1 //===- Chunks.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Chunks.h" 10 #include "COFFLinkerContext.h" 11 #include "InputFiles.h" 12 #include "SymbolTable.h" 13 #include "Symbols.h" 14 #include "Writer.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/BinaryFormat/COFF.h" 18 #include "llvm/Object/COFF.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/Endian.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <algorithm> 23 24 using namespace llvm; 25 using namespace llvm::object; 26 using namespace llvm::support::endian; 27 using namespace llvm::COFF; 28 using llvm::support::ulittle32_t; 29 30 namespace lld { 31 namespace coff { 32 33 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h) 34 : Chunk(SectionKind), file(f), header(h), repl(this) { 35 // Initialize relocs. 36 if (file) 37 setRelocs(file->getCOFFObj()->getRelocations(header)); 38 39 // Initialize sectionName. 40 StringRef sectionName; 41 if (file) { 42 if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header)) 43 sectionName = *e; 44 } 45 sectionNameData = sectionName.data(); 46 sectionNameSize = sectionName.size(); 47 48 setAlignment(header->getAlignment()); 49 50 hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); 51 52 // If linker GC is disabled, every chunk starts out alive. If linker GC is 53 // enabled, treat non-comdat sections as roots. Generally optimized object 54 // files will be built with -ffunction-sections or /Gy, so most things worth 55 // stripping will be in a comdat. 56 if (config) 57 live = !config->doGC || !isCOMDAT(); 58 else 59 live = true; 60 } 61 62 // SectionChunk is one of the most frequently allocated classes, so it is 63 // important to keep it as compact as possible. As of this writing, the number 64 // below is the size of this class on x64 platforms. 65 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly"); 66 67 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); } 68 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); } 69 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); } 70 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); } 71 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); } 72 73 // Verify that given sections are appropriate targets for SECREL 74 // relocations. This check is relaxed because unfortunately debug 75 // sections have section-relative relocations against absolute symbols. 76 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) { 77 if (os) 78 return true; 79 if (sec->isCodeView()) 80 return false; 81 error("SECREL relocation cannot be applied to absolute symbols"); 82 return false; 83 } 84 85 static void applySecRel(const SectionChunk *sec, uint8_t *off, 86 OutputSection *os, uint64_t s) { 87 if (!checkSecRel(sec, os)) 88 return; 89 uint64_t secRel = s - os->getRVA(); 90 if (secRel > UINT32_MAX) { 91 error("overflow in SECREL relocation in section: " + sec->getSectionName()); 92 return; 93 } 94 add32(off, secRel); 95 } 96 97 static void applySecIdx(uint8_t *off, OutputSection *os) { 98 // Absolute symbol doesn't have section index, but section index relocation 99 // against absolute symbol should be resolved to one plus the last output 100 // section index. This is required for compatibility with MSVC. 101 if (os) 102 add16(off, os->sectionIndex); 103 else 104 add16(off, DefinedAbsolute::numOutputSections + 1); 105 } 106 107 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os, 108 uint64_t s, uint64_t p) const { 109 switch (type) { 110 case IMAGE_REL_AMD64_ADDR32: add32(off, s + config->imageBase); break; 111 case IMAGE_REL_AMD64_ADDR64: add64(off, s + config->imageBase); break; 112 case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break; 113 case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break; 114 case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break; 115 case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break; 116 case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break; 117 case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break; 118 case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break; 119 case IMAGE_REL_AMD64_SECTION: applySecIdx(off, os); break; 120 case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break; 121 default: 122 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 123 toString(file)); 124 } 125 } 126 127 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os, 128 uint64_t s, uint64_t p) const { 129 switch (type) { 130 case IMAGE_REL_I386_ABSOLUTE: break; 131 case IMAGE_REL_I386_DIR32: add32(off, s + config->imageBase); break; 132 case IMAGE_REL_I386_DIR32NB: add32(off, s); break; 133 case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break; 134 case IMAGE_REL_I386_SECTION: applySecIdx(off, os); break; 135 case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break; 136 default: 137 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 138 toString(file)); 139 } 140 } 141 142 static void applyMOV(uint8_t *off, uint16_t v) { 143 write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf)); 144 write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff)); 145 } 146 147 static uint16_t readMOV(uint8_t *off, bool movt) { 148 uint16_t op1 = read16le(off); 149 if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240)) 150 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 151 " instruction in MOV32T relocation"); 152 uint16_t op2 = read16le(off + 2); 153 if ((op2 & 0x8000) != 0) 154 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 155 " instruction in MOV32T relocation"); 156 return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) | 157 ((op1 & 0x000f) << 12); 158 } 159 160 void applyMOV32T(uint8_t *off, uint32_t v) { 161 uint16_t immW = readMOV(off, false); // read MOVW operand 162 uint16_t immT = readMOV(off + 4, true); // read MOVT operand 163 uint32_t imm = immW | (immT << 16); 164 v += imm; // add the immediate offset 165 applyMOV(off, v); // set MOVW operand 166 applyMOV(off + 4, v >> 16); // set MOVT operand 167 } 168 169 static void applyBranch20T(uint8_t *off, int32_t v) { 170 if (!isInt<21>(v)) 171 error("relocation out of range"); 172 uint32_t s = v < 0 ? 1 : 0; 173 uint32_t j1 = (v >> 19) & 1; 174 uint32_t j2 = (v >> 18) & 1; 175 or16(off, (s << 10) | ((v >> 12) & 0x3f)); 176 or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 177 } 178 179 void applyBranch24T(uint8_t *off, int32_t v) { 180 if (!isInt<25>(v)) 181 error("relocation out of range"); 182 uint32_t s = v < 0 ? 1 : 0; 183 uint32_t j1 = ((~v >> 23) & 1) ^ s; 184 uint32_t j2 = ((~v >> 22) & 1) ^ s; 185 or16(off, (s << 10) | ((v >> 12) & 0x3ff)); 186 // Clear out the J1 and J2 bits which may be set. 187 write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 188 } 189 190 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os, 191 uint64_t s, uint64_t p) const { 192 // Pointer to thumb code must have the LSB set. 193 uint64_t sx = s; 194 if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) 195 sx |= 1; 196 switch (type) { 197 case IMAGE_REL_ARM_ADDR32: add32(off, sx + config->imageBase); break; 198 case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break; 199 case IMAGE_REL_ARM_MOV32T: applyMOV32T(off, sx + config->imageBase); break; 200 case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break; 201 case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break; 202 case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break; 203 case IMAGE_REL_ARM_SECTION: applySecIdx(off, os); break; 204 case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break; 205 case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break; 206 default: 207 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 208 toString(file)); 209 } 210 } 211 212 // Interpret the existing immediate value as a byte offset to the 213 // target symbol, then update the instruction with the immediate as 214 // the page offset from the current instruction to the target. 215 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) { 216 uint32_t orig = read32le(off); 217 int64_t imm = 218 SignExtend64<21>(((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC)); 219 s += imm; 220 imm = (s >> shift) - (p >> shift); 221 uint32_t immLo = (imm & 0x3) << 29; 222 uint32_t immHi = (imm & 0x1FFFFC) << 3; 223 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); 224 write32le(off, (orig & ~mask) | immLo | immHi); 225 } 226 227 // Update the immediate field in a AARCH64 ldr, str, and add instruction. 228 // Optionally limit the range of the written immediate by one or more bits 229 // (rangeLimit). 230 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) { 231 uint32_t orig = read32le(off); 232 imm += (orig >> 10) & 0xFFF; 233 orig &= ~(0xFFF << 10); 234 write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10)); 235 } 236 237 // Add the 12 bit page offset to the existing immediate. 238 // Ldr/str instructions store the opcode immediate scaled 239 // by the load/store size (giving a larger range for larger 240 // loads/stores). The immediate is always (both before and after 241 // fixing up the relocation) stored scaled similarly. 242 // Even if larger loads/stores have a larger range, limit the 243 // effective offset to 12 bit, since it is intended to be a 244 // page offset. 245 static void applyArm64Ldr(uint8_t *off, uint64_t imm) { 246 uint32_t orig = read32le(off); 247 uint32_t size = orig >> 30; 248 // 0x04000000 indicates SIMD/FP registers 249 // 0x00800000 indicates 128 bit 250 if ((orig & 0x4800000) == 0x4800000) 251 size += 4; 252 if ((imm & ((1 << size) - 1)) != 0) 253 error("misaligned ldr/str offset"); 254 applyArm64Imm(off, imm >> size, size); 255 } 256 257 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off, 258 OutputSection *os, uint64_t s) { 259 if (checkSecRel(sec, os)) 260 applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0); 261 } 262 263 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off, 264 OutputSection *os, uint64_t s) { 265 if (!checkSecRel(sec, os)) 266 return; 267 uint64_t secRel = (s - os->getRVA()) >> 12; 268 if (0xfff < secRel) { 269 error("overflow in SECREL_HIGH12A relocation in section: " + 270 sec->getSectionName()); 271 return; 272 } 273 applyArm64Imm(off, secRel & 0xfff, 0); 274 } 275 276 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off, 277 OutputSection *os, uint64_t s) { 278 if (checkSecRel(sec, os)) 279 applyArm64Ldr(off, (s - os->getRVA()) & 0xfff); 280 } 281 282 void applyArm64Branch26(uint8_t *off, int64_t v) { 283 if (!isInt<28>(v)) 284 error("relocation out of range"); 285 or32(off, (v & 0x0FFFFFFC) >> 2); 286 } 287 288 static void applyArm64Branch19(uint8_t *off, int64_t v) { 289 if (!isInt<21>(v)) 290 error("relocation out of range"); 291 or32(off, (v & 0x001FFFFC) << 3); 292 } 293 294 static void applyArm64Branch14(uint8_t *off, int64_t v) { 295 if (!isInt<16>(v)) 296 error("relocation out of range"); 297 or32(off, (v & 0x0000FFFC) << 3); 298 } 299 300 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os, 301 uint64_t s, uint64_t p) const { 302 switch (type) { 303 case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break; 304 case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break; 305 case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break; 306 case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break; 307 case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break; 308 case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break; 309 case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break; 310 case IMAGE_REL_ARM64_ADDR32: add32(off, s + config->imageBase); break; 311 case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break; 312 case IMAGE_REL_ARM64_ADDR64: add64(off, s + config->imageBase); break; 313 case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break; 314 case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break; 315 case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break; 316 case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break; 317 case IMAGE_REL_ARM64_SECTION: applySecIdx(off, os); break; 318 case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break; 319 default: 320 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 321 toString(file)); 322 } 323 } 324 325 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk, 326 Defined *sym, 327 const coff_relocation &rel) { 328 // Don't report these errors when the relocation comes from a debug info 329 // section or in mingw mode. MinGW mode object files (built by GCC) can 330 // have leftover sections with relocations against discarded comdat 331 // sections. Such sections are left as is, with relocations untouched. 332 if (fromChunk->isCodeView() || fromChunk->isDWARF() || config->mingw) 333 return; 334 335 // Get the name of the symbol. If it's null, it was discarded early, so we 336 // have to go back to the object file. 337 ObjFile *file = fromChunk->file; 338 StringRef name; 339 if (sym) { 340 name = sym->getName(); 341 } else { 342 COFFSymbolRef coffSym = 343 check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex)); 344 name = check(file->getCOFFObj()->getSymbolName(coffSym)); 345 } 346 347 std::vector<std::string> symbolLocations = 348 getSymbolLocations(file, rel.SymbolTableIndex); 349 350 std::string out; 351 llvm::raw_string_ostream os(out); 352 os << "relocation against symbol in discarded section: " + name; 353 for (const std::string &s : symbolLocations) 354 os << s; 355 error(os.str()); 356 } 357 358 void SectionChunk::writeTo(uint8_t *buf) const { 359 if (!hasData) 360 return; 361 // Copy section contents from source object file to output file. 362 ArrayRef<uint8_t> a = getContents(); 363 if (!a.empty()) 364 memcpy(buf, a.data(), a.size()); 365 366 // Apply relocations. 367 size_t inputSize = getSize(); 368 for (const coff_relocation &rel : getRelocs()) { 369 // Check for an invalid relocation offset. This check isn't perfect, because 370 // we don't have the relocation size, which is only known after checking the 371 // machine and relocation type. As a result, a relocation may overwrite the 372 // beginning of the following input section. 373 if (rel.VirtualAddress >= inputSize) { 374 error("relocation points beyond the end of its parent section"); 375 continue; 376 } 377 378 applyRelocation(buf + rel.VirtualAddress, rel); 379 } 380 } 381 382 void SectionChunk::applyRelocation(uint8_t *off, 383 const coff_relocation &rel) const { 384 auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 385 386 // Get the output section of the symbol for this relocation. The output 387 // section is needed to compute SECREL and SECTION relocations used in debug 388 // info. 389 Chunk *c = sym ? sym->getChunk() : nullptr; 390 OutputSection *os = c ? file->ctx.getOutputSection(c) : nullptr; 391 392 // Skip the relocation if it refers to a discarded section, and diagnose it 393 // as an error if appropriate. If a symbol was discarded early, it may be 394 // null. If it was discarded late, the output section will be null, unless 395 // it was an absolute or synthetic symbol. 396 if (!sym || 397 (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) { 398 maybeReportRelocationToDiscarded(this, sym, rel); 399 return; 400 } 401 402 uint64_t s = sym->getRVA(); 403 404 // Compute the RVA of the relocation for relative relocations. 405 uint64_t p = rva + rel.VirtualAddress; 406 switch (config->machine) { 407 case AMD64: 408 applyRelX64(off, rel.Type, os, s, p); 409 break; 410 case I386: 411 applyRelX86(off, rel.Type, os, s, p); 412 break; 413 case ARMNT: 414 applyRelARM(off, rel.Type, os, s, p); 415 break; 416 case ARM64: 417 applyRelARM64(off, rel.Type, os, s, p); 418 break; 419 default: 420 llvm_unreachable("unknown machine type"); 421 } 422 } 423 424 // Defend against unsorted relocations. This may be overly conservative. 425 void SectionChunk::sortRelocations() { 426 auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) { 427 return l.VirtualAddress < r.VirtualAddress; 428 }; 429 if (llvm::is_sorted(getRelocs(), cmpByVa)) 430 return; 431 warn("some relocations in " + file->getName() + " are not sorted"); 432 MutableArrayRef<coff_relocation> newRelocs( 433 bAlloc().Allocate<coff_relocation>(relocsSize), relocsSize); 434 memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation)); 435 llvm::sort(newRelocs, cmpByVa); 436 setRelocs(newRelocs); 437 } 438 439 // Similar to writeTo, but suitable for relocating a subsection of the overall 440 // section. 441 void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec, 442 ArrayRef<uint8_t> subsec, 443 uint32_t &nextRelocIndex, 444 uint8_t *buf) const { 445 assert(!subsec.empty() && !sec.empty()); 446 assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() && 447 "subsection is not part of this section"); 448 size_t vaBegin = std::distance(sec.begin(), subsec.begin()); 449 size_t vaEnd = std::distance(sec.begin(), subsec.end()); 450 memcpy(buf, subsec.data(), subsec.size()); 451 for (; nextRelocIndex < relocsSize; ++nextRelocIndex) { 452 const coff_relocation &rel = relocsData[nextRelocIndex]; 453 // Only apply relocations that apply to this subsection. These checks 454 // assume that all subsections completely contain their relocations. 455 // Relocations must not straddle the beginning or end of a subsection. 456 if (rel.VirtualAddress < vaBegin) 457 continue; 458 if (rel.VirtualAddress + 1 >= vaEnd) 459 break; 460 applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel); 461 } 462 } 463 464 void SectionChunk::addAssociative(SectionChunk *child) { 465 // Insert the child section into the list of associated children. Keep the 466 // list ordered by section name so that ICF does not depend on section order. 467 assert(child->assocChildren == nullptr && 468 "associated sections cannot have their own associated children"); 469 SectionChunk *prev = this; 470 SectionChunk *next = assocChildren; 471 for (; next != nullptr; prev = next, next = next->assocChildren) { 472 if (next->getSectionName() <= child->getSectionName()) 473 break; 474 } 475 476 // Insert child between prev and next. 477 assert(prev->assocChildren == next); 478 prev->assocChildren = child; 479 child->assocChildren = next; 480 } 481 482 static uint8_t getBaserelType(const coff_relocation &rel) { 483 switch (config->machine) { 484 case AMD64: 485 if (rel.Type == IMAGE_REL_AMD64_ADDR64) 486 return IMAGE_REL_BASED_DIR64; 487 if (rel.Type == IMAGE_REL_AMD64_ADDR32) 488 return IMAGE_REL_BASED_HIGHLOW; 489 return IMAGE_REL_BASED_ABSOLUTE; 490 case I386: 491 if (rel.Type == IMAGE_REL_I386_DIR32) 492 return IMAGE_REL_BASED_HIGHLOW; 493 return IMAGE_REL_BASED_ABSOLUTE; 494 case ARMNT: 495 if (rel.Type == IMAGE_REL_ARM_ADDR32) 496 return IMAGE_REL_BASED_HIGHLOW; 497 if (rel.Type == IMAGE_REL_ARM_MOV32T) 498 return IMAGE_REL_BASED_ARM_MOV32T; 499 return IMAGE_REL_BASED_ABSOLUTE; 500 case ARM64: 501 if (rel.Type == IMAGE_REL_ARM64_ADDR64) 502 return IMAGE_REL_BASED_DIR64; 503 return IMAGE_REL_BASED_ABSOLUTE; 504 default: 505 llvm_unreachable("unknown machine type"); 506 } 507 } 508 509 // Windows-specific. 510 // Collect all locations that contain absolute addresses, which need to be 511 // fixed by the loader if load-time relocation is needed. 512 // Only called when base relocation is enabled. 513 void SectionChunk::getBaserels(std::vector<Baserel> *res) { 514 for (const coff_relocation &rel : getRelocs()) { 515 uint8_t ty = getBaserelType(rel); 516 if (ty == IMAGE_REL_BASED_ABSOLUTE) 517 continue; 518 Symbol *target = file->getSymbol(rel.SymbolTableIndex); 519 if (!target || isa<DefinedAbsolute>(target)) 520 continue; 521 res->emplace_back(rva + rel.VirtualAddress, ty); 522 } 523 } 524 525 // MinGW specific. 526 // Check whether a static relocation of type Type can be deferred and 527 // handled at runtime as a pseudo relocation (for references to a module 528 // local variable, which turned out to actually need to be imported from 529 // another DLL) This returns the size the relocation is supposed to update, 530 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo 531 // relocation. 532 static int getRuntimePseudoRelocSize(uint16_t type) { 533 // Relocations that either contain an absolute address, or a plain 534 // relative offset, since the runtime pseudo reloc implementation 535 // adds 8/16/32/64 bit values to a memory address. 536 // 537 // Given a pseudo relocation entry, 538 // 539 // typedef struct { 540 // DWORD sym; 541 // DWORD target; 542 // DWORD flags; 543 // } runtime_pseudo_reloc_item_v2; 544 // 545 // the runtime relocation performs this adjustment: 546 // *(base + .target) += *(base + .sym) - (base + .sym) 547 // 548 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64, 549 // IMAGE_REL_I386_DIR32, where the memory location initially contains 550 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32), 551 // where the memory location originally contains the relative offset to the 552 // IAT slot. 553 // 554 // This requires the target address to be writable, either directly out of 555 // the image, or temporarily changed at runtime with VirtualProtect. 556 // Since this only operates on direct address values, it doesn't work for 557 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations. 558 switch (config->machine) { 559 case AMD64: 560 switch (type) { 561 case IMAGE_REL_AMD64_ADDR64: 562 return 64; 563 case IMAGE_REL_AMD64_ADDR32: 564 case IMAGE_REL_AMD64_REL32: 565 case IMAGE_REL_AMD64_REL32_1: 566 case IMAGE_REL_AMD64_REL32_2: 567 case IMAGE_REL_AMD64_REL32_3: 568 case IMAGE_REL_AMD64_REL32_4: 569 case IMAGE_REL_AMD64_REL32_5: 570 return 32; 571 default: 572 return 0; 573 } 574 case I386: 575 switch (type) { 576 case IMAGE_REL_I386_DIR32: 577 case IMAGE_REL_I386_REL32: 578 return 32; 579 default: 580 return 0; 581 } 582 case ARMNT: 583 switch (type) { 584 case IMAGE_REL_ARM_ADDR32: 585 return 32; 586 default: 587 return 0; 588 } 589 case ARM64: 590 switch (type) { 591 case IMAGE_REL_ARM64_ADDR64: 592 return 64; 593 case IMAGE_REL_ARM64_ADDR32: 594 return 32; 595 default: 596 return 0; 597 } 598 default: 599 llvm_unreachable("unknown machine type"); 600 } 601 } 602 603 // MinGW specific. 604 // Append information to the provided vector about all relocations that 605 // need to be handled at runtime as runtime pseudo relocations (references 606 // to a module local variable, which turned out to actually need to be 607 // imported from another DLL). 608 void SectionChunk::getRuntimePseudoRelocs( 609 std::vector<RuntimePseudoReloc> &res) { 610 for (const coff_relocation &rel : getRelocs()) { 611 auto *target = 612 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 613 if (!target || !target->isRuntimePseudoReloc) 614 continue; 615 int sizeInBits = getRuntimePseudoRelocSize(rel.Type); 616 if (sizeInBits == 0) { 617 error("unable to automatically import from " + target->getName() + 618 " with relocation type " + 619 file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " + 620 toString(file)); 621 continue; 622 } 623 // sizeInBits is used to initialize the Flags field; currently no 624 // other flags are defined. 625 res.emplace_back( 626 RuntimePseudoReloc(target, this, rel.VirtualAddress, sizeInBits)); 627 } 628 } 629 630 bool SectionChunk::isCOMDAT() const { 631 return header->Characteristics & IMAGE_SCN_LNK_COMDAT; 632 } 633 634 void SectionChunk::printDiscardedMessage() const { 635 // Removed by dead-stripping. If it's removed by ICF, ICF already 636 // printed out the name, so don't repeat that here. 637 if (sym && this == repl) 638 log("Discarded " + sym->getName()); 639 } 640 641 StringRef SectionChunk::getDebugName() const { 642 if (sym) 643 return sym->getName(); 644 return ""; 645 } 646 647 ArrayRef<uint8_t> SectionChunk::getContents() const { 648 ArrayRef<uint8_t> a; 649 cantFail(file->getCOFFObj()->getSectionContents(header, a)); 650 return a; 651 } 652 653 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() { 654 assert(isCodeView()); 655 return consumeDebugMagic(getContents(), getSectionName()); 656 } 657 658 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data, 659 StringRef sectionName) { 660 if (data.empty()) 661 return {}; 662 663 // First 4 bytes are section magic. 664 if (data.size() < 4) 665 fatal("the section is too short: " + sectionName); 666 667 if (!sectionName.startswith(".debug$")) 668 fatal("invalid section: " + sectionName); 669 670 uint32_t magic = support::endian::read32le(data.data()); 671 uint32_t expectedMagic = sectionName == ".debug$H" 672 ? DEBUG_HASHES_SECTION_MAGIC 673 : DEBUG_SECTION_MAGIC; 674 if (magic != expectedMagic) { 675 warn("ignoring section " + sectionName + " with unrecognized magic 0x" + 676 utohexstr(magic)); 677 return {}; 678 } 679 return data.slice(4); 680 } 681 682 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections, 683 StringRef name) { 684 for (SectionChunk *c : sections) 685 if (c->getSectionName() == name) 686 return c; 687 return nullptr; 688 } 689 690 void SectionChunk::replace(SectionChunk *other) { 691 p2Align = std::max(p2Align, other->p2Align); 692 other->repl = repl; 693 other->live = false; 694 } 695 696 uint32_t SectionChunk::getSectionNumber() const { 697 DataRefImpl r; 698 r.p = reinterpret_cast<uintptr_t>(header); 699 SectionRef s(r, file->getCOFFObj()); 700 return s.getIndex() + 1; 701 } 702 703 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) { 704 // The value of a common symbol is its size. Align all common symbols smaller 705 // than 32 bytes naturally, i.e. round the size up to the next power of two. 706 // This is what MSVC link.exe does. 707 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue())))); 708 hasData = false; 709 } 710 711 uint32_t CommonChunk::getOutputCharacteristics() const { 712 return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | 713 IMAGE_SCN_MEM_WRITE; 714 } 715 716 void StringChunk::writeTo(uint8_t *buf) const { 717 memcpy(buf, str.data(), str.size()); 718 buf[str.size()] = '\0'; 719 } 720 721 ImportThunkChunkX64::ImportThunkChunkX64(Defined *s) : ImportThunkChunk(s) { 722 // Intel Optimization Manual says that all branch targets 723 // should be 16-byte aligned. MSVC linker does this too. 724 setAlignment(16); 725 } 726 727 void ImportThunkChunkX64::writeTo(uint8_t *buf) const { 728 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 729 // The first two bytes is a JMP instruction. Fill its operand. 730 write32le(buf + 2, impSymbol->getRVA() - rva - getSize()); 731 } 732 733 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) { 734 res->emplace_back(getRVA() + 2); 735 } 736 737 void ImportThunkChunkX86::writeTo(uint8_t *buf) const { 738 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 739 // The first two bytes is a JMP instruction. Fill its operand. 740 write32le(buf + 2, 741 impSymbol->getRVA() + config->imageBase); 742 } 743 744 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) { 745 res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); 746 } 747 748 void ImportThunkChunkARM::writeTo(uint8_t *buf) const { 749 memcpy(buf, importThunkARM, sizeof(importThunkARM)); 750 // Fix mov.w and mov.t operands. 751 applyMOV32T(buf, impSymbol->getRVA() + config->imageBase); 752 } 753 754 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const { 755 int64_t off = impSymbol->getRVA() & 0xfff; 756 memcpy(buf, importThunkARM64, sizeof(importThunkARM64)); 757 applyArm64Addr(buf, impSymbol->getRVA(), rva, 12); 758 applyArm64Ldr(buf + 4, off); 759 } 760 761 // A Thumb2, PIC, non-interworking range extension thunk. 762 const uint8_t armThunk[] = { 763 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) 764 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) 765 0xe7, 0x44, // L1: add pc, ip 766 }; 767 768 size_t RangeExtensionThunkARM::getSize() const { 769 assert(config->machine == ARMNT); 770 return sizeof(armThunk); 771 } 772 773 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const { 774 assert(config->machine == ARMNT); 775 uint64_t offset = target->getRVA() - rva - 12; 776 memcpy(buf, armThunk, sizeof(armThunk)); 777 applyMOV32T(buf, uint32_t(offset)); 778 } 779 780 // A position independent ARM64 adrp+add thunk, with a maximum range of 781 // +/- 4 GB, which is enough for any PE-COFF. 782 const uint8_t arm64Thunk[] = { 783 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest 784 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest 785 0x00, 0x02, 0x1f, 0xd6, // br x16 786 }; 787 788 size_t RangeExtensionThunkARM64::getSize() const { 789 assert(config->machine == ARM64); 790 return sizeof(arm64Thunk); 791 } 792 793 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const { 794 assert(config->machine == ARM64); 795 memcpy(buf, arm64Thunk, sizeof(arm64Thunk)); 796 applyArm64Addr(buf + 0, target->getRVA(), rva, 12); 797 applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0); 798 } 799 800 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) { 801 res->emplace_back(getRVA()); 802 } 803 804 size_t LocalImportChunk::getSize() const { return config->wordsize; } 805 806 void LocalImportChunk::writeTo(uint8_t *buf) const { 807 if (config->is64()) { 808 write64le(buf, sym->getRVA() + config->imageBase); 809 } else { 810 write32le(buf, sym->getRVA() + config->imageBase); 811 } 812 } 813 814 void RVATableChunk::writeTo(uint8_t *buf) const { 815 ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf); 816 size_t cnt = 0; 817 for (const ChunkAndOffset &co : syms) 818 begin[cnt++] = co.inputChunk->getRVA() + co.offset; 819 llvm::sort(begin, begin + cnt); 820 assert(std::unique(begin, begin + cnt) == begin + cnt && 821 "RVA tables should be de-duplicated"); 822 } 823 824 void RVAFlagTableChunk::writeTo(uint8_t *buf) const { 825 struct RVAFlag { 826 ulittle32_t rva; 827 uint8_t flag; 828 }; 829 auto flags = 830 makeMutableArrayRef(reinterpret_cast<RVAFlag *>(buf), syms.size()); 831 for (auto t : zip(syms, flags)) { 832 const auto &sym = std::get<0>(t); 833 auto &flag = std::get<1>(t); 834 flag.rva = sym.inputChunk->getRVA() + sym.offset; 835 flag.flag = 0; 836 } 837 llvm::sort(flags, 838 [](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; }); 839 assert(llvm::unique(flags, [](const RVAFlag &a, 840 const RVAFlag &b) { return a.rva == b.rva; }) == 841 flags.end() && 842 "RVA tables should be de-duplicated"); 843 } 844 845 // MinGW specific, for the "automatic import of variables from DLLs" feature. 846 size_t PseudoRelocTableChunk::getSize() const { 847 if (relocs.empty()) 848 return 0; 849 return 12 + 12 * relocs.size(); 850 } 851 852 // MinGW specific. 853 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const { 854 if (relocs.empty()) 855 return; 856 857 ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf); 858 // This is the list header, to signal the runtime pseudo relocation v2 859 // format. 860 table[0] = 0; 861 table[1] = 0; 862 table[2] = 1; 863 864 size_t idx = 3; 865 for (const RuntimePseudoReloc &rpr : relocs) { 866 table[idx + 0] = rpr.sym->getRVA(); 867 table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset; 868 table[idx + 2] = rpr.flags; 869 idx += 3; 870 } 871 } 872 873 // Windows-specific. This class represents a block in .reloc section. 874 // The format is described here. 875 // 876 // On Windows, each DLL is linked against a fixed base address and 877 // usually loaded to that address. However, if there's already another 878 // DLL that overlaps, the loader has to relocate it. To do that, DLLs 879 // contain .reloc sections which contain offsets that need to be fixed 880 // up at runtime. If the loader finds that a DLL cannot be loaded to its 881 // desired base address, it loads it to somewhere else, and add <actual 882 // base address> - <desired base address> to each offset that is 883 // specified by the .reloc section. In ELF terms, .reloc sections 884 // contain relative relocations in REL format (as opposed to RELA.) 885 // 886 // This already significantly reduces the size of relocations compared 887 // to ELF .rel.dyn, but Windows does more to reduce it (probably because 888 // it was invented for PCs in the late '80s or early '90s.) Offsets in 889 // .reloc are grouped by page where the page size is 12 bits, and 890 // offsets sharing the same page address are stored consecutively to 891 // represent them with less space. This is very similar to the page 892 // table which is grouped by (multiple stages of) pages. 893 // 894 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, 895 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 896 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they 897 // are represented like this: 898 // 899 // 0x00000 -- page address (4 bytes) 900 // 16 -- size of this block (4 bytes) 901 // 0xA030 -- entries (2 bytes each) 902 // 0xA500 903 // 0xA700 904 // 0xAA00 905 // 0x20000 -- page address (4 bytes) 906 // 12 -- size of this block (4 bytes) 907 // 0xA004 -- entries (2 bytes each) 908 // 0xA008 909 // 910 // Usually we have a lot of relocations for each page, so the number of 911 // bytes for one .reloc entry is close to 2 bytes on average. 912 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) { 913 // Block header consists of 4 byte page RVA and 4 byte block size. 914 // Each entry is 2 byte. Last entry may be padding. 915 data.resize(alignTo((end - begin) * 2 + 8, 4)); 916 uint8_t *p = data.data(); 917 write32le(p, page); 918 write32le(p + 4, data.size()); 919 p += 8; 920 for (Baserel *i = begin; i != end; ++i) { 921 write16le(p, (i->type << 12) | (i->rva - page)); 922 p += 2; 923 } 924 } 925 926 void BaserelChunk::writeTo(uint8_t *buf) const { 927 memcpy(buf, data.data(), data.size()); 928 } 929 930 uint8_t Baserel::getDefaultType() { 931 switch (config->machine) { 932 case AMD64: 933 case ARM64: 934 return IMAGE_REL_BASED_DIR64; 935 case I386: 936 case ARMNT: 937 return IMAGE_REL_BASED_HIGHLOW; 938 default: 939 llvm_unreachable("unknown machine type"); 940 } 941 } 942 943 MergeChunk::MergeChunk(uint32_t alignment) 944 : builder(StringTableBuilder::RAW, alignment) { 945 setAlignment(alignment); 946 } 947 948 void MergeChunk::addSection(COFFLinkerContext &ctx, SectionChunk *c) { 949 assert(isPowerOf2_32(c->getAlignment())); 950 uint8_t p2Align = llvm::Log2_32(c->getAlignment()); 951 assert(p2Align < array_lengthof(ctx.mergeChunkInstances)); 952 auto *&mc = ctx.mergeChunkInstances[p2Align]; 953 if (!mc) 954 mc = make<MergeChunk>(c->getAlignment()); 955 mc->sections.push_back(c); 956 } 957 958 void MergeChunk::finalizeContents() { 959 assert(!finalized && "should only finalize once"); 960 for (SectionChunk *c : sections) 961 if (c->live) 962 builder.add(toStringRef(c->getContents())); 963 builder.finalize(); 964 finalized = true; 965 } 966 967 void MergeChunk::assignSubsectionRVAs() { 968 for (SectionChunk *c : sections) { 969 if (!c->live) 970 continue; 971 size_t off = builder.getOffset(toStringRef(c->getContents())); 972 c->setRVA(rva + off); 973 } 974 } 975 976 uint32_t MergeChunk::getOutputCharacteristics() const { 977 return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; 978 } 979 980 size_t MergeChunk::getSize() const { 981 return builder.getSize(); 982 } 983 984 void MergeChunk::writeTo(uint8_t *buf) const { 985 builder.write(buf); 986 } 987 988 // MinGW specific. 989 size_t AbsolutePointerChunk::getSize() const { return config->wordsize; } 990 991 void AbsolutePointerChunk::writeTo(uint8_t *buf) const { 992 if (config->is64()) { 993 write64le(buf, value); 994 } else { 995 write32le(buf, value); 996 } 997 } 998 999 } // namespace coff 1000 } // namespace lld 1001