1 //===- Chunks.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Chunks.h" 10 #include "COFFLinkerContext.h" 11 #include "InputFiles.h" 12 #include "SymbolTable.h" 13 #include "Symbols.h" 14 #include "Writer.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/BinaryFormat/COFF.h" 19 #include "llvm/Object/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <algorithm> 24 #include <iterator> 25 26 using namespace llvm; 27 using namespace llvm::object; 28 using namespace llvm::support::endian; 29 using namespace llvm::COFF; 30 using llvm::support::ulittle32_t; 31 32 namespace lld::coff { 33 34 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h, Kind k) 35 : Chunk(k), file(f), header(h), repl(this) { 36 // Initialize relocs. 37 if (file) 38 setRelocs(file->getCOFFObj()->getRelocations(header)); 39 40 // Initialize sectionName. 41 StringRef sectionName; 42 if (file) { 43 if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header)) 44 sectionName = *e; 45 } 46 sectionNameData = sectionName.data(); 47 sectionNameSize = sectionName.size(); 48 49 setAlignment(header->getAlignment()); 50 51 hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); 52 53 // If linker GC is disabled, every chunk starts out alive. If linker GC is 54 // enabled, treat non-comdat sections as roots. Generally optimized object 55 // files will be built with -ffunction-sections or /Gy, so most things worth 56 // stripping will be in a comdat. 57 if (file) 58 live = !file->ctx.config.doGC || !isCOMDAT(); 59 else 60 live = true; 61 } 62 63 // SectionChunk is one of the most frequently allocated classes, so it is 64 // important to keep it as compact as possible. As of this writing, the number 65 // below is the size of this class on x64 platforms. 66 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly"); 67 68 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); } 69 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); } 70 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); } 71 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); } 72 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); } 73 74 // Verify that given sections are appropriate targets for SECREL 75 // relocations. This check is relaxed because unfortunately debug 76 // sections have section-relative relocations against absolute symbols. 77 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) { 78 if (os) 79 return true; 80 if (sec->isCodeView()) 81 return false; 82 error("SECREL relocation cannot be applied to absolute symbols"); 83 return false; 84 } 85 86 static void applySecRel(const SectionChunk *sec, uint8_t *off, 87 OutputSection *os, uint64_t s) { 88 if (!checkSecRel(sec, os)) 89 return; 90 uint64_t secRel = s - os->getRVA(); 91 if (secRel > UINT32_MAX) { 92 error("overflow in SECREL relocation in section: " + sec->getSectionName()); 93 return; 94 } 95 add32(off, secRel); 96 } 97 98 static void applySecIdx(uint8_t *off, OutputSection *os, 99 unsigned numOutputSections) { 100 // numOutputSections is the largest valid section index. Make sure that 101 // it fits in 16 bits. 102 assert(numOutputSections <= 0xffff && "size of outputSections is too big"); 103 104 // Absolute symbol doesn't have section index, but section index relocation 105 // against absolute symbol should be resolved to one plus the last output 106 // section index. This is required for compatibility with MSVC. 107 if (os) 108 add16(off, os->sectionIndex); 109 else 110 add16(off, numOutputSections + 1); 111 } 112 113 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os, 114 uint64_t s, uint64_t p, 115 uint64_t imageBase) const { 116 switch (type) { 117 case IMAGE_REL_AMD64_ADDR32: 118 add32(off, s + imageBase); 119 break; 120 case IMAGE_REL_AMD64_ADDR64: 121 add64(off, s + imageBase); 122 break; 123 case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break; 124 case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break; 125 case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break; 126 case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break; 127 case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break; 128 case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break; 129 case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break; 130 case IMAGE_REL_AMD64_SECTION: 131 applySecIdx(off, os, file->ctx.outputSections.size()); 132 break; 133 case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break; 134 default: 135 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 136 toString(file)); 137 } 138 } 139 140 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os, 141 uint64_t s, uint64_t p, 142 uint64_t imageBase) const { 143 switch (type) { 144 case IMAGE_REL_I386_ABSOLUTE: break; 145 case IMAGE_REL_I386_DIR32: 146 add32(off, s + imageBase); 147 break; 148 case IMAGE_REL_I386_DIR32NB: add32(off, s); break; 149 case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break; 150 case IMAGE_REL_I386_SECTION: 151 applySecIdx(off, os, file->ctx.outputSections.size()); 152 break; 153 case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break; 154 default: 155 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 156 toString(file)); 157 } 158 } 159 160 static void applyMOV(uint8_t *off, uint16_t v) { 161 write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf)); 162 write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff)); 163 } 164 165 static uint16_t readMOV(uint8_t *off, bool movt) { 166 uint16_t op1 = read16le(off); 167 if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240)) 168 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 169 " instruction in MOV32T relocation"); 170 uint16_t op2 = read16le(off + 2); 171 if ((op2 & 0x8000) != 0) 172 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 173 " instruction in MOV32T relocation"); 174 return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) | 175 ((op1 & 0x000f) << 12); 176 } 177 178 void applyMOV32T(uint8_t *off, uint32_t v) { 179 uint16_t immW = readMOV(off, false); // read MOVW operand 180 uint16_t immT = readMOV(off + 4, true); // read MOVT operand 181 uint32_t imm = immW | (immT << 16); 182 v += imm; // add the immediate offset 183 applyMOV(off, v); // set MOVW operand 184 applyMOV(off + 4, v >> 16); // set MOVT operand 185 } 186 187 static void applyBranch20T(uint8_t *off, int32_t v) { 188 if (!isInt<21>(v)) 189 error("relocation out of range"); 190 uint32_t s = v < 0 ? 1 : 0; 191 uint32_t j1 = (v >> 19) & 1; 192 uint32_t j2 = (v >> 18) & 1; 193 or16(off, (s << 10) | ((v >> 12) & 0x3f)); 194 or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 195 } 196 197 void applyBranch24T(uint8_t *off, int32_t v) { 198 if (!isInt<25>(v)) 199 error("relocation out of range"); 200 uint32_t s = v < 0 ? 1 : 0; 201 uint32_t j1 = ((~v >> 23) & 1) ^ s; 202 uint32_t j2 = ((~v >> 22) & 1) ^ s; 203 or16(off, (s << 10) | ((v >> 12) & 0x3ff)); 204 // Clear out the J1 and J2 bits which may be set. 205 write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 206 } 207 208 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os, 209 uint64_t s, uint64_t p, 210 uint64_t imageBase) const { 211 // Pointer to thumb code must have the LSB set. 212 uint64_t sx = s; 213 if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) 214 sx |= 1; 215 switch (type) { 216 case IMAGE_REL_ARM_ADDR32: 217 add32(off, sx + imageBase); 218 break; 219 case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break; 220 case IMAGE_REL_ARM_MOV32T: 221 applyMOV32T(off, sx + imageBase); 222 break; 223 case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break; 224 case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break; 225 case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break; 226 case IMAGE_REL_ARM_SECTION: 227 applySecIdx(off, os, file->ctx.outputSections.size()); 228 break; 229 case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break; 230 case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break; 231 default: 232 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 233 toString(file)); 234 } 235 } 236 237 // Interpret the existing immediate value as a byte offset to the 238 // target symbol, then update the instruction with the immediate as 239 // the page offset from the current instruction to the target. 240 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) { 241 uint32_t orig = read32le(off); 242 int64_t imm = 243 SignExtend64<21>(((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC)); 244 s += imm; 245 imm = (s >> shift) - (p >> shift); 246 uint32_t immLo = (imm & 0x3) << 29; 247 uint32_t immHi = (imm & 0x1FFFFC) << 3; 248 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); 249 write32le(off, (orig & ~mask) | immLo | immHi); 250 } 251 252 // Update the immediate field in a AARCH64 ldr, str, and add instruction. 253 // Optionally limit the range of the written immediate by one or more bits 254 // (rangeLimit). 255 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) { 256 uint32_t orig = read32le(off); 257 imm += (orig >> 10) & 0xFFF; 258 orig &= ~(0xFFF << 10); 259 write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10)); 260 } 261 262 // Add the 12 bit page offset to the existing immediate. 263 // Ldr/str instructions store the opcode immediate scaled 264 // by the load/store size (giving a larger range for larger 265 // loads/stores). The immediate is always (both before and after 266 // fixing up the relocation) stored scaled similarly. 267 // Even if larger loads/stores have a larger range, limit the 268 // effective offset to 12 bit, since it is intended to be a 269 // page offset. 270 static void applyArm64Ldr(uint8_t *off, uint64_t imm) { 271 uint32_t orig = read32le(off); 272 uint32_t size = orig >> 30; 273 // 0x04000000 indicates SIMD/FP registers 274 // 0x00800000 indicates 128 bit 275 if ((orig & 0x4800000) == 0x4800000) 276 size += 4; 277 if ((imm & ((1 << size) - 1)) != 0) 278 error("misaligned ldr/str offset"); 279 applyArm64Imm(off, imm >> size, size); 280 } 281 282 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off, 283 OutputSection *os, uint64_t s) { 284 if (checkSecRel(sec, os)) 285 applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0); 286 } 287 288 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off, 289 OutputSection *os, uint64_t s) { 290 if (!checkSecRel(sec, os)) 291 return; 292 uint64_t secRel = (s - os->getRVA()) >> 12; 293 if (0xfff < secRel) { 294 error("overflow in SECREL_HIGH12A relocation in section: " + 295 sec->getSectionName()); 296 return; 297 } 298 applyArm64Imm(off, secRel & 0xfff, 0); 299 } 300 301 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off, 302 OutputSection *os, uint64_t s) { 303 if (checkSecRel(sec, os)) 304 applyArm64Ldr(off, (s - os->getRVA()) & 0xfff); 305 } 306 307 void applyArm64Branch26(uint8_t *off, int64_t v) { 308 if (!isInt<28>(v)) 309 error("relocation out of range"); 310 or32(off, (v & 0x0FFFFFFC) >> 2); 311 } 312 313 static void applyArm64Branch19(uint8_t *off, int64_t v) { 314 if (!isInt<21>(v)) 315 error("relocation out of range"); 316 or32(off, (v & 0x001FFFFC) << 3); 317 } 318 319 static void applyArm64Branch14(uint8_t *off, int64_t v) { 320 if (!isInt<16>(v)) 321 error("relocation out of range"); 322 or32(off, (v & 0x0000FFFC) << 3); 323 } 324 325 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os, 326 uint64_t s, uint64_t p, 327 uint64_t imageBase) const { 328 switch (type) { 329 case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break; 330 case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break; 331 case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break; 332 case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break; 333 case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break; 334 case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break; 335 case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break; 336 case IMAGE_REL_ARM64_ADDR32: 337 add32(off, s + imageBase); 338 break; 339 case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break; 340 case IMAGE_REL_ARM64_ADDR64: 341 add64(off, s + imageBase); 342 break; 343 case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break; 344 case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break; 345 case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break; 346 case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break; 347 case IMAGE_REL_ARM64_SECTION: 348 applySecIdx(off, os, file->ctx.outputSections.size()); 349 break; 350 case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break; 351 default: 352 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 353 toString(file)); 354 } 355 } 356 357 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk, 358 Defined *sym, 359 const coff_relocation &rel, 360 bool isMinGW) { 361 // Don't report these errors when the relocation comes from a debug info 362 // section or in mingw mode. MinGW mode object files (built by GCC) can 363 // have leftover sections with relocations against discarded comdat 364 // sections. Such sections are left as is, with relocations untouched. 365 if (fromChunk->isCodeView() || fromChunk->isDWARF() || isMinGW) 366 return; 367 368 // Get the name of the symbol. If it's null, it was discarded early, so we 369 // have to go back to the object file. 370 ObjFile *file = fromChunk->file; 371 StringRef name; 372 if (sym) { 373 name = sym->getName(); 374 } else { 375 COFFSymbolRef coffSym = 376 check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex)); 377 name = check(file->getCOFFObj()->getSymbolName(coffSym)); 378 } 379 380 std::vector<std::string> symbolLocations = 381 getSymbolLocations(file, rel.SymbolTableIndex); 382 383 std::string out; 384 llvm::raw_string_ostream os(out); 385 os << "relocation against symbol in discarded section: " + name; 386 for (const std::string &s : symbolLocations) 387 os << s; 388 error(os.str()); 389 } 390 391 void SectionChunk::writeTo(uint8_t *buf) const { 392 if (!hasData) 393 return; 394 // Copy section contents from source object file to output file. 395 ArrayRef<uint8_t> a = getContents(); 396 if (!a.empty()) 397 memcpy(buf, a.data(), a.size()); 398 399 // Apply relocations. 400 size_t inputSize = getSize(); 401 for (const coff_relocation &rel : getRelocs()) { 402 // Check for an invalid relocation offset. This check isn't perfect, because 403 // we don't have the relocation size, which is only known after checking the 404 // machine and relocation type. As a result, a relocation may overwrite the 405 // beginning of the following input section. 406 if (rel.VirtualAddress >= inputSize) { 407 error("relocation points beyond the end of its parent section"); 408 continue; 409 } 410 411 applyRelocation(buf + rel.VirtualAddress, rel); 412 } 413 414 // Write the offset to EC entry thunk preceding section contents. The low bit 415 // is always set, so it's effectively an offset from the last byte of the 416 // offset. 417 if (Defined *entryThunk = getEntryThunk()) 418 write32le(buf - sizeof(uint32_t), entryThunk->getRVA() - rva + 1); 419 } 420 421 void SectionChunk::applyRelocation(uint8_t *off, 422 const coff_relocation &rel) const { 423 auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 424 425 // Get the output section of the symbol for this relocation. The output 426 // section is needed to compute SECREL and SECTION relocations used in debug 427 // info. 428 Chunk *c = sym ? sym->getChunk() : nullptr; 429 OutputSection *os = c ? file->ctx.getOutputSection(c) : nullptr; 430 431 // Skip the relocation if it refers to a discarded section, and diagnose it 432 // as an error if appropriate. If a symbol was discarded early, it may be 433 // null. If it was discarded late, the output section will be null, unless 434 // it was an absolute or synthetic symbol. 435 if (!sym || 436 (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) { 437 maybeReportRelocationToDiscarded(this, sym, rel, file->ctx.config.mingw); 438 return; 439 } 440 441 uint64_t s = sym->getRVA(); 442 443 // Compute the RVA of the relocation for relative relocations. 444 uint64_t p = rva + rel.VirtualAddress; 445 uint64_t imageBase = file->ctx.config.imageBase; 446 switch (getArch()) { 447 case Triple::x86_64: 448 applyRelX64(off, rel.Type, os, s, p, imageBase); 449 break; 450 case Triple::x86: 451 applyRelX86(off, rel.Type, os, s, p, imageBase); 452 break; 453 case Triple::thumb: 454 applyRelARM(off, rel.Type, os, s, p, imageBase); 455 break; 456 case Triple::aarch64: 457 applyRelARM64(off, rel.Type, os, s, p, imageBase); 458 break; 459 default: 460 llvm_unreachable("unknown machine type"); 461 } 462 } 463 464 // Defend against unsorted relocations. This may be overly conservative. 465 void SectionChunk::sortRelocations() { 466 auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) { 467 return l.VirtualAddress < r.VirtualAddress; 468 }; 469 if (llvm::is_sorted(getRelocs(), cmpByVa)) 470 return; 471 warn("some relocations in " + file->getName() + " are not sorted"); 472 MutableArrayRef<coff_relocation> newRelocs( 473 bAlloc().Allocate<coff_relocation>(relocsSize), relocsSize); 474 memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation)); 475 llvm::sort(newRelocs, cmpByVa); 476 setRelocs(newRelocs); 477 } 478 479 // Similar to writeTo, but suitable for relocating a subsection of the overall 480 // section. 481 void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec, 482 ArrayRef<uint8_t> subsec, 483 uint32_t &nextRelocIndex, 484 uint8_t *buf) const { 485 assert(!subsec.empty() && !sec.empty()); 486 assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() && 487 "subsection is not part of this section"); 488 size_t vaBegin = std::distance(sec.begin(), subsec.begin()); 489 size_t vaEnd = std::distance(sec.begin(), subsec.end()); 490 memcpy(buf, subsec.data(), subsec.size()); 491 for (; nextRelocIndex < relocsSize; ++nextRelocIndex) { 492 const coff_relocation &rel = relocsData[nextRelocIndex]; 493 // Only apply relocations that apply to this subsection. These checks 494 // assume that all subsections completely contain their relocations. 495 // Relocations must not straddle the beginning or end of a subsection. 496 if (rel.VirtualAddress < vaBegin) 497 continue; 498 if (rel.VirtualAddress + 1 >= vaEnd) 499 break; 500 applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel); 501 } 502 } 503 504 void SectionChunk::addAssociative(SectionChunk *child) { 505 // Insert the child section into the list of associated children. Keep the 506 // list ordered by section name so that ICF does not depend on section order. 507 assert(child->assocChildren == nullptr && 508 "associated sections cannot have their own associated children"); 509 SectionChunk *prev = this; 510 SectionChunk *next = assocChildren; 511 for (; next != nullptr; prev = next, next = next->assocChildren) { 512 if (next->getSectionName() <= child->getSectionName()) 513 break; 514 } 515 516 // Insert child between prev and next. 517 assert(prev->assocChildren == next); 518 prev->assocChildren = child; 519 child->assocChildren = next; 520 } 521 522 static uint8_t getBaserelType(const coff_relocation &rel, 523 Triple::ArchType arch) { 524 switch (arch) { 525 case Triple::x86_64: 526 if (rel.Type == IMAGE_REL_AMD64_ADDR64) 527 return IMAGE_REL_BASED_DIR64; 528 if (rel.Type == IMAGE_REL_AMD64_ADDR32) 529 return IMAGE_REL_BASED_HIGHLOW; 530 return IMAGE_REL_BASED_ABSOLUTE; 531 case Triple::x86: 532 if (rel.Type == IMAGE_REL_I386_DIR32) 533 return IMAGE_REL_BASED_HIGHLOW; 534 return IMAGE_REL_BASED_ABSOLUTE; 535 case Triple::thumb: 536 if (rel.Type == IMAGE_REL_ARM_ADDR32) 537 return IMAGE_REL_BASED_HIGHLOW; 538 if (rel.Type == IMAGE_REL_ARM_MOV32T) 539 return IMAGE_REL_BASED_ARM_MOV32T; 540 return IMAGE_REL_BASED_ABSOLUTE; 541 case Triple::aarch64: 542 if (rel.Type == IMAGE_REL_ARM64_ADDR64) 543 return IMAGE_REL_BASED_DIR64; 544 return IMAGE_REL_BASED_ABSOLUTE; 545 default: 546 llvm_unreachable("unknown machine type"); 547 } 548 } 549 550 // Windows-specific. 551 // Collect all locations that contain absolute addresses, which need to be 552 // fixed by the loader if load-time relocation is needed. 553 // Only called when base relocation is enabled. 554 void SectionChunk::getBaserels(std::vector<Baserel> *res) { 555 for (const coff_relocation &rel : getRelocs()) { 556 uint8_t ty = getBaserelType(rel, getArch()); 557 if (ty == IMAGE_REL_BASED_ABSOLUTE) 558 continue; 559 Symbol *target = file->getSymbol(rel.SymbolTableIndex); 560 if (!target || isa<DefinedAbsolute>(target)) 561 continue; 562 res->emplace_back(rva + rel.VirtualAddress, ty); 563 } 564 } 565 566 // MinGW specific. 567 // Check whether a static relocation of type Type can be deferred and 568 // handled at runtime as a pseudo relocation (for references to a module 569 // local variable, which turned out to actually need to be imported from 570 // another DLL) This returns the size the relocation is supposed to update, 571 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo 572 // relocation. 573 static int getRuntimePseudoRelocSize(uint16_t type, 574 llvm::COFF::MachineTypes machine) { 575 // Relocations that either contain an absolute address, or a plain 576 // relative offset, since the runtime pseudo reloc implementation 577 // adds 8/16/32/64 bit values to a memory address. 578 // 579 // Given a pseudo relocation entry, 580 // 581 // typedef struct { 582 // DWORD sym; 583 // DWORD target; 584 // DWORD flags; 585 // } runtime_pseudo_reloc_item_v2; 586 // 587 // the runtime relocation performs this adjustment: 588 // *(base + .target) += *(base + .sym) - (base + .sym) 589 // 590 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64, 591 // IMAGE_REL_I386_DIR32, where the memory location initially contains 592 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32), 593 // where the memory location originally contains the relative offset to the 594 // IAT slot. 595 // 596 // This requires the target address to be writable, either directly out of 597 // the image, or temporarily changed at runtime with VirtualProtect. 598 // Since this only operates on direct address values, it doesn't work for 599 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations. 600 switch (machine) { 601 case AMD64: 602 switch (type) { 603 case IMAGE_REL_AMD64_ADDR64: 604 return 64; 605 case IMAGE_REL_AMD64_ADDR32: 606 case IMAGE_REL_AMD64_REL32: 607 case IMAGE_REL_AMD64_REL32_1: 608 case IMAGE_REL_AMD64_REL32_2: 609 case IMAGE_REL_AMD64_REL32_3: 610 case IMAGE_REL_AMD64_REL32_4: 611 case IMAGE_REL_AMD64_REL32_5: 612 return 32; 613 default: 614 return 0; 615 } 616 case I386: 617 switch (type) { 618 case IMAGE_REL_I386_DIR32: 619 case IMAGE_REL_I386_REL32: 620 return 32; 621 default: 622 return 0; 623 } 624 case ARMNT: 625 switch (type) { 626 case IMAGE_REL_ARM_ADDR32: 627 return 32; 628 default: 629 return 0; 630 } 631 case ARM64: 632 switch (type) { 633 case IMAGE_REL_ARM64_ADDR64: 634 return 64; 635 case IMAGE_REL_ARM64_ADDR32: 636 return 32; 637 default: 638 return 0; 639 } 640 default: 641 llvm_unreachable("unknown machine type"); 642 } 643 } 644 645 // MinGW specific. 646 // Append information to the provided vector about all relocations that 647 // need to be handled at runtime as runtime pseudo relocations (references 648 // to a module local variable, which turned out to actually need to be 649 // imported from another DLL). 650 void SectionChunk::getRuntimePseudoRelocs( 651 std::vector<RuntimePseudoReloc> &res) { 652 for (const coff_relocation &rel : getRelocs()) { 653 auto *target = 654 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 655 if (!target || !target->isRuntimePseudoReloc) 656 continue; 657 // If the target doesn't have a chunk allocated, it may be a 658 // DefinedImportData symbol which ended up unnecessary after GC. 659 // Normally we wouldn't eliminate section chunks that are referenced, but 660 // references within DWARF sections don't count for keeping section chunks 661 // alive. Thus such dangling references in DWARF sections are expected. 662 if (!target->getChunk()) 663 continue; 664 int sizeInBits = 665 getRuntimePseudoRelocSize(rel.Type, file->ctx.config.machine); 666 if (sizeInBits == 0) { 667 error("unable to automatically import from " + target->getName() + 668 " with relocation type " + 669 file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " + 670 toString(file)); 671 continue; 672 } 673 int addressSizeInBits = file->ctx.config.is64() ? 64 : 32; 674 if (sizeInBits < addressSizeInBits) { 675 warn("runtime pseudo relocation in " + toString(file) + " against " + 676 "symbol " + target->getName() + " is too narrow (only " + 677 Twine(sizeInBits) + " bits wide); this can fail at runtime " + 678 "depending on memory layout"); 679 } 680 // sizeInBits is used to initialize the Flags field; currently no 681 // other flags are defined. 682 res.emplace_back(target, this, rel.VirtualAddress, sizeInBits); 683 } 684 } 685 686 bool SectionChunk::isCOMDAT() const { 687 return header->Characteristics & IMAGE_SCN_LNK_COMDAT; 688 } 689 690 void SectionChunk::printDiscardedMessage() const { 691 // Removed by dead-stripping. If it's removed by ICF, ICF already 692 // printed out the name, so don't repeat that here. 693 if (sym && this == repl) 694 log("Discarded " + sym->getName()); 695 } 696 697 StringRef SectionChunk::getDebugName() const { 698 if (sym) 699 return sym->getName(); 700 return ""; 701 } 702 703 ArrayRef<uint8_t> SectionChunk::getContents() const { 704 ArrayRef<uint8_t> a; 705 cantFail(file->getCOFFObj()->getSectionContents(header, a)); 706 return a; 707 } 708 709 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() { 710 assert(isCodeView()); 711 return consumeDebugMagic(getContents(), getSectionName()); 712 } 713 714 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data, 715 StringRef sectionName) { 716 if (data.empty()) 717 return {}; 718 719 // First 4 bytes are section magic. 720 if (data.size() < 4) 721 fatal("the section is too short: " + sectionName); 722 723 if (!sectionName.starts_with(".debug$")) 724 fatal("invalid section: " + sectionName); 725 726 uint32_t magic = support::endian::read32le(data.data()); 727 uint32_t expectedMagic = sectionName == ".debug$H" 728 ? DEBUG_HASHES_SECTION_MAGIC 729 : DEBUG_SECTION_MAGIC; 730 if (magic != expectedMagic) { 731 warn("ignoring section " + sectionName + " with unrecognized magic 0x" + 732 utohexstr(magic)); 733 return {}; 734 } 735 return data.slice(4); 736 } 737 738 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections, 739 StringRef name) { 740 for (SectionChunk *c : sections) 741 if (c->getSectionName() == name) 742 return c; 743 return nullptr; 744 } 745 746 void SectionChunk::replace(SectionChunk *other) { 747 p2Align = std::max(p2Align, other->p2Align); 748 other->repl = repl; 749 other->live = false; 750 } 751 752 uint32_t SectionChunk::getSectionNumber() const { 753 DataRefImpl r; 754 r.p = reinterpret_cast<uintptr_t>(header); 755 SectionRef s(r, file->getCOFFObj()); 756 return s.getIndex() + 1; 757 } 758 759 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) { 760 // The value of a common symbol is its size. Align all common symbols smaller 761 // than 32 bytes naturally, i.e. round the size up to the next power of two. 762 // This is what MSVC link.exe does. 763 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue())))); 764 hasData = false; 765 } 766 767 uint32_t CommonChunk::getOutputCharacteristics() const { 768 return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | 769 IMAGE_SCN_MEM_WRITE; 770 } 771 772 void StringChunk::writeTo(uint8_t *buf) const { 773 memcpy(buf, str.data(), str.size()); 774 buf[str.size()] = '\0'; 775 } 776 777 ImportThunkChunkX64::ImportThunkChunkX64(COFFLinkerContext &ctx, Defined *s) 778 : ImportThunkChunk(ctx, s) { 779 // Intel Optimization Manual says that all branch targets 780 // should be 16-byte aligned. MSVC linker does this too. 781 setAlignment(16); 782 } 783 784 void ImportThunkChunkX64::writeTo(uint8_t *buf) const { 785 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 786 // The first two bytes is a JMP instruction. Fill its operand. 787 write32le(buf + 2, impSymbol->getRVA() - rva - getSize()); 788 } 789 790 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) { 791 res->emplace_back(getRVA() + 2, ctx.config.machine); 792 } 793 794 void ImportThunkChunkX86::writeTo(uint8_t *buf) const { 795 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 796 // The first two bytes is a JMP instruction. Fill its operand. 797 write32le(buf + 2, impSymbol->getRVA() + ctx.config.imageBase); 798 } 799 800 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) { 801 res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); 802 } 803 804 void ImportThunkChunkARM::writeTo(uint8_t *buf) const { 805 memcpy(buf, importThunkARM, sizeof(importThunkARM)); 806 // Fix mov.w and mov.t operands. 807 applyMOV32T(buf, impSymbol->getRVA() + ctx.config.imageBase); 808 } 809 810 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const { 811 int64_t off = impSymbol->getRVA() & 0xfff; 812 memcpy(buf, importThunkARM64, sizeof(importThunkARM64)); 813 applyArm64Addr(buf, impSymbol->getRVA(), rva, 12); 814 applyArm64Ldr(buf + 4, off); 815 } 816 817 // A Thumb2, PIC, non-interworking range extension thunk. 818 const uint8_t armThunk[] = { 819 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) 820 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) 821 0xe7, 0x44, // L1: add pc, ip 822 }; 823 824 size_t RangeExtensionThunkARM::getSize() const { 825 assert(ctx.config.machine == ARMNT); 826 (void)&ctx; 827 return sizeof(armThunk); 828 } 829 830 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const { 831 assert(ctx.config.machine == ARMNT); 832 uint64_t offset = target->getRVA() - rva - 12; 833 memcpy(buf, armThunk, sizeof(armThunk)); 834 applyMOV32T(buf, uint32_t(offset)); 835 } 836 837 // A position independent ARM64 adrp+add thunk, with a maximum range of 838 // +/- 4 GB, which is enough for any PE-COFF. 839 const uint8_t arm64Thunk[] = { 840 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest 841 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest 842 0x00, 0x02, 0x1f, 0xd6, // br x16 843 }; 844 845 size_t RangeExtensionThunkARM64::getSize() const { 846 assert(ctx.config.machine == ARM64); 847 (void)&ctx; 848 return sizeof(arm64Thunk); 849 } 850 851 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const { 852 assert(ctx.config.machine == ARM64); 853 memcpy(buf, arm64Thunk, sizeof(arm64Thunk)); 854 applyArm64Addr(buf + 0, target->getRVA(), rva, 12); 855 applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0); 856 } 857 858 LocalImportChunk::LocalImportChunk(COFFLinkerContext &c, Defined *s) 859 : sym(s), ctx(c) { 860 setAlignment(ctx.config.wordsize); 861 } 862 863 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) { 864 res->emplace_back(getRVA(), ctx.config.machine); 865 } 866 867 size_t LocalImportChunk::getSize() const { return ctx.config.wordsize; } 868 869 void LocalImportChunk::writeTo(uint8_t *buf) const { 870 if (ctx.config.is64()) { 871 write64le(buf, sym->getRVA() + ctx.config.imageBase); 872 } else { 873 write32le(buf, sym->getRVA() + ctx.config.imageBase); 874 } 875 } 876 877 void RVATableChunk::writeTo(uint8_t *buf) const { 878 ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf); 879 size_t cnt = 0; 880 for (const ChunkAndOffset &co : syms) 881 begin[cnt++] = co.inputChunk->getRVA() + co.offset; 882 llvm::sort(begin, begin + cnt); 883 assert(std::unique(begin, begin + cnt) == begin + cnt && 884 "RVA tables should be de-duplicated"); 885 } 886 887 void RVAFlagTableChunk::writeTo(uint8_t *buf) const { 888 struct RVAFlag { 889 ulittle32_t rva; 890 uint8_t flag; 891 }; 892 auto flags = 893 MutableArrayRef(reinterpret_cast<RVAFlag *>(buf), syms.size()); 894 for (auto t : zip(syms, flags)) { 895 const auto &sym = std::get<0>(t); 896 auto &flag = std::get<1>(t); 897 flag.rva = sym.inputChunk->getRVA() + sym.offset; 898 flag.flag = 0; 899 } 900 llvm::sort(flags, 901 [](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; }); 902 assert(llvm::unique(flags, [](const RVAFlag &a, 903 const RVAFlag &b) { return a.rva == b.rva; }) == 904 flags.end() && 905 "RVA tables should be de-duplicated"); 906 } 907 908 size_t ECCodeMapChunk::getSize() const { 909 return map.size() * sizeof(chpe_range_entry); 910 } 911 912 void ECCodeMapChunk::writeTo(uint8_t *buf) const { 913 auto table = reinterpret_cast<chpe_range_entry *>(buf); 914 for (uint32_t i = 0; i < map.size(); i++) { 915 const ECCodeMapEntry &entry = map[i]; 916 uint32_t start = entry.first->getRVA(); 917 table[i].StartOffset = start | entry.type; 918 table[i].Length = entry.last->getRVA() + entry.last->getSize() - start; 919 } 920 } 921 922 // MinGW specific, for the "automatic import of variables from DLLs" feature. 923 size_t PseudoRelocTableChunk::getSize() const { 924 if (relocs.empty()) 925 return 0; 926 return 12 + 12 * relocs.size(); 927 } 928 929 // MinGW specific. 930 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const { 931 if (relocs.empty()) 932 return; 933 934 ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf); 935 // This is the list header, to signal the runtime pseudo relocation v2 936 // format. 937 table[0] = 0; 938 table[1] = 0; 939 table[2] = 1; 940 941 size_t idx = 3; 942 for (const RuntimePseudoReloc &rpr : relocs) { 943 table[idx + 0] = rpr.sym->getRVA(); 944 table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset; 945 table[idx + 2] = rpr.flags; 946 idx += 3; 947 } 948 } 949 950 // Windows-specific. This class represents a block in .reloc section. 951 // The format is described here. 952 // 953 // On Windows, each DLL is linked against a fixed base address and 954 // usually loaded to that address. However, if there's already another 955 // DLL that overlaps, the loader has to relocate it. To do that, DLLs 956 // contain .reloc sections which contain offsets that need to be fixed 957 // up at runtime. If the loader finds that a DLL cannot be loaded to its 958 // desired base address, it loads it to somewhere else, and add <actual 959 // base address> - <desired base address> to each offset that is 960 // specified by the .reloc section. In ELF terms, .reloc sections 961 // contain relative relocations in REL format (as opposed to RELA.) 962 // 963 // This already significantly reduces the size of relocations compared 964 // to ELF .rel.dyn, but Windows does more to reduce it (probably because 965 // it was invented for PCs in the late '80s or early '90s.) Offsets in 966 // .reloc are grouped by page where the page size is 12 bits, and 967 // offsets sharing the same page address are stored consecutively to 968 // represent them with less space. This is very similar to the page 969 // table which is grouped by (multiple stages of) pages. 970 // 971 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, 972 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 973 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they 974 // are represented like this: 975 // 976 // 0x00000 -- page address (4 bytes) 977 // 16 -- size of this block (4 bytes) 978 // 0xA030 -- entries (2 bytes each) 979 // 0xA500 980 // 0xA700 981 // 0xAA00 982 // 0x20000 -- page address (4 bytes) 983 // 12 -- size of this block (4 bytes) 984 // 0xA004 -- entries (2 bytes each) 985 // 0xA008 986 // 987 // Usually we have a lot of relocations for each page, so the number of 988 // bytes for one .reloc entry is close to 2 bytes on average. 989 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) { 990 // Block header consists of 4 byte page RVA and 4 byte block size. 991 // Each entry is 2 byte. Last entry may be padding. 992 data.resize(alignTo((end - begin) * 2 + 8, 4)); 993 uint8_t *p = data.data(); 994 write32le(p, page); 995 write32le(p + 4, data.size()); 996 p += 8; 997 for (Baserel *i = begin; i != end; ++i) { 998 write16le(p, (i->type << 12) | (i->rva - page)); 999 p += 2; 1000 } 1001 } 1002 1003 void BaserelChunk::writeTo(uint8_t *buf) const { 1004 memcpy(buf, data.data(), data.size()); 1005 } 1006 1007 uint8_t Baserel::getDefaultType(llvm::COFF::MachineTypes machine) { 1008 switch (machine) { 1009 case AMD64: 1010 case ARM64: 1011 return IMAGE_REL_BASED_DIR64; 1012 case I386: 1013 case ARMNT: 1014 return IMAGE_REL_BASED_HIGHLOW; 1015 default: 1016 llvm_unreachable("unknown machine type"); 1017 } 1018 } 1019 1020 MergeChunk::MergeChunk(uint32_t alignment) 1021 : builder(StringTableBuilder::RAW, llvm::Align(alignment)) { 1022 setAlignment(alignment); 1023 } 1024 1025 void MergeChunk::addSection(COFFLinkerContext &ctx, SectionChunk *c) { 1026 assert(isPowerOf2_32(c->getAlignment())); 1027 uint8_t p2Align = llvm::Log2_32(c->getAlignment()); 1028 assert(p2Align < std::size(ctx.mergeChunkInstances)); 1029 auto *&mc = ctx.mergeChunkInstances[p2Align]; 1030 if (!mc) 1031 mc = make<MergeChunk>(c->getAlignment()); 1032 mc->sections.push_back(c); 1033 } 1034 1035 void MergeChunk::finalizeContents() { 1036 assert(!finalized && "should only finalize once"); 1037 for (SectionChunk *c : sections) 1038 if (c->live) 1039 builder.add(toStringRef(c->getContents())); 1040 builder.finalize(); 1041 finalized = true; 1042 } 1043 1044 void MergeChunk::assignSubsectionRVAs() { 1045 for (SectionChunk *c : sections) { 1046 if (!c->live) 1047 continue; 1048 size_t off = builder.getOffset(toStringRef(c->getContents())); 1049 c->setRVA(rva + off); 1050 } 1051 } 1052 1053 uint32_t MergeChunk::getOutputCharacteristics() const { 1054 return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; 1055 } 1056 1057 size_t MergeChunk::getSize() const { 1058 return builder.getSize(); 1059 } 1060 1061 void MergeChunk::writeTo(uint8_t *buf) const { 1062 builder.write(buf); 1063 } 1064 1065 // MinGW specific. 1066 size_t AbsolutePointerChunk::getSize() const { return ctx.config.wordsize; } 1067 1068 void AbsolutePointerChunk::writeTo(uint8_t *buf) const { 1069 if (ctx.config.is64()) { 1070 write64le(buf, value); 1071 } else { 1072 write32le(buf, value); 1073 } 1074 } 1075 1076 } // namespace lld::coff 1077