1 //===- Chunks.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Chunks.h" 10 #include "InputFiles.h" 11 #include "Symbols.h" 12 #include "Writer.h" 13 #include "SymbolTable.h" 14 #include "lld/Common/ErrorHandler.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/BinaryFormat/COFF.h" 17 #include "llvm/Object/COFF.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/Endian.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <algorithm> 22 23 using namespace llvm; 24 using namespace llvm::object; 25 using namespace llvm::support::endian; 26 using namespace llvm::COFF; 27 using llvm::support::ulittle32_t; 28 29 namespace lld { 30 namespace coff { 31 32 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h) 33 : Chunk(SectionKind), file(f), header(h), repl(this) { 34 // Initialize relocs. 35 setRelocs(file->getCOFFObj()->getRelocations(header)); 36 37 // Initialize sectionName. 38 StringRef sectionName; 39 if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header)) 40 sectionName = *e; 41 sectionNameData = sectionName.data(); 42 sectionNameSize = sectionName.size(); 43 44 setAlignment(header->getAlignment()); 45 46 hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); 47 48 // If linker GC is disabled, every chunk starts out alive. If linker GC is 49 // enabled, treat non-comdat sections as roots. Generally optimized object 50 // files will be built with -ffunction-sections or /Gy, so most things worth 51 // stripping will be in a comdat. 52 live = !config->doGC || !isCOMDAT(); 53 } 54 55 // SectionChunk is one of the most frequently allocated classes, so it is 56 // important to keep it as compact as possible. As of this writing, the number 57 // below is the size of this class on x64 platforms. 58 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly"); 59 60 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); } 61 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); } 62 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); } 63 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); } 64 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); } 65 66 // Verify that given sections are appropriate targets for SECREL 67 // relocations. This check is relaxed because unfortunately debug 68 // sections have section-relative relocations against absolute symbols. 69 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) { 70 if (os) 71 return true; 72 if (sec->isCodeView()) 73 return false; 74 error("SECREL relocation cannot be applied to absolute symbols"); 75 return false; 76 } 77 78 static void applySecRel(const SectionChunk *sec, uint8_t *off, 79 OutputSection *os, uint64_t s) { 80 if (!checkSecRel(sec, os)) 81 return; 82 uint64_t secRel = s - os->getRVA(); 83 if (secRel > UINT32_MAX) { 84 error("overflow in SECREL relocation in section: " + sec->getSectionName()); 85 return; 86 } 87 add32(off, secRel); 88 } 89 90 static void applySecIdx(uint8_t *off, OutputSection *os) { 91 // Absolute symbol doesn't have section index, but section index relocation 92 // against absolute symbol should be resolved to one plus the last output 93 // section index. This is required for compatibility with MSVC. 94 if (os) 95 add16(off, os->sectionIndex); 96 else 97 add16(off, DefinedAbsolute::numOutputSections + 1); 98 } 99 100 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os, 101 uint64_t s, uint64_t p) const { 102 switch (type) { 103 case IMAGE_REL_AMD64_ADDR32: add32(off, s + config->imageBase); break; 104 case IMAGE_REL_AMD64_ADDR64: add64(off, s + config->imageBase); break; 105 case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break; 106 case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break; 107 case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break; 108 case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break; 109 case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break; 110 case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break; 111 case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break; 112 case IMAGE_REL_AMD64_SECTION: applySecIdx(off, os); break; 113 case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break; 114 default: 115 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 116 toString(file)); 117 } 118 } 119 120 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os, 121 uint64_t s, uint64_t p) const { 122 switch (type) { 123 case IMAGE_REL_I386_ABSOLUTE: break; 124 case IMAGE_REL_I386_DIR32: add32(off, s + config->imageBase); break; 125 case IMAGE_REL_I386_DIR32NB: add32(off, s); break; 126 case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break; 127 case IMAGE_REL_I386_SECTION: applySecIdx(off, os); break; 128 case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break; 129 default: 130 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 131 toString(file)); 132 } 133 } 134 135 static void applyMOV(uint8_t *off, uint16_t v) { 136 write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf)); 137 write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff)); 138 } 139 140 static uint16_t readMOV(uint8_t *off, bool movt) { 141 uint16_t op1 = read16le(off); 142 if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240)) 143 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 144 " instruction in MOV32T relocation"); 145 uint16_t op2 = read16le(off + 2); 146 if ((op2 & 0x8000) != 0) 147 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 148 " instruction in MOV32T relocation"); 149 return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) | 150 ((op1 & 0x000f) << 12); 151 } 152 153 void applyMOV32T(uint8_t *off, uint32_t v) { 154 uint16_t immW = readMOV(off, false); // read MOVW operand 155 uint16_t immT = readMOV(off + 4, true); // read MOVT operand 156 uint32_t imm = immW | (immT << 16); 157 v += imm; // add the immediate offset 158 applyMOV(off, v); // set MOVW operand 159 applyMOV(off + 4, v >> 16); // set MOVT operand 160 } 161 162 static void applyBranch20T(uint8_t *off, int32_t v) { 163 if (!isInt<21>(v)) 164 error("relocation out of range"); 165 uint32_t s = v < 0 ? 1 : 0; 166 uint32_t j1 = (v >> 19) & 1; 167 uint32_t j2 = (v >> 18) & 1; 168 or16(off, (s << 10) | ((v >> 12) & 0x3f)); 169 or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 170 } 171 172 void applyBranch24T(uint8_t *off, int32_t v) { 173 if (!isInt<25>(v)) 174 error("relocation out of range"); 175 uint32_t s = v < 0 ? 1 : 0; 176 uint32_t j1 = ((~v >> 23) & 1) ^ s; 177 uint32_t j2 = ((~v >> 22) & 1) ^ s; 178 or16(off, (s << 10) | ((v >> 12) & 0x3ff)); 179 // Clear out the J1 and J2 bits which may be set. 180 write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 181 } 182 183 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os, 184 uint64_t s, uint64_t p) const { 185 // Pointer to thumb code must have the LSB set. 186 uint64_t sx = s; 187 if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) 188 sx |= 1; 189 switch (type) { 190 case IMAGE_REL_ARM_ADDR32: add32(off, sx + config->imageBase); break; 191 case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break; 192 case IMAGE_REL_ARM_MOV32T: applyMOV32T(off, sx + config->imageBase); break; 193 case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break; 194 case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break; 195 case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break; 196 case IMAGE_REL_ARM_SECTION: applySecIdx(off, os); break; 197 case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break; 198 case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break; 199 default: 200 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 201 toString(file)); 202 } 203 } 204 205 // Interpret the existing immediate value as a byte offset to the 206 // target symbol, then update the instruction with the immediate as 207 // the page offset from the current instruction to the target. 208 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) { 209 uint32_t orig = read32le(off); 210 uint64_t imm = ((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC); 211 s += imm; 212 imm = (s >> shift) - (p >> shift); 213 uint32_t immLo = (imm & 0x3) << 29; 214 uint32_t immHi = (imm & 0x1FFFFC) << 3; 215 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); 216 write32le(off, (orig & ~mask) | immLo | immHi); 217 } 218 219 // Update the immediate field in a AARCH64 ldr, str, and add instruction. 220 // Optionally limit the range of the written immediate by one or more bits 221 // (rangeLimit). 222 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) { 223 uint32_t orig = read32le(off); 224 imm += (orig >> 10) & 0xFFF; 225 orig &= ~(0xFFF << 10); 226 write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10)); 227 } 228 229 // Add the 12 bit page offset to the existing immediate. 230 // Ldr/str instructions store the opcode immediate scaled 231 // by the load/store size (giving a larger range for larger 232 // loads/stores). The immediate is always (both before and after 233 // fixing up the relocation) stored scaled similarly. 234 // Even if larger loads/stores have a larger range, limit the 235 // effective offset to 12 bit, since it is intended to be a 236 // page offset. 237 static void applyArm64Ldr(uint8_t *off, uint64_t imm) { 238 uint32_t orig = read32le(off); 239 uint32_t size = orig >> 30; 240 // 0x04000000 indicates SIMD/FP registers 241 // 0x00800000 indicates 128 bit 242 if ((orig & 0x4800000) == 0x4800000) 243 size += 4; 244 if ((imm & ((1 << size) - 1)) != 0) 245 error("misaligned ldr/str offset"); 246 applyArm64Imm(off, imm >> size, size); 247 } 248 249 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off, 250 OutputSection *os, uint64_t s) { 251 if (checkSecRel(sec, os)) 252 applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0); 253 } 254 255 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off, 256 OutputSection *os, uint64_t s) { 257 if (!checkSecRel(sec, os)) 258 return; 259 uint64_t secRel = (s - os->getRVA()) >> 12; 260 if (0xfff < secRel) { 261 error("overflow in SECREL_HIGH12A relocation in section: " + 262 sec->getSectionName()); 263 return; 264 } 265 applyArm64Imm(off, secRel & 0xfff, 0); 266 } 267 268 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off, 269 OutputSection *os, uint64_t s) { 270 if (checkSecRel(sec, os)) 271 applyArm64Ldr(off, (s - os->getRVA()) & 0xfff); 272 } 273 274 void applyArm64Branch26(uint8_t *off, int64_t v) { 275 if (!isInt<28>(v)) 276 error("relocation out of range"); 277 or32(off, (v & 0x0FFFFFFC) >> 2); 278 } 279 280 static void applyArm64Branch19(uint8_t *off, int64_t v) { 281 if (!isInt<21>(v)) 282 error("relocation out of range"); 283 or32(off, (v & 0x001FFFFC) << 3); 284 } 285 286 static void applyArm64Branch14(uint8_t *off, int64_t v) { 287 if (!isInt<16>(v)) 288 error("relocation out of range"); 289 or32(off, (v & 0x0000FFFC) << 3); 290 } 291 292 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os, 293 uint64_t s, uint64_t p) const { 294 switch (type) { 295 case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break; 296 case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break; 297 case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break; 298 case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break; 299 case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break; 300 case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break; 301 case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break; 302 case IMAGE_REL_ARM64_ADDR32: add32(off, s + config->imageBase); break; 303 case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break; 304 case IMAGE_REL_ARM64_ADDR64: add64(off, s + config->imageBase); break; 305 case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break; 306 case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break; 307 case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break; 308 case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break; 309 case IMAGE_REL_ARM64_SECTION: applySecIdx(off, os); break; 310 case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break; 311 default: 312 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 313 toString(file)); 314 } 315 } 316 317 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk, 318 Defined *sym, 319 const coff_relocation &rel) { 320 // Don't report these errors when the relocation comes from a debug info 321 // section or in mingw mode. MinGW mode object files (built by GCC) can 322 // have leftover sections with relocations against discarded comdat 323 // sections. Such sections are left as is, with relocations untouched. 324 if (fromChunk->isCodeView() || fromChunk->isDWARF() || config->mingw) 325 return; 326 327 // Get the name of the symbol. If it's null, it was discarded early, so we 328 // have to go back to the object file. 329 ObjFile *file = fromChunk->file; 330 StringRef name; 331 if (sym) { 332 name = sym->getName(); 333 } else { 334 COFFSymbolRef coffSym = 335 check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex)); 336 name = check(file->getCOFFObj()->getSymbolName(coffSym)); 337 } 338 339 std::vector<std::string> symbolLocations = 340 getSymbolLocations(file, rel.SymbolTableIndex); 341 342 std::string out; 343 llvm::raw_string_ostream os(out); 344 os << "relocation against symbol in discarded section: " + name; 345 for (const std::string &s : symbolLocations) 346 os << s; 347 error(os.str()); 348 } 349 350 void SectionChunk::writeTo(uint8_t *buf) const { 351 if (!hasData) 352 return; 353 // Copy section contents from source object file to output file. 354 ArrayRef<uint8_t> a = getContents(); 355 if (!a.empty()) 356 memcpy(buf, a.data(), a.size()); 357 358 // Apply relocations. 359 size_t inputSize = getSize(); 360 for (const coff_relocation &rel : getRelocs()) { 361 // Check for an invalid relocation offset. This check isn't perfect, because 362 // we don't have the relocation size, which is only known after checking the 363 // machine and relocation type. As a result, a relocation may overwrite the 364 // beginning of the following input section. 365 if (rel.VirtualAddress >= inputSize) { 366 error("relocation points beyond the end of its parent section"); 367 continue; 368 } 369 370 applyRelocation(buf + rel.VirtualAddress, rel); 371 } 372 } 373 374 void SectionChunk::applyRelocation(uint8_t *off, 375 const coff_relocation &rel) const { 376 auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 377 378 // Get the output section of the symbol for this relocation. The output 379 // section is needed to compute SECREL and SECTION relocations used in debug 380 // info. 381 Chunk *c = sym ? sym->getChunk() : nullptr; 382 OutputSection *os = c ? c->getOutputSection() : nullptr; 383 384 // Skip the relocation if it refers to a discarded section, and diagnose it 385 // as an error if appropriate. If a symbol was discarded early, it may be 386 // null. If it was discarded late, the output section will be null, unless 387 // it was an absolute or synthetic symbol. 388 if (!sym || 389 (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) { 390 maybeReportRelocationToDiscarded(this, sym, rel); 391 return; 392 } 393 394 uint64_t s = sym->getRVA(); 395 396 // Compute the RVA of the relocation for relative relocations. 397 uint64_t p = rva + rel.VirtualAddress; 398 switch (config->machine) { 399 case AMD64: 400 applyRelX64(off, rel.Type, os, s, p); 401 break; 402 case I386: 403 applyRelX86(off, rel.Type, os, s, p); 404 break; 405 case ARMNT: 406 applyRelARM(off, rel.Type, os, s, p); 407 break; 408 case ARM64: 409 applyRelARM64(off, rel.Type, os, s, p); 410 break; 411 default: 412 llvm_unreachable("unknown machine type"); 413 } 414 } 415 416 // Defend against unsorted relocations. This may be overly conservative. 417 void SectionChunk::sortRelocations() { 418 auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) { 419 return l.VirtualAddress < r.VirtualAddress; 420 }; 421 if (llvm::is_sorted(getRelocs(), cmpByVa)) 422 return; 423 warn("some relocations in " + file->getName() + " are not sorted"); 424 MutableArrayRef<coff_relocation> newRelocs( 425 bAlloc.Allocate<coff_relocation>(relocsSize), relocsSize); 426 memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation)); 427 llvm::sort(newRelocs, cmpByVa); 428 setRelocs(newRelocs); 429 } 430 431 // Similar to writeTo, but suitable for relocating a subsection of the overall 432 // section. 433 void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec, 434 ArrayRef<uint8_t> subsec, 435 uint32_t &nextRelocIndex, 436 uint8_t *buf) const { 437 assert(!subsec.empty() && !sec.empty()); 438 assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() && 439 "subsection is not part of this section"); 440 size_t vaBegin = std::distance(sec.begin(), subsec.begin()); 441 size_t vaEnd = std::distance(sec.begin(), subsec.end()); 442 memcpy(buf, subsec.data(), subsec.size()); 443 for (; nextRelocIndex < relocsSize; ++nextRelocIndex) { 444 const coff_relocation &rel = relocsData[nextRelocIndex]; 445 // Only apply relocations that apply to this subsection. These checks 446 // assume that all subsections completely contain their relocations. 447 // Relocations must not straddle the beginning or end of a subsection. 448 if (rel.VirtualAddress < vaBegin) 449 continue; 450 if (rel.VirtualAddress + 1 >= vaEnd) 451 break; 452 applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel); 453 } 454 } 455 456 void SectionChunk::addAssociative(SectionChunk *child) { 457 // Insert this child at the head of the list. 458 assert(child->assocChildren == nullptr && 459 "associated sections cannot have their own associated children"); 460 child->assocChildren = assocChildren; 461 assocChildren = child; 462 } 463 464 static uint8_t getBaserelType(const coff_relocation &rel) { 465 switch (config->machine) { 466 case AMD64: 467 if (rel.Type == IMAGE_REL_AMD64_ADDR64) 468 return IMAGE_REL_BASED_DIR64; 469 return IMAGE_REL_BASED_ABSOLUTE; 470 case I386: 471 if (rel.Type == IMAGE_REL_I386_DIR32) 472 return IMAGE_REL_BASED_HIGHLOW; 473 return IMAGE_REL_BASED_ABSOLUTE; 474 case ARMNT: 475 if (rel.Type == IMAGE_REL_ARM_ADDR32) 476 return IMAGE_REL_BASED_HIGHLOW; 477 if (rel.Type == IMAGE_REL_ARM_MOV32T) 478 return IMAGE_REL_BASED_ARM_MOV32T; 479 return IMAGE_REL_BASED_ABSOLUTE; 480 case ARM64: 481 if (rel.Type == IMAGE_REL_ARM64_ADDR64) 482 return IMAGE_REL_BASED_DIR64; 483 return IMAGE_REL_BASED_ABSOLUTE; 484 default: 485 llvm_unreachable("unknown machine type"); 486 } 487 } 488 489 // Windows-specific. 490 // Collect all locations that contain absolute addresses, which need to be 491 // fixed by the loader if load-time relocation is needed. 492 // Only called when base relocation is enabled. 493 void SectionChunk::getBaserels(std::vector<Baserel> *res) { 494 for (const coff_relocation &rel : getRelocs()) { 495 uint8_t ty = getBaserelType(rel); 496 if (ty == IMAGE_REL_BASED_ABSOLUTE) 497 continue; 498 Symbol *target = file->getSymbol(rel.SymbolTableIndex); 499 if (!target || isa<DefinedAbsolute>(target)) 500 continue; 501 res->emplace_back(rva + rel.VirtualAddress, ty); 502 } 503 } 504 505 // MinGW specific. 506 // Check whether a static relocation of type Type can be deferred and 507 // handled at runtime as a pseudo relocation (for references to a module 508 // local variable, which turned out to actually need to be imported from 509 // another DLL) This returns the size the relocation is supposed to update, 510 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo 511 // relocation. 512 static int getRuntimePseudoRelocSize(uint16_t type) { 513 // Relocations that either contain an absolute address, or a plain 514 // relative offset, since the runtime pseudo reloc implementation 515 // adds 8/16/32/64 bit values to a memory address. 516 // 517 // Given a pseudo relocation entry, 518 // 519 // typedef struct { 520 // DWORD sym; 521 // DWORD target; 522 // DWORD flags; 523 // } runtime_pseudo_reloc_item_v2; 524 // 525 // the runtime relocation performs this adjustment: 526 // *(base + .target) += *(base + .sym) - (base + .sym) 527 // 528 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64, 529 // IMAGE_REL_I386_DIR32, where the memory location initially contains 530 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32), 531 // where the memory location originally contains the relative offset to the 532 // IAT slot. 533 // 534 // This requires the target address to be writable, either directly out of 535 // the image, or temporarily changed at runtime with VirtualProtect. 536 // Since this only operates on direct address values, it doesn't work for 537 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations. 538 switch (config->machine) { 539 case AMD64: 540 switch (type) { 541 case IMAGE_REL_AMD64_ADDR64: 542 return 64; 543 case IMAGE_REL_AMD64_ADDR32: 544 case IMAGE_REL_AMD64_REL32: 545 case IMAGE_REL_AMD64_REL32_1: 546 case IMAGE_REL_AMD64_REL32_2: 547 case IMAGE_REL_AMD64_REL32_3: 548 case IMAGE_REL_AMD64_REL32_4: 549 case IMAGE_REL_AMD64_REL32_5: 550 return 32; 551 default: 552 return 0; 553 } 554 case I386: 555 switch (type) { 556 case IMAGE_REL_I386_DIR32: 557 case IMAGE_REL_I386_REL32: 558 return 32; 559 default: 560 return 0; 561 } 562 case ARMNT: 563 switch (type) { 564 case IMAGE_REL_ARM_ADDR32: 565 return 32; 566 default: 567 return 0; 568 } 569 case ARM64: 570 switch (type) { 571 case IMAGE_REL_ARM64_ADDR64: 572 return 64; 573 case IMAGE_REL_ARM64_ADDR32: 574 return 32; 575 default: 576 return 0; 577 } 578 default: 579 llvm_unreachable("unknown machine type"); 580 } 581 } 582 583 // MinGW specific. 584 // Append information to the provided vector about all relocations that 585 // need to be handled at runtime as runtime pseudo relocations (references 586 // to a module local variable, which turned out to actually need to be 587 // imported from another DLL). 588 void SectionChunk::getRuntimePseudoRelocs( 589 std::vector<RuntimePseudoReloc> &res) { 590 for (const coff_relocation &rel : getRelocs()) { 591 auto *target = 592 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 593 if (!target || !target->isRuntimePseudoReloc) 594 continue; 595 int sizeInBits = getRuntimePseudoRelocSize(rel.Type); 596 if (sizeInBits == 0) { 597 error("unable to automatically import from " + target->getName() + 598 " with relocation type " + 599 file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " + 600 toString(file)); 601 continue; 602 } 603 // sizeInBits is used to initialize the Flags field; currently no 604 // other flags are defined. 605 res.emplace_back( 606 RuntimePseudoReloc(target, this, rel.VirtualAddress, sizeInBits)); 607 } 608 } 609 610 bool SectionChunk::isCOMDAT() const { 611 return header->Characteristics & IMAGE_SCN_LNK_COMDAT; 612 } 613 614 void SectionChunk::printDiscardedMessage() const { 615 // Removed by dead-stripping. If it's removed by ICF, ICF already 616 // printed out the name, so don't repeat that here. 617 if (sym && this == repl) 618 message("Discarded " + sym->getName()); 619 } 620 621 StringRef SectionChunk::getDebugName() const { 622 if (sym) 623 return sym->getName(); 624 return ""; 625 } 626 627 ArrayRef<uint8_t> SectionChunk::getContents() const { 628 ArrayRef<uint8_t> a; 629 cantFail(file->getCOFFObj()->getSectionContents(header, a)); 630 return a; 631 } 632 633 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() { 634 assert(isCodeView()); 635 return consumeDebugMagic(getContents(), getSectionName()); 636 } 637 638 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data, 639 StringRef sectionName) { 640 if (data.empty()) 641 return {}; 642 643 // First 4 bytes are section magic. 644 if (data.size() < 4) 645 fatal("the section is too short: " + sectionName); 646 647 if (!sectionName.startswith(".debug$")) 648 fatal("invalid section: " + sectionName); 649 650 uint32_t magic = support::endian::read32le(data.data()); 651 uint32_t expectedMagic = sectionName == ".debug$H" 652 ? DEBUG_HASHES_SECTION_MAGIC 653 : DEBUG_SECTION_MAGIC; 654 if (magic != expectedMagic) { 655 warn("ignoring section " + sectionName + " with unrecognized magic 0x" + 656 utohexstr(magic)); 657 return {}; 658 } 659 return data.slice(4); 660 } 661 662 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections, 663 StringRef name) { 664 for (SectionChunk *c : sections) 665 if (c->getSectionName() == name) 666 return c; 667 return nullptr; 668 } 669 670 void SectionChunk::replace(SectionChunk *other) { 671 p2Align = std::max(p2Align, other->p2Align); 672 other->repl = repl; 673 other->live = false; 674 } 675 676 uint32_t SectionChunk::getSectionNumber() const { 677 DataRefImpl r; 678 r.p = reinterpret_cast<uintptr_t>(header); 679 SectionRef s(r, file->getCOFFObj()); 680 return s.getIndex() + 1; 681 } 682 683 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) { 684 // The value of a common symbol is its size. Align all common symbols smaller 685 // than 32 bytes naturally, i.e. round the size up to the next power of two. 686 // This is what MSVC link.exe does. 687 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue())))); 688 hasData = false; 689 } 690 691 uint32_t CommonChunk::getOutputCharacteristics() const { 692 return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | 693 IMAGE_SCN_MEM_WRITE; 694 } 695 696 void StringChunk::writeTo(uint8_t *buf) const { 697 memcpy(buf, str.data(), str.size()); 698 buf[str.size()] = '\0'; 699 } 700 701 ImportThunkChunkX64::ImportThunkChunkX64(Defined *s) : ImportThunkChunk(s) { 702 // Intel Optimization Manual says that all branch targets 703 // should be 16-byte aligned. MSVC linker does this too. 704 setAlignment(16); 705 } 706 707 void ImportThunkChunkX64::writeTo(uint8_t *buf) const { 708 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 709 // The first two bytes is a JMP instruction. Fill its operand. 710 write32le(buf + 2, impSymbol->getRVA() - rva - getSize()); 711 } 712 713 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) { 714 res->emplace_back(getRVA() + 2); 715 } 716 717 void ImportThunkChunkX86::writeTo(uint8_t *buf) const { 718 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 719 // The first two bytes is a JMP instruction. Fill its operand. 720 write32le(buf + 2, 721 impSymbol->getRVA() + config->imageBase); 722 } 723 724 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) { 725 res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); 726 } 727 728 void ImportThunkChunkARM::writeTo(uint8_t *buf) const { 729 memcpy(buf, importThunkARM, sizeof(importThunkARM)); 730 // Fix mov.w and mov.t operands. 731 applyMOV32T(buf, impSymbol->getRVA() + config->imageBase); 732 } 733 734 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const { 735 int64_t off = impSymbol->getRVA() & 0xfff; 736 memcpy(buf, importThunkARM64, sizeof(importThunkARM64)); 737 applyArm64Addr(buf, impSymbol->getRVA(), rva, 12); 738 applyArm64Ldr(buf + 4, off); 739 } 740 741 // A Thumb2, PIC, non-interworking range extension thunk. 742 const uint8_t armThunk[] = { 743 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) 744 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) 745 0xe7, 0x44, // L1: add pc, ip 746 }; 747 748 size_t RangeExtensionThunkARM::getSize() const { 749 assert(config->machine == ARMNT); 750 return sizeof(armThunk); 751 } 752 753 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const { 754 assert(config->machine == ARMNT); 755 uint64_t offset = target->getRVA() - rva - 12; 756 memcpy(buf, armThunk, sizeof(armThunk)); 757 applyMOV32T(buf, uint32_t(offset)); 758 } 759 760 // A position independent ARM64 adrp+add thunk, with a maximum range of 761 // +/- 4 GB, which is enough for any PE-COFF. 762 const uint8_t arm64Thunk[] = { 763 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest 764 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest 765 0x00, 0x02, 0x1f, 0xd6, // br x16 766 }; 767 768 size_t RangeExtensionThunkARM64::getSize() const { 769 assert(config->machine == ARM64); 770 return sizeof(arm64Thunk); 771 } 772 773 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const { 774 assert(config->machine == ARM64); 775 memcpy(buf, arm64Thunk, sizeof(arm64Thunk)); 776 applyArm64Addr(buf + 0, target->getRVA(), rva, 12); 777 applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0); 778 } 779 780 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) { 781 res->emplace_back(getRVA()); 782 } 783 784 size_t LocalImportChunk::getSize() const { return config->wordsize; } 785 786 void LocalImportChunk::writeTo(uint8_t *buf) const { 787 if (config->is64()) { 788 write64le(buf, sym->getRVA() + config->imageBase); 789 } else { 790 write32le(buf, sym->getRVA() + config->imageBase); 791 } 792 } 793 794 void RVATableChunk::writeTo(uint8_t *buf) const { 795 ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf); 796 size_t cnt = 0; 797 for (const ChunkAndOffset &co : syms) 798 begin[cnt++] = co.inputChunk->getRVA() + co.offset; 799 std::sort(begin, begin + cnt); 800 assert(std::unique(begin, begin + cnt) == begin + cnt && 801 "RVA tables should be de-duplicated"); 802 } 803 804 // MinGW specific, for the "automatic import of variables from DLLs" feature. 805 size_t PseudoRelocTableChunk::getSize() const { 806 if (relocs.empty()) 807 return 0; 808 return 12 + 12 * relocs.size(); 809 } 810 811 // MinGW specific. 812 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const { 813 if (relocs.empty()) 814 return; 815 816 ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf); 817 // This is the list header, to signal the runtime pseudo relocation v2 818 // format. 819 table[0] = 0; 820 table[1] = 0; 821 table[2] = 1; 822 823 size_t idx = 3; 824 for (const RuntimePseudoReloc &rpr : relocs) { 825 table[idx + 0] = rpr.sym->getRVA(); 826 table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset; 827 table[idx + 2] = rpr.flags; 828 idx += 3; 829 } 830 } 831 832 // Windows-specific. This class represents a block in .reloc section. 833 // The format is described here. 834 // 835 // On Windows, each DLL is linked against a fixed base address and 836 // usually loaded to that address. However, if there's already another 837 // DLL that overlaps, the loader has to relocate it. To do that, DLLs 838 // contain .reloc sections which contain offsets that need to be fixed 839 // up at runtime. If the loader finds that a DLL cannot be loaded to its 840 // desired base address, it loads it to somewhere else, and add <actual 841 // base address> - <desired base address> to each offset that is 842 // specified by the .reloc section. In ELF terms, .reloc sections 843 // contain relative relocations in REL format (as opposed to RELA.) 844 // 845 // This already significantly reduces the size of relocations compared 846 // to ELF .rel.dyn, but Windows does more to reduce it (probably because 847 // it was invented for PCs in the late '80s or early '90s.) Offsets in 848 // .reloc are grouped by page where the page size is 12 bits, and 849 // offsets sharing the same page address are stored consecutively to 850 // represent them with less space. This is very similar to the page 851 // table which is grouped by (multiple stages of) pages. 852 // 853 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, 854 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 855 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they 856 // are represented like this: 857 // 858 // 0x00000 -- page address (4 bytes) 859 // 16 -- size of this block (4 bytes) 860 // 0xA030 -- entries (2 bytes each) 861 // 0xA500 862 // 0xA700 863 // 0xAA00 864 // 0x20000 -- page address (4 bytes) 865 // 12 -- size of this block (4 bytes) 866 // 0xA004 -- entries (2 bytes each) 867 // 0xA008 868 // 869 // Usually we have a lot of relocations for each page, so the number of 870 // bytes for one .reloc entry is close to 2 bytes on average. 871 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) { 872 // Block header consists of 4 byte page RVA and 4 byte block size. 873 // Each entry is 2 byte. Last entry may be padding. 874 data.resize(alignTo((end - begin) * 2 + 8, 4)); 875 uint8_t *p = data.data(); 876 write32le(p, page); 877 write32le(p + 4, data.size()); 878 p += 8; 879 for (Baserel *i = begin; i != end; ++i) { 880 write16le(p, (i->type << 12) | (i->rva - page)); 881 p += 2; 882 } 883 } 884 885 void BaserelChunk::writeTo(uint8_t *buf) const { 886 memcpy(buf, data.data(), data.size()); 887 } 888 889 uint8_t Baserel::getDefaultType() { 890 switch (config->machine) { 891 case AMD64: 892 case ARM64: 893 return IMAGE_REL_BASED_DIR64; 894 case I386: 895 case ARMNT: 896 return IMAGE_REL_BASED_HIGHLOW; 897 default: 898 llvm_unreachable("unknown machine type"); 899 } 900 } 901 902 MergeChunk *MergeChunk::instances[Log2MaxSectionAlignment + 1] = {}; 903 904 MergeChunk::MergeChunk(uint32_t alignment) 905 : builder(StringTableBuilder::RAW, alignment) { 906 setAlignment(alignment); 907 } 908 909 void MergeChunk::addSection(SectionChunk *c) { 910 assert(isPowerOf2_32(c->getAlignment())); 911 uint8_t p2Align = llvm::Log2_32(c->getAlignment()); 912 assert(p2Align < array_lengthof(instances)); 913 auto *&mc = instances[p2Align]; 914 if (!mc) 915 mc = make<MergeChunk>(c->getAlignment()); 916 mc->sections.push_back(c); 917 } 918 919 void MergeChunk::finalizeContents() { 920 assert(!finalized && "should only finalize once"); 921 for (SectionChunk *c : sections) 922 if (c->live) 923 builder.add(toStringRef(c->getContents())); 924 builder.finalize(); 925 finalized = true; 926 } 927 928 void MergeChunk::assignSubsectionRVAs() { 929 for (SectionChunk *c : sections) { 930 if (!c->live) 931 continue; 932 size_t off = builder.getOffset(toStringRef(c->getContents())); 933 c->setRVA(rva + off); 934 } 935 } 936 937 uint32_t MergeChunk::getOutputCharacteristics() const { 938 return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; 939 } 940 941 size_t MergeChunk::getSize() const { 942 return builder.getSize(); 943 } 944 945 void MergeChunk::writeTo(uint8_t *buf) const { 946 builder.write(buf); 947 } 948 949 // MinGW specific. 950 size_t AbsolutePointerChunk::getSize() const { return config->wordsize; } 951 952 void AbsolutePointerChunk::writeTo(uint8_t *buf) const { 953 if (config->is64()) { 954 write64le(buf, value); 955 } else { 956 write32le(buf, value); 957 } 958 } 959 960 } // namespace coff 961 } // namespace lld 962