize relocs. 35 if (file) 36 setRelocs(file->getCOFFObj()->getRelocations(header)); 37 38 // Initialize sectionName. 39 StringRef sectionName; 40 if (file) { 41 if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header)) 42 sectionName = *e; 43 } 44 sectionNameData = sectionName.data(); 45 sectionNameSize = sectionName.size(); 46 47 setAlignment(header->getAlignment()); 48 49 hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); 50 51 // If linker GC is disabled, every chunk starts out alive. If linker GC is 52 // enabled, treat non-comdat sections as roots. Generally optimized object 53 // files will be built with -ffunction-sections or /Gy, so most things worth 54 // stripping will be in a comdat. 55 if (config) 56 live = !config->doGC || !isCOMDAT(); 57 else 58 live = true; 59 } 60 61 // SectionChunk is one of the most frequently allocated classes, so it is 62 // important to keep it as compact as possible. As of this writing, the number 63 // below is the size of this class on x64 platforms. 64 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly"); 65 66 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); } 67 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); } 68 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); } 69 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); } 70 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); } 71 72 // Verify that given sections are appropriate targets for SECREL 73 // relocations. This check is relaxed because unfortunately debug 74 // sections have section-relative relocations against absolute symbols. 75 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) { 76 if (os) 77 return true; 78 if (sec->isCodeView()) 79 return false; 80 error("SECREL relocation cannot be applied to absolute symbols"); 81 return false; 82 } 83 84 static void applySecRel(const SectionChunk *sec, uint8_t *off, 85 OutputSection *os, uint64_t s) { 86 if (!checkSecRel(sec, os)) 87 return; 88 uint64_t secRel = s - os->getRVA(); 89 if (secRel > UINT32_MAX) { 90 error("overflow in SECREL relocation in section: " + sec->getSectionName()); 91 return; 92 } 93 add32(off, secRel); 94 } 95 96 static void applySecIdx(uint8_t *off, OutputSection *os) { 97 // Absolute symbol doesn't have section index, but section index relocation 98 // against absolute symbol should be resolved to one plus the last output 99 // section index. This is required for compatibility with MSVC. 100 if (os) 101 add16(off, os->sectionIndex); 102 else 103 add16(off, DefinedAbsolute::numOutputSections + 1); 104 } 105 106 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os, 107 uint64_t s, uint64_t p) const { 108 switch (type) { 109 case IMAGE_REL_AMD64_ADDR32: add32(off, s + config->imageBase); break; 110 case IMAGE_REL_AMD64_ADDR64: add64(off, s + config->imageBase); break; 111 case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break; 112 case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break; 113 case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break; 114 case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break; 115 case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break; 116 case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break; 117 case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break; 118 case IMAGE_REL_AMD64_SECTION: applySecIdx(off, os); break; 119 case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break; 120 default: 121 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 122 toString(file)); 123 } 124 } 125 126 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os, 127 uint64_t s, uint64_t p) const { 128 switch (type) { 129 case IMAGE_REL_I386_ABSOLUTE: break; 130 case IMAGE_REL_I386_DIR32: add32(off, s + config->imageBase); break; 131 case IMAGE_REL_I386_DIR32NB: add32(off, s); break; 132 case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break; 133 case IMAGE_REL_I386_SECTION: applySecIdx(off, os); break; 134 case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break; 135 default: 136 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 137 toString(file)); 138 } 139 } 140 141 static void applyMOV(uint8_t *off, uint16_t v) { 142 write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf)); 143 write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff)); 144 } 145 146 static uint16_t readMOV(uint8_t *off, bool movt) { 147 uint16_t op1 = read16le(off); 148 if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240)) 149 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 150 " instruction in MOV32T relocation"); 151 uint16_t op2 = read16le(off + 2); 152 if ((op2 & 0x8000) != 0) 153 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 154 " instruction in MOV32T relocation"); 155 return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) | 156 ((op1 & 0x000f) << 12); 157 } 158 159 void applyMOV32T(uint8_t *off, uint32_t v) { 160 uint16_t immW = readMOV(off, false); // read MOVW operand 161 uint16_t immT = readMOV(off + 4, true); // read MOVT operand 162 uint32_t imm = immW | (immT << 16); 163 v += imm; // add the immediate offset 164 applyMOV(off, v); // set MOVW operand 165 applyMOV(off + 4, v >> 16); // set MOVT operand 166 } 167 168 static void applyBranch20T(uint8_t *off, int32_t v) { 169 if (!isInt<21>(v)) 170 error("relocation out of range"); 171 uint32_t s = v < 0 ? 1 : 0; 172 uint32_t j1 = (v >> 19) & 1; 173 uint32_t j2 = (v >> 18) & 1; 174 or16(off, (s << 10) | ((v >> 12) & 0x3f)); 175 or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 176 } 177 178 void applyBranch24T(uint8_t *off, int32_t v) { 179 if (!isInt<25>(v)) 180 error("relocation out of range"); 181 uint32_t s = v < 0 ? 1 : 0; 182 uint32_t j1 = ((~v >> 23) & 1) ^ s; 183 uint32_t j2 = ((~v >> 22) & 1) ^ s; 184 or16(off, (s << 10) | ((v >> 12) & 0x3ff)); 185 // Clear out the J1 and J2 bits which may be set. 186 write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 187 } 188 189 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os, 190 uint64_t s, uint64_t p) const { 191 // Pointer to thumb code must have the LSB set. 192 uint64_t sx = s; 193 if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) 194 sx |= 1; 195 switch (type) { 196 case IMAGE_REL_ARM_ADDR32: add32(off, sx + config->imageBase); break; 197 case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break; 198 case IMAGE_REL_ARM_MOV32T: applyMOV32T(off, sx + config->imageBase); break; 199 case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break; 200 case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break; 201 case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break; 202 case IMAGE_REL_ARM_SECTION: applySecIdx(off, os); break; 203 case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break; 204 case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break; 205 default: 206 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 207 toString(file)); 208 } 209 } 210 211 // Interpret the existing immediate value as a byte offset to the 212 // target symbol, then update the instruction with the immediate as 213 // the page offset from the current instruction to the target. 214 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) { 215 uint32_t orig = read32le(off); 216 uint64_t imm = ((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC); 217 s += imm; 218 imm = (s >> shift) - (p >> shift); 219 uint32_t immLo = (imm & 0x3) << 29; 220 uint32_t immHi = (imm & 0x1FFFFC) << 3; 221 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); 222 write32le(off, (orig & ~mask) | immLo | immHi); 223 } 224 225 // Update the immediate field in a AARCH64 ldr, str, and add instruction. 226 // Optionally limit the range of the written immediate by one or more bits 227 // (rangeLimit). 228 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) { 229 uint32_t orig = read32le(off); 230 imm += (orig >> 10) & 0xFFF; 231 orig &= ~(0xFFF << 10); 232 write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10)); 233 } 234 235 // Add the 12 bit page offset to the existing immediate. 236 // Ldr/str instructions store the opcode immediate scaled 237 // by the load/store size (giving a larger range for larger 238 // loads/stores). The immediate is always (both before and after 239 // fixing up the relocation) stored scaled similarly. 240 // Even if larger loads/stores have a larger range, limit the 241 // effective offset to 12 bit, since it is intended to be a 242 // page offset. 243 static void applyArm64Ldr(uint8_t *off, uint64_t imm) { 244 uint32_t orig = read32le(off); 245 uint32_t size = orig >> 30; 246 // 0x04000000 indicates SIMD/FP registers 247 // 0x00800000 indicates 128 bit 248 if ((orig & 0x4800000) == 0x4800000) 249 size += 4; 250 if ((imm & ((1 << size) - 1)) != 0) 251 error("misaligned ldr/str offset"); 252 applyArm64Imm(off, imm >> size, size); 253 } 254 255 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off, 256 OutputSection *os, uint64_t s) { 257 if (checkSecRel(sec, os)) 258 applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0); 259 } 260 261 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off, 262 OutputSection *os, uint64_t s) { 263 if (!checkSecRel(sec, os)) 264 return; 265 uint64_t secRel = (s - os->getRVA()) >> 12; 266 if (0xfff < secRel) { 267 error("overflow in SECREL_HIGH12A relocation in section: " + 268 sec->getSectionName()); 269 return; 270 } 271 applyArm64Imm(off, secRel & 0xfff, 0); 272 } 273 274 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off, 275 OutputSection *os, uint64_t s) { 276 if (checkSecRel(sec, os)) 277 applyArm64Ldr(off, (s - os->getRVA()) & 0xfff); 278 } 279 280 void applyArm64Branch26(uint8_t *off, int64_t v) { 281 if (!isInt<28>(v)) 282 error("relocation out of range"); 283 or32(off, (v & 0x0FFFFFFC) >> 2); 284 } 285 286 static void applyArm64Branch19(uint8_t *off, int64_t v) { 287 if (!isInt<21>(v)) 288 error("relocation out of range"); 289 or32(off, (v & 0x001FFFFC) << 3); 290 } 291 292 static void applyArm64Branch14(uint8_t *off, int64_t v) { 293 if (!isInt<16>(v)) 294 error("relocation out of range"); 295 or32(off, (v & 0x0000FFFC) << 3); 296 } 297 298 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os, 299 uint64_t s, uint64_t p) const { 300 switch (type) { 301 case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break; 302 case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break; 303 case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break; 304 case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break; 305 case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break; 306 case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break; 307 case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break; 308 case IMAGE_REL_ARM64_ADDR32: add32(off, s + config->imageBase); break; 309 case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break; 310 case IMAGE_REL_ARM64_ADDR64: add64(off, s + config->imageBase); break; 311 case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break; 312 case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break; 313 case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break; 314 case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break; 315 case IMAGE_REL_ARM64_SECTION: applySecIdx(off, os); break; 316 case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break; 317 default: 318 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 319 toString(file)); 320 } 321 } 322 323 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk, 324 Defined *sym, 325 const coff_relocation &rel) { 326 // Don't report these errors when the relocation comes from a debug info 327 // section or in mingw mode. MinGW mode object files (built by GCC) can 328 // have leftover sections with relocations against discarded comdat 329 // sections. Such sections are left as is, with relocations untouched. 330 if (fromChunk->isCodeView() || fromChunk->isDWARF() || config->mingw) 331 return; 332 333 // Get the name of the symbol. If it's null, it was discarded early, so we 334 // have to go back to the object file. 335 ObjFile *file = fromChunk->file; 336 StringRef name; 337 if (sym) { 338 name = sym->getName(); 339 } else { 340 COFFSymbolRef coffSym = 341 check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex)); 342 name = check(file->getCOFFObj()->getSymbolName(coffSym)); 343 } 344 345 std::vector<std::string> symbolLocations = 346 getSymbolLocations(file, rel.SymbolTableIndex); 347 348 std::string out; 349 llvm::raw_string_ostream os(out); 350 os << "relocation against symbol in discarded section: " + name; 351 for (const std::string &s : symbolLocations) 352 os << s; 353 error(os.str()); 354 } 355 356 void SectionChunk::writeTo(uint8_t *buf) const { 357 if (!hasData) 358 return; 359 // Copy section contents from source object file to output file. 360 ArrayRef<uint8_t> a = getContents(); 361 if (!a.empty()) 362 memcpy(buf, a.data(), a.size()); 363 364 // Apply relocations. 365 size_t inputSize = getSize(); 366 for (const coff_relocation &rel : getRelocs()) { 367 // Check for an invalid relocation offset. This check isn't perfect, because 368 // we don't have the relocation size, which is only known after checking the 369 // machine and relocation type. As a result, a relocation may overwrite the 370 // beginning of the following input section. 371 if (rel.VirtualAddress >= inputSize) { 372 error("relocation points beyond the end of its parent section"); 373 continue; 374 } 375 376 applyRelocation(buf + rel.VirtualAddress, rel); 377 } 378 } 379 380 void SectionChunk::applyRelocation(uint8_t *off, 381 const coff_relocation &rel) const { 382 auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 383 384 // Get the output section of the symbol for this relocation. The output 385 // section is needed to compute SECREL and SECTION relocations used in debug 386 // info. 387 Chunk *c = sym ? sym->getChunk() : nullptr; 388 OutputSection *os = c ? c->getOutputSection() : nullptr; 389 390 // Skip the relocation if it refers to a discarded section, and diagnose it 391 // as an error if appropriate. If a symbol was discarded early, it may be 392 // null. If it was discarded late, the output section will be null, unless 393 // it was an absolute or synthetic symbol. 394 if (!sym || 395 (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) { 396 maybeReportRelocationToDiscarded(this, sym, rel); 397 return; 398 } 399 400 uint64_t s = sym->getRVA(); 401 402 // Compute the RVA of the relocation for relative relocations. 403 uint64_t p = rva + rel.VirtualAddress; 404 switch (config->machine) { 405 case AMD64: 406 applyRelX64(off, rel.Type, os, s, p); 407 break; 408 case I386: 409 applyRelX86(off, rel.Type, os, s, p); 410 break; 411 case ARMNT: 412 applyRelARM(off, rel.Type, os, s, p); 413 break; 414 case ARM64: 415 applyRelARM64(off, rel.Type, os, s, p); 416 break; 417 default: 418 llvm_unreachable("unknown machine type"); 419 } 420 } 421 422 // Defend against unsorted relocations. This may be overly conservative. 423 void SectionChunk::sortRelocations() { 424 auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) { 425 return l.VirtualAddress < r.VirtualAddress; 426 }; 427 if (llvm::is_sorted(getRelocs(), cmpByVa)) 428 return; 429 warn("some relocations in " + file->getName() + " are not sorted"); 430 MutableArrayRef<coff_relocation> newRelocs( 431 bAlloc.Allocate<coff_relocation>(relocsSize), relocsSize); 432 memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation)); 433 llvm::sort(newRelocs, cmpByVa); 434 setRelocs(newRelocs); 435 } 436 437 // Similar to writeTo, but suitable for relocating a subsection of the overall 438 // section. 439 void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec, 440 ArrayRef<uint8_t> subsec, 441 uint32_t &nextRelocIndex, 442 uint8_t *buf) const { 443 assert(!subsec.empty() && !sec.empty()); 444 assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() && 445 "subsection is not part of this section"); 446 size_t vaBegin = std::distance(sec.begin(), subsec.begin()); 447 size_t vaEnd = std::distance(sec.begin(), subsec.end()); 448 memcpy(buf, subsec.data(), subsec.size()); 449 for (; nextRelocIndex < relocsSize; ++nextRelocIndex) { 450 const coff_relocation &rel = relocsData[nextRelocIndex]; 451 // Only apply relocations that apply to this subsection. These checks 452 // assume that all subsections completely contain their relocations. 453 // Relocations must not straddle the beginning or end of a subsection. 454 if (rel.VirtualAddress < vaBegin) 455 continue; 456 if (rel.VirtualAddress + 1 >= vaEnd) 457 break; 458 applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel); 459 } 460 } 461 462 void SectionChunk::addAssociative(SectionChunk *child) { 463 // Insert the child section into the list of associated children. Keep the 464 // list ordered by section name so that ICF does not depend on section order. 465 assert(child->assocChildren == nullptr && 466 "associated sections cannot have their own associated children"); 467 SectionChunk *prev = this; 468 SectionChunk *next = assocChildren; 469 for (; next != nullptr; prev = next, next = next->assocChildren) { 470 if (next->getSectionName() <= child->getSectionName()) 471 break; 472 } 473 474 // Insert child between prev and next. 475 assert(prev->assocChildren == next); 476 prev->assocChildren = child; 477 child->assocChildren = next; 478 } 479 480 static uint8_t getBaserelType(const coff_relocation &rel) { 481 switch (config->machine) { 482 case AMD64: 483 if (rel.Type == IMAGE_REL_AMD64_ADDR64) 484 return IMAGE_REL_BASED_DIR64; 485 if (rel.Type == IMAGE_REL_AMD64_ADDR32) 486 return IMAGE_REL_BASED_HIGHLOW; 487 return IMAGE_REL_BASED_ABSOLUTE; 488 case I386: 489 if (rel.Type == IMAGE_REL_I386_DIR32) 490 return IMAGE_REL_BASED_HIGHLOW; 491 return IMAGE_REL_BASED_ABSOLUTE; 492 case ARMNT: 493 if (rel.Type == IMAGE_REL_ARM_ADDR32) 494 return IMAGE_REL_BASED_HIGHLOW; 495 if (rel.Type == IMAGE_REL_ARM_MOV32T) 496 return IMAGE_REL_BASED_ARM_MOV32T; 497 return IMAGE_REL_BASED_ABSOLUTE; 498 case ARM64: 499 if (rel.Type == IMAGE_REL_ARM64_ADDR64) 500 return IMAGE_REL_BASED_DIR64; 501 return IMAGE_REL_BASED_ABSOLUTE; 502 default: 503 llvm_unreachable("unknown machine type"); 504 } 505 } 506 507 // Windows-specific. 508 // Collect all locations that contain absolute addresses, which need to be 509 // fixed by the loader if load-time relocation is needed. 510 // Only called when base relocation is enabled. 511 void SectionChunk::getBaserels(std::vector<Baserel> *res) { 512 for (const coff_relocation &rel : getRelocs()) { 513 uint8_t ty = getBaserelType(rel); 514 if (ty == IMAGE_REL_BASED_ABSOLUTE) 515 continue; 516 Symbol *target = file->getSymbol(rel.SymbolTableIndex); 517 if (!target || isa<DefinedAbsolute>(target)) 518 continue; 519 res->emplace_back(rva + rel.VirtualAddress, ty); 520 } 521 } 522 523 // MinGW specific. 524 // Check whether a static relocation of type Type can be deferred and 525 // handled at runtime as a pseudo relocation (for references to a module 526 // local variable, which turned out to actually need to be imported from 527 // another DLL) This returns the size the relocation is supposed to update, 528 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo 529 // relocation. 530 static int getRuntimePseudoRelocSize(uint16_t type) { 531 // Relocations that either contain an absolute address, or a plain 532 // relative offset, since the runtime pseudo reloc implementation 533 // adds 8/16/32/64 bit values to a memory address. 534 // 535 // Given a pseudo relocation entry, 536 // 537 // typedef struct { 538 // DWORD sym; 539 // DWORD target; 540 // DWORD flags; 541 // } runtime_pseudo_reloc_item_v2; 542 // 543 // the runtime relocation performs this adjustment: 544 // *(base + .target) += *(base + .sym) - (base + .sym) 545 // 546 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64, 547 // IMAGE_REL_I386_DIR32, where the memory location initially contains 548 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32), 549 // where the memory location originally contains the relative offset to the 550 // IAT slot. 551 // 552 // This requires the target address to be writable, either directly out of 553 // the image, or temporarily changed at runtime with VirtualProtect. 554 // Since this only operates on direct address values, it doesn't work for 555 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations. 556 switch (config->machine) { 557 case AMD64: 558 switch (type) { 559 case IMAGE_REL_AMD64_ADDR64: 560 return 64; 561 case IMAGE_REL_AMD64_ADDR32: 562 case IMAGE_REL_AMD64_REL32: 563 case IMAGE_REL_AMD64_REL32_1: 564 case IMAGE_REL_AMD64_REL32_2: 565 case IMAGE_REL_AMD64_REL32_3: 566 case IMAGE_REL_AMD64_REL32_4: 567 case IMAGE_REL_AMD64_REL32_5: 568 return 32; 569 default: 570 return 0; 571 } 572 case I386: 573 switch (type) { 574 case IMAGE_REL_I386_DIR32: 575 case IMAGE_REL_I386_REL32: 576 return 32; 577 default: 578 return 0; 579 } 580 case ARMNT: 581 switch (type) { 582 case IMAGE_REL_ARM_ADDR32: 583 return 32; 584 default: 585 return 0; 586 } 587 case ARM64: 588 switch (type) { 589 case IMAGE_REL_ARM64_ADDR64: 590 return 64; 591 case IMAGE_REL_ARM64_ADDR32: 592 return 32; 593 default: 594 return 0; 595 } 596 default: 597 llvm_unreachable("unknown machine type"); 598 } 599 } 600 601 // MinGW specific. 602 // Append information to the provided vector about all relocations that 603 // need to be handled at runtime as runtime pseudo relocations (references 604 // to a module local variable, which turned out to actually need to be 605 // imported from another DLL). 606 void SectionChunk::getRuntimePseudoRelocs( 607 std::vector<RuntimePseudoReloc> &res) { 608 for (const coff_relocation &rel : getRelocs()) { 609 auto *target = 610 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 611 if (!target || !target->isRuntimePseudoReloc) 612 continue; 613 int sizeInBits = getRuntimePseudoRelocSize(rel.Type); 614 if (sizeInBits == 0) { 615 error("unable to automatically import from " + target->getName() + 616 " with relocation type " + 617 file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " + 618 toString(file)); 619 continue; 620 } 621 // sizeInBits is used to initialize the Flags field; currently no 622 // other flags are defined. 623 res.emplace_back( 624 RuntimePseudoReloc(target, this, rel.VirtualAddress, sizeInBits)); 625 } 626 } 627 628 bool SectionChunk::isCOMDAT() const { 629 return header->Characteristics & IMAGE_SCN_LNK_COMDAT; 630 } 631 632 void SectionChunk::printDiscardedMessage() const { 633 // Removed by dead-stripping. If it's removed by ICF, ICF already 634 // printed out the name, so don't repeat that here. 635 if (sym && this == repl) 636 message("Discarded " + sym->getName()); 637 } 638 639 StringRef SectionChunk::getDebugName() const { 640 if (sym) 641 return sym->getName(); 642 return ""; 643 } 644 645 ArrayRef<uint8_t> SectionChunk::getContents() const { 646 ArrayRef<uint8_t> a; 647 cantFail(file->getCOFFObj()->getSectionContents(header, a)); 648 return a; 649 } 650 651 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() { 652 assert(isCodeView()); 653 return consumeDebugMagic(getContents(), getSectionName()); 654 } 655 656 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data, 657 StringRef sectionName) { 658 if (data.empty()) 659 return {}; 660 661 // First 4 bytes are section magic. 662 if (data.size() < 4) 663 fatal("the section is too short: " + sectionName); 664 665 if (!sectionName.startswith(".debug$")) 666 fatal("invalid section: " + sectionName); 667 668 uint32_t magic = support::endian::read32le(data.data()); 669 uint32_t expectedMagic = sectionName == ".debug$H" 670 ? DEBUG_HASHES_SECTION_MAGIC 671 : DEBUG_SECTION_MAGIC; 672 if (magic != expectedMagic) { 673 warn("ignoring section " + sectionName + " with unrecognized magic 0x" + 674 utohexstr(magic)); 675 return {}; 676 } 677 return data.slice(4); 678 } 679 680 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections, 681 StringRef name) { 682 for (SectionChunk *c : sections) 683 if (c->getSectionName() == name) 684 return c; 685 return nullptr; 686 } 687 688 void SectionChunk::replace(SectionChunk *other) { 689 p2Align = std::max(p2Align, other->p2Align); 690 other->repl = repl; 691 other->live = false; 692 } 693 694 uint32_t SectionChunk::getSectionNumber() const { 695 DataRefImpl r; 696 r.p = reinterpret_cast<uintptr_t>(header); 697 SectionRef s(r, file->getCOFFObj()); 698 return s.getIndex() + 1; 699 } 700 701 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) { 702 // The value of a common symbol is its size. Align all common symbols smaller 703 // than 32 bytes naturally, i.e. round the size up to the next power of two. 704 // This is what MSVC link.exe does. 705 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue())))); 706 hasData = false; 707 } 708 709 uint32_t CommonChunk::getOutputCharacteristics() const { 710 return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | 711 IMAGE_SCN_MEM_WRITE; 712 } 713 714 void StringChunk::writeTo(uint8_t *buf) const { 715 memcpy(buf, str.data(), str.size()); 716 buf[str.size()] = '\0'; 717 } 718 719 ImportThunkChunkX64::ImportThunkChunkX64(Defined *s) : ImportThunkChunk(s) { 720 // Intel Optimization Manual says that all branch targets 721 // should be 16-byte aligned. MSVC linker does this too. 722 setAlignment(16); 723 } 724 725 void ImportThunkChunkX64::writeTo(uint8_t *buf) const { 726 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 727 // The first two bytes is a JMP instruction. Fill its operand. 728 write32le(buf + 2, impSymbol->getRVA() - rva - getSize()); 729 } 730 731 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) { 732 res->emplace_back(getRVA() + 2); 733 } 734 735 void ImportThunkChunkX86::writeTo(uint8_t *buf) const { 736 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 737 // The first two bytes is a JMP instruction. Fill its operand. 738 write32le(buf + 2, 739 impSymbol->getRVA() + config->imageBase); 740 } 741 742 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) { 743 res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); 744 } 745 746 void ImportThunkChunkARM::writeTo(uint8_t *buf) const { 747 memcpy(buf, importThunkARM, sizeof(importThunkARM)); 748 // Fix mov.w and mov.t operands. 749 applyMOV32T(buf, impSymbol->getRVA() + config->imageBase); 750 } 751 752 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const { 753 int64_t off = impSymbol->getRVA() & 0xfff; 754 memcpy(buf, importThunkARM64, sizeof(importThunkARM64)); 755 applyArm64Addr(buf, impSymbol->getRVA(), rva, 12); 756 applyArm64Ldr(buf + 4, off); 757 } 758 759 // A Thumb2, PIC, non-interworking range extension thunk. 760 const uint8_t armThunk[] = { 761 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) 762 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) 763 0xe7, 0x44, // L1: add pc, ip 764 }; 765 766 size_t RangeExtensionThunkARM::getSize() const { 767 assert(config->machine == ARMNT); 768 return sizeof(armThunk); 769 } 770 771 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const { 772 assert(config->machine == ARMNT); 773 uint64_t offset = target->getRVA() - rva - 12; 774 memcpy(buf, armThunk, sizeof(armThunk)); 775 applyMOV32T(buf, uint32_t(offset)); 776 } 777 778 // A position independent ARM64 adrp+add thunk, with a maximum range of 779 // +/- 4 GB, which is enough for any PE-COFF. 780 const uint8_t arm64Thunk[] = { 781 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest 782 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest 783 0x00, 0x02, 0x1f, 0xd6, // br x16 784 }; 785 786 size_t RangeExtensionThunkARM64::getSize() const { 787 assert(config->machine == ARM64); 788 return sizeof(arm64Thunk); 789 } 790 791 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const { 792 assert(config->machine == ARM64); 793 memcpy(buf, arm64Thunk, sizeof(arm64Thunk)); 794 applyArm64Addr(buf + 0, target->getRVA(), rva, 12); 795 applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0); 796 } 797 798 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) { 799 res->emplace_back(getRVA()); 800 } 801 802 size_t LocalImportChunk::getSize() const { return config->wordsize; } 803 804 void LocalImportChunk::writeTo(uint8_t *buf) const { 805 if (config->is64()) { 806 write64le(buf, sym->getRVA() + config->imageBase); 807 } else { 808 write32le(buf, sym->getRVA() + config->imageBase); 809 } 810 } 811 812 void RVATableChunk::writeTo(uint8_t *buf) const { 813 ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf); 814 size_t cnt = 0; 815 for (const ChunkAndOffset &co : syms) 816 begin[cnt++] = co.inputChunk->getRVA() + co.offset; 817 std::sort(begin, begin + cnt); 818 assert(std::unique(begin, begin + cnt) == begin + cnt && 819 "RVA tables should be de-duplicated"); 820 } 821 822 void RVAFlagTableChunk::writeTo(uint8_t *buf) const { 823 struct RVAFlag { 824 ulittle32_t rva; 825 uint8_t flag; 826 }; 827 auto flags = 828 makeMutableArrayRef(reinterpret_cast<RVAFlag *>(buf), syms.size()); 829 for (auto t : zip(syms, flags)) { 830 const auto &sym = std::get<0>(t); 831 auto &flag = std::get<1>(t); 832 flag.rva = sym.inputChunk->getRVA() + sym.offset; 833 flag.flag = 0; 834 } 835 llvm::sort(flags, 836 [](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; }); 837 assert(llvm::unique(flags, [](const RVAFlag &a, 838 const RVAFlag &b) { return a.rva == b.rva; }) == 839 flags.end() && 840 "RVA tables should be de-duplicated"); 841 } 842 843 // MinGW specific, for the "automatic import of variables from DLLs" feature. 844 size_t PseudoRelocTableChunk::getSize() const { 845 if (relocs.empty()) 846 return 0; 847 return 12 + 12 * relocs.size(); 848 } 849 850 // MinGW specific. 851 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const { 852 if (relocs.empty()) 853 return; 854 855 ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf); 856 // This is the list header, to signal the runtime pseudo relocation v2 857 // format. 858 table[0] = 0; 859 table[1] = 0; 860 table[2] = 1; 861 862 size_t idx = 3; 863 for (const RuntimePseudoReloc &rpr : relocs) { 864 table[idx + 0] = rpr.sym->getRVA(); 865 table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset; 866 table[idx + 2] = rpr.flags; 867 idx += 3; 868 } 869 } 870 871 // Windows-specific. This class represents a block in .reloc section. 872 // The format is described here. 873 // 874 // On Windows, each DLL is linked against a fixed base address and 875 // usually loaded to that address. However, if there's already another 876 // DLL that overlaps, the loader has to relocate it. To do that, DLLs 877 // contain .reloc sections which contain offsets that need to be fixed 878 // up at runtime. If the loader finds that a DLL cannot be loaded to its 879 // desired base address, it loads it to somewhere else, and add <actual 880 // base address> - <desired base address> to each offset that is 881 // specified by the .reloc section. In ELF terms, .reloc sections 882 // contain relative relocations in REL format (as opposed to RELA.) 883 // 884 // This already significantly reduces the size of relocations compared 885 // to ELF .rel.dyn, but Windows does more to reduce it (probably because 886 // it was invented for PCs in the late '80s or early '90s.) Offsets in 887 // .reloc are grouped by page where the page size is 12 bits, and 888 // offsets sharing the same page address are stored consecutively to 889 // represent them with less space. This is very similar to the page 890 // table which is grouped by (multiple stages of) pages. 891 // 892 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, 893 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 894 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they 895 // are represented like this: 896 // 897 // 0x00000 -- page address (4 bytes) 898 // 16 -- size of this block (4 bytes) 899 // 0xA030 -- entries (2 bytes each) 900 // 0xA500 901 // 0xA700 902 // 0xAA00 903 // 0x20000 -- page address (4 bytes) 904 // 12 -- size of this block (4 bytes) 905 // 0xA004 -- entries (2 bytes each) 906 // 0xA008 907 // 908 // Usually we have a lot of relocations for each page, so the number of 909 // bytes for one .reloc entry is close to 2 bytes on average. 910 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) { 911 // Block header consists of 4 byte page RVA and 4 byte block size. 912 // Each entry is 2 byte. Last entry may be padding. 913 data.resize(alignTo((end - begin) * 2 + 8, 4)); 914 uint8_t *p = data.data(); 915 write32le(p, page); 916 write32le(p + 4, data.size()); 917 p += 8; 918 for (Baserel *i = begin; i != end; ++i) { 919 write16le(p, (i->type << 12) | (i->rva - page)); 920 p += 2; 921 } 922 } 923 924 void BaserelChunk::writeTo(uint8_t *buf) const { 925 memcpy(buf, data.data(), data.size()); 926 } 927 928 uint8_t Baserel::getDefaultType() { 929 switch (config->machine) { 930 case AMD64: 931 case ARM64: 932 return IMAGE_REL_BASED_DIR64; 933 case I386: 934 case ARMNT: 935 return IMAGE_REL_BASED_HIGHLOW; 936 default: 937 llvm_unreachable("unknown machine type"); 938 } 939 } 940 941 MergeChunk *MergeChunk::instances[Log2MaxSectionAlignment + 1] = {}; 942 943 MergeChunk::MergeChunk(uint32_t alignment) 944 : builder(StringTableBuilder::RAW, alignment) { 945 setAlignment(alignment); 946 } 947 948 void MergeChunk::addSection(SectionChunk *c) { 949 assert(isPowerOf2_32(c->getAlignment())); 950 uint8_t p2Align = llvm::Log2_32(c->getAlignment()); 951 assert(p2Align < array_lengthof(instances)); 952 auto *&mc = instances[p2Align]; 953 if (!mc) 954 mc = make<MergeChunk>(c->getAlignment()); 955 mc->sections.push_back(c); 956 } 957 958 void MergeChunk::finalizeContents() { 959 assert(!finalized && "should only finalize once"); 960 for (SectionChunk *c : sections) 961 if (c->live) 962 builder.add(toStringRef(c->getContents())); 963 builder.finalize(); 964 finalized = true; 965 } 966 967 void MergeChunk::assignSubsectionRVAs() { 968 for (SectionChunk *c : sections) { 969 if (!c->live) 970 continue; 971 size_t off = builder.getOffset(toStringRef(c->getContents())); 972 c->setRVA(rva + off); 973 } 974 } 975 976 uint32_t MergeChunk::getOutputCharacteristics() const { 977 return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; 978 } 979 980 size_t MergeChunk::getSize() const { 981 return builder.getSize(); 982 } 983 984 void MergeChunk::writeTo(uint8_t *buf) const { 985 builder.write(buf); 986 } 987 988 // MinGW specific. 989 size_t AbsolutePointerChunk::getSize() const { return config->wordsize; } 990 991 void AbsolutePointerChunk::writeTo(uint8_t *buf) const { 992 if (config->is64()) { 993 write64le(buf, value); 994 } else { 995 write32le(buf, value); 996 } 997 } 998 999 } // namespace coff 1000 } // namespace lld 1001