1 //===- Chunks.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Chunks.h" 10 #include "COFFLinkerContext.h" 11 #include "InputFiles.h" 12 #include "SymbolTable.h" 13 #include "Symbols.h" 14 #include "Writer.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/BinaryFormat/COFF.h" 19 #include "llvm/Object/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <algorithm> 24 #include <iterator> 25 26 using namespace llvm; 27 using namespace llvm::object; 28 using namespace llvm::support::endian; 29 using namespace llvm::COFF; 30 using llvm::support::ulittle32_t; 31 32 namespace lld::coff { 33 34 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h) 35 : Chunk(SectionKind), file(f), header(h), repl(this) { 36 // Initialize relocs. 37 if (file) 38 setRelocs(file->getCOFFObj()->getRelocations(header)); 39 40 // Initialize sectionName. 41 StringRef sectionName; 42 if (file) { 43 if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header)) 44 sectionName = *e; 45 } 46 sectionNameData = sectionName.data(); 47 sectionNameSize = sectionName.size(); 48 49 setAlignment(header->getAlignment()); 50 51 hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); 52 53 // If linker GC is disabled, every chunk starts out alive. If linker GC is 54 // enabled, treat non-comdat sections as roots. Generally optimized object 55 // files will be built with -ffunction-sections or /Gy, so most things worth 56 // stripping will be in a comdat. 57 if (file) 58 live = !file->ctx.config.doGC || !isCOMDAT(); 59 else 60 live = true; 61 } 62 63 // SectionChunk is one of the most frequently allocated classes, so it is 64 // important to keep it as compact as possible. As of this writing, the number 65 // below is the size of this class on x64 platforms. 66 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly"); 67 68 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); } 69 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); } 70 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); } 71 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); } 72 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); } 73 74 // Verify that given sections are appropriate targets for SECREL 75 // relocations. This check is relaxed because unfortunately debug 76 // sections have section-relative relocations against absolute symbols. 77 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) { 78 if (os) 79 return true; 80 if (sec->isCodeView()) 81 return false; 82 error("SECREL relocation cannot be applied to absolute symbols"); 83 return false; 84 } 85 86 static void applySecRel(const SectionChunk *sec, uint8_t *off, 87 OutputSection *os, uint64_t s) { 88 if (!checkSecRel(sec, os)) 89 return; 90 uint64_t secRel = s - os->getRVA(); 91 if (secRel > UINT32_MAX) { 92 error("overflow in SECREL relocation in section: " + sec->getSectionName()); 93 return; 94 } 95 add32(off, secRel); 96 } 97 98 static void applySecIdx(uint8_t *off, OutputSection *os, 99 unsigned numOutputSections) { 100 // numOutputSections is the largest valid section index. Make sure that 101 // it fits in 16 bits. 102 assert(numOutputSections <= 0xffff && "size of outputSections is too big"); 103 104 // Absolute symbol doesn't have section index, but section index relocation 105 // against absolute symbol should be resolved to one plus the last output 106 // section index. This is required for compatibility with MSVC. 107 if (os) 108 add16(off, os->sectionIndex); 109 else 110 add16(off, numOutputSections + 1); 111 } 112 113 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os, 114 uint64_t s, uint64_t p, 115 uint64_t imageBase) const { 116 switch (type) { 117 case IMAGE_REL_AMD64_ADDR32: 118 add32(off, s + imageBase); 119 break; 120 case IMAGE_REL_AMD64_ADDR64: 121 add64(off, s + imageBase); 122 break; 123 case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break; 124 case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break; 125 case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break; 126 case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break; 127 case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break; 128 case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break; 129 case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break; 130 case IMAGE_REL_AMD64_SECTION: 131 applySecIdx(off, os, file->ctx.outputSections.size()); 132 break; 133 case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break; 134 default: 135 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 136 toString(file)); 137 } 138 } 139 140 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os, 141 uint64_t s, uint64_t p, 142 uint64_t imageBase) const { 143 switch (type) { 144 case IMAGE_REL_I386_ABSOLUTE: break; 145 case IMAGE_REL_I386_DIR32: 146 add32(off, s + imageBase); 147 break; 148 case IMAGE_REL_I386_DIR32NB: add32(off, s); break; 149 case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break; 150 case IMAGE_REL_I386_SECTION: 151 applySecIdx(off, os, file->ctx.outputSections.size()); 152 break; 153 case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break; 154 default: 155 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 156 toString(file)); 157 } 158 } 159 160 static void applyMOV(uint8_t *off, uint16_t v) { 161 write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf)); 162 write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff)); 163 } 164 165 static uint16_t readMOV(uint8_t *off, bool movt) { 166 uint16_t op1 = read16le(off); 167 if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240)) 168 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 169 " instruction in MOV32T relocation"); 170 uint16_t op2 = read16le(off + 2); 171 if ((op2 & 0x8000) != 0) 172 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 173 " instruction in MOV32T relocation"); 174 return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) | 175 ((op1 & 0x000f) << 12); 176 } 177 178 void applyMOV32T(uint8_t *off, uint32_t v) { 179 uint16_t immW = readMOV(off, false); // read MOVW operand 180 uint16_t immT = readMOV(off + 4, true); // read MOVT operand 181 uint32_t imm = immW | (immT << 16); 182 v += imm; // add the immediate offset 183 applyMOV(off, v); // set MOVW operand 184 applyMOV(off + 4, v >> 16); // set MOVT operand 185 } 186 187 static void applyBranch20T(uint8_t *off, int32_t v) { 188 if (!isInt<21>(v)) 189 error("relocation out of range"); 190 uint32_t s = v < 0 ? 1 : 0; 191 uint32_t j1 = (v >> 19) & 1; 192 uint32_t j2 = (v >> 18) & 1; 193 or16(off, (s << 10) | ((v >> 12) & 0x3f)); 194 or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 195 } 196 197 void applyBranch24T(uint8_t *off, int32_t v) { 198 if (!isInt<25>(v)) 199 error("relocation out of range"); 200 uint32_t s = v < 0 ? 1 : 0; 201 uint32_t j1 = ((~v >> 23) & 1) ^ s; 202 uint32_t j2 = ((~v >> 22) & 1) ^ s; 203 or16(off, (s << 10) | ((v >> 12) & 0x3ff)); 204 // Clear out the J1 and J2 bits which may be set. 205 write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 206 } 207 208 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os, 209 uint64_t s, uint64_t p, 210 uint64_t imageBase) const { 211 // Pointer to thumb code must have the LSB set. 212 uint64_t sx = s; 213 if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) 214 sx |= 1; 215 switch (type) { 216 case IMAGE_REL_ARM_ADDR32: 217 add32(off, sx + imageBase); 218 break; 219 case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break; 220 case IMAGE_REL_ARM_MOV32T: 221 applyMOV32T(off, sx + imageBase); 222 break; 223 case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break; 224 case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break; 225 case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break; 226 case IMAGE_REL_ARM_SECTION: 227 applySecIdx(off, os, file->ctx.outputSections.size()); 228 break; 229 case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break; 230 case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break; 231 default: 232 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 233 toString(file)); 234 } 235 } 236 237 // Interpret the existing immediate value as a byte offset to the 238 // target symbol, then update the instruction with the immediate as 239 // the page offset from the current instruction to the target. 240 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) { 241 uint32_t orig = read32le(off); 242 int64_t imm = 243 SignExtend64<21>(((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC)); 244 s += imm; 245 imm = (s >> shift) - (p >> shift); 246 uint32_t immLo = (imm & 0x3) << 29; 247 uint32_t immHi = (imm & 0x1FFFFC) << 3; 248 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); 249 write32le(off, (orig & ~mask) | immLo | immHi); 250 } 251 252 // Update the immediate field in a AARCH64 ldr, str, and add instruction. 253 // Optionally limit the range of the written immediate by one or more bits 254 // (rangeLimit). 255 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) { 256 uint32_t orig = read32le(off); 257 imm += (orig >> 10) & 0xFFF; 258 orig &= ~(0xFFF << 10); 259 write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10)); 260 } 261 262 // Add the 12 bit page offset to the existing immediate. 263 // Ldr/str instructions store the opcode immediate scaled 264 // by the load/store size (giving a larger range for larger 265 // loads/stores). The immediate is always (both before and after 266 // fixing up the relocation) stored scaled similarly. 267 // Even if larger loads/stores have a larger range, limit the 268 // effective offset to 12 bit, since it is intended to be a 269 // page offset. 270 static void applyArm64Ldr(uint8_t *off, uint64_t imm) { 271 uint32_t orig = read32le(off); 272 uint32_t size = orig >> 30; 273 // 0x04000000 indicates SIMD/FP registers 274 // 0x00800000 indicates 128 bit 275 if ((orig & 0x4800000) == 0x4800000) 276 size += 4; 277 if ((imm & ((1 << size) - 1)) != 0) 278 error("misaligned ldr/str offset"); 279 applyArm64Imm(off, imm >> size, size); 280 } 281 282 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off, 283 OutputSection *os, uint64_t s) { 284 if (checkSecRel(sec, os)) 285 applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0); 286 } 287 288 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off, 289 OutputSection *os, uint64_t s) { 290 if (!checkSecRel(sec, os)) 291 return; 292 uint64_t secRel = (s - os->getRVA()) >> 12; 293 if (0xfff < secRel) { 294 error("overflow in SECREL_HIGH12A relocation in section: " + 295 sec->getSectionName()); 296 return; 297 } 298 applyArm64Imm(off, secRel & 0xfff, 0); 299 } 300 301 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off, 302 OutputSection *os, uint64_t s) { 303 if (checkSecRel(sec, os)) 304 applyArm64Ldr(off, (s - os->getRVA()) & 0xfff); 305 } 306 307 void applyArm64Branch26(uint8_t *off, int64_t v) { 308 if (!isInt<28>(v)) 309 error("relocation out of range"); 310 or32(off, (v & 0x0FFFFFFC) >> 2); 311 } 312 313 static void applyArm64Branch19(uint8_t *off, int64_t v) { 314 if (!isInt<21>(v)) 315 error("relocation out of range"); 316 or32(off, (v & 0x001FFFFC) << 3); 317 } 318 319 static void applyArm64Branch14(uint8_t *off, int64_t v) { 320 if (!isInt<16>(v)) 321 error("relocation out of range"); 322 or32(off, (v & 0x0000FFFC) << 3); 323 } 324 325 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os, 326 uint64_t s, uint64_t p, 327 uint64_t imageBase) const { 328 switch (type) { 329 case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break; 330 case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break; 331 case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break; 332 case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break; 333 case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break; 334 case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break; 335 case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break; 336 case IMAGE_REL_ARM64_ADDR32: 337 add32(off, s + imageBase); 338 break; 339 case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break; 340 case IMAGE_REL_ARM64_ADDR64: 341 add64(off, s + imageBase); 342 break; 343 case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break; 344 case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break; 345 case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break; 346 case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break; 347 case IMAGE_REL_ARM64_SECTION: 348 applySecIdx(off, os, file->ctx.outputSections.size()); 349 break; 350 case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break; 351 default: 352 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 353 toString(file)); 354 } 355 } 356 357 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk, 358 Defined *sym, 359 const coff_relocation &rel, 360 bool isMinGW) { 361 // Don't report these errors when the relocation comes from a debug info 362 // section or in mingw mode. MinGW mode object files (built by GCC) can 363 // have leftover sections with relocations against discarded comdat 364 // sections. Such sections are left as is, with relocations untouched. 365 if (fromChunk->isCodeView() || fromChunk->isDWARF() || isMinGW) 366 return; 367 368 // Get the name of the symbol. If it's null, it was discarded early, so we 369 // have to go back to the object file. 370 ObjFile *file = fromChunk->file; 371 StringRef name; 372 if (sym) { 373 name = sym->getName(); 374 } else { 375 COFFSymbolRef coffSym = 376 check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex)); 377 name = check(file->getCOFFObj()->getSymbolName(coffSym)); 378 } 379 380 std::vector<std::string> symbolLocations = 381 getSymbolLocations(file, rel.SymbolTableIndex); 382 383 std::string out; 384 llvm::raw_string_ostream os(out); 385 os << "relocation against symbol in discarded section: " + name; 386 for (const std::string &s : symbolLocations) 387 os << s; 388 error(os.str()); 389 } 390 391 void SectionChunk::writeTo(uint8_t *buf) const { 392 if (!hasData) 393 return; 394 // Copy section contents from source object file to output file. 395 ArrayRef<uint8_t> a = getContents(); 396 if (!a.empty()) 397 memcpy(buf, a.data(), a.size()); 398 399 // Apply relocations. 400 size_t inputSize = getSize(); 401 for (const coff_relocation &rel : getRelocs()) { 402 // Check for an invalid relocation offset. This check isn't perfect, because 403 // we don't have the relocation size, which is only known after checking the 404 // machine and relocation type. As a result, a relocation may overwrite the 405 // beginning of the following input section. 406 if (rel.VirtualAddress >= inputSize) { 407 error("relocation points beyond the end of its parent section"); 408 continue; 409 } 410 411 applyRelocation(buf + rel.VirtualAddress, rel); 412 } 413 } 414 415 void SectionChunk::applyRelocation(uint8_t *off, 416 const coff_relocation &rel) const { 417 auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 418 419 // Get the output section of the symbol for this relocation. The output 420 // section is needed to compute SECREL and SECTION relocations used in debug 421 // info. 422 Chunk *c = sym ? sym->getChunk() : nullptr; 423 OutputSection *os = c ? file->ctx.getOutputSection(c) : nullptr; 424 425 // Skip the relocation if it refers to a discarded section, and diagnose it 426 // as an error if appropriate. If a symbol was discarded early, it may be 427 // null. If it was discarded late, the output section will be null, unless 428 // it was an absolute or synthetic symbol. 429 if (!sym || 430 (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) { 431 maybeReportRelocationToDiscarded(this, sym, rel, file->ctx.config.mingw); 432 return; 433 } 434 435 uint64_t s = sym->getRVA(); 436 437 // Compute the RVA of the relocation for relative relocations. 438 uint64_t p = rva + rel.VirtualAddress; 439 uint64_t imageBase = file->ctx.config.imageBase; 440 switch (file->ctx.config.machine) { 441 case AMD64: 442 applyRelX64(off, rel.Type, os, s, p, imageBase); 443 break; 444 case I386: 445 applyRelX86(off, rel.Type, os, s, p, imageBase); 446 break; 447 case ARMNT: 448 applyRelARM(off, rel.Type, os, s, p, imageBase); 449 break; 450 case ARM64: 451 case ARM64EC: 452 case ARM64X: 453 applyRelARM64(off, rel.Type, os, s, p, imageBase); 454 break; 455 default: 456 llvm_unreachable("unknown machine type"); 457 } 458 } 459 460 // Defend against unsorted relocations. This may be overly conservative. 461 void SectionChunk::sortRelocations() { 462 auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) { 463 return l.VirtualAddress < r.VirtualAddress; 464 }; 465 if (llvm::is_sorted(getRelocs(), cmpByVa)) 466 return; 467 warn("some relocations in " + file->getName() + " are not sorted"); 468 MutableArrayRef<coff_relocation> newRelocs( 469 bAlloc().Allocate<coff_relocation>(relocsSize), relocsSize); 470 memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation)); 471 llvm::sort(newRelocs, cmpByVa); 472 setRelocs(newRelocs); 473 } 474 475 // Similar to writeTo, but suitable for relocating a subsection of the overall 476 // section. 477 void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec, 478 ArrayRef<uint8_t> subsec, 479 uint32_t &nextRelocIndex, 480 uint8_t *buf) const { 481 assert(!subsec.empty() && !sec.empty()); 482 assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() && 483 "subsection is not part of this section"); 484 size_t vaBegin = std::distance(sec.begin(), subsec.begin()); 485 size_t vaEnd = std::distance(sec.begin(), subsec.end()); 486 memcpy(buf, subsec.data(), subsec.size()); 487 for (; nextRelocIndex < relocsSize; ++nextRelocIndex) { 488 const coff_relocation &rel = relocsData[nextRelocIndex]; 489 // Only apply relocations that apply to this subsection. These checks 490 // assume that all subsections completely contain their relocations. 491 // Relocations must not straddle the beginning or end of a subsection. 492 if (rel.VirtualAddress < vaBegin) 493 continue; 494 if (rel.VirtualAddress + 1 >= vaEnd) 495 break; 496 applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel); 497 } 498 } 499 500 void SectionChunk::addAssociative(SectionChunk *child) { 501 // Insert the child section into the list of associated children. Keep the 502 // list ordered by section name so that ICF does not depend on section order. 503 assert(child->assocChildren == nullptr && 504 "associated sections cannot have their own associated children"); 505 SectionChunk *prev = this; 506 SectionChunk *next = assocChildren; 507 for (; next != nullptr; prev = next, next = next->assocChildren) { 508 if (next->getSectionName() <= child->getSectionName()) 509 break; 510 } 511 512 // Insert child between prev and next. 513 assert(prev->assocChildren == next); 514 prev->assocChildren = child; 515 child->assocChildren = next; 516 } 517 518 static uint8_t getBaserelType(const coff_relocation &rel, 519 llvm::COFF::MachineTypes machine) { 520 switch (machine) { 521 case AMD64: 522 if (rel.Type == IMAGE_REL_AMD64_ADDR64) 523 return IMAGE_REL_BASED_DIR64; 524 if (rel.Type == IMAGE_REL_AMD64_ADDR32) 525 return IMAGE_REL_BASED_HIGHLOW; 526 return IMAGE_REL_BASED_ABSOLUTE; 527 case I386: 528 if (rel.Type == IMAGE_REL_I386_DIR32) 529 return IMAGE_REL_BASED_HIGHLOW; 530 return IMAGE_REL_BASED_ABSOLUTE; 531 case ARMNT: 532 if (rel.Type == IMAGE_REL_ARM_ADDR32) 533 return IMAGE_REL_BASED_HIGHLOW; 534 if (rel.Type == IMAGE_REL_ARM_MOV32T) 535 return IMAGE_REL_BASED_ARM_MOV32T; 536 return IMAGE_REL_BASED_ABSOLUTE; 537 case ARM64: 538 case ARM64EC: 539 case ARM64X: 540 if (rel.Type == IMAGE_REL_ARM64_ADDR64) 541 return IMAGE_REL_BASED_DIR64; 542 return IMAGE_REL_BASED_ABSOLUTE; 543 default: 544 llvm_unreachable("unknown machine type"); 545 } 546 } 547 548 // Windows-specific. 549 // Collect all locations that contain absolute addresses, which need to be 550 // fixed by the loader if load-time relocation is needed. 551 // Only called when base relocation is enabled. 552 void SectionChunk::getBaserels(std::vector<Baserel> *res) { 553 for (const coff_relocation &rel : getRelocs()) { 554 uint8_t ty = getBaserelType(rel, file->ctx.config.machine); 555 if (ty == IMAGE_REL_BASED_ABSOLUTE) 556 continue; 557 Symbol *target = file->getSymbol(rel.SymbolTableIndex); 558 if (!target || isa<DefinedAbsolute>(target)) 559 continue; 560 res->emplace_back(rva + rel.VirtualAddress, ty); 561 } 562 } 563 564 // MinGW specific. 565 // Check whether a static relocation of type Type can be deferred and 566 // handled at runtime as a pseudo relocation (for references to a module 567 // local variable, which turned out to actually need to be imported from 568 // another DLL) This returns the size the relocation is supposed to update, 569 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo 570 // relocation. 571 static int getRuntimePseudoRelocSize(uint16_t type, 572 llvm::COFF::MachineTypes machine) { 573 // Relocations that either contain an absolute address, or a plain 574 // relative offset, since the runtime pseudo reloc implementation 575 // adds 8/16/32/64 bit values to a memory address. 576 // 577 // Given a pseudo relocation entry, 578 // 579 // typedef struct { 580 // DWORD sym; 581 // DWORD target; 582 // DWORD flags; 583 // } runtime_pseudo_reloc_item_v2; 584 // 585 // the runtime relocation performs this adjustment: 586 // *(base + .target) += *(base + .sym) - (base + .sym) 587 // 588 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64, 589 // IMAGE_REL_I386_DIR32, where the memory location initially contains 590 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32), 591 // where the memory location originally contains the relative offset to the 592 // IAT slot. 593 // 594 // This requires the target address to be writable, either directly out of 595 // the image, or temporarily changed at runtime with VirtualProtect. 596 // Since this only operates on direct address values, it doesn't work for 597 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations. 598 switch (machine) { 599 case AMD64: 600 switch (type) { 601 case IMAGE_REL_AMD64_ADDR64: 602 return 64; 603 case IMAGE_REL_AMD64_ADDR32: 604 case IMAGE_REL_AMD64_REL32: 605 case IMAGE_REL_AMD64_REL32_1: 606 case IMAGE_REL_AMD64_REL32_2: 607 case IMAGE_REL_AMD64_REL32_3: 608 case IMAGE_REL_AMD64_REL32_4: 609 case IMAGE_REL_AMD64_REL32_5: 610 return 32; 611 default: 612 return 0; 613 } 614 case I386: 615 switch (type) { 616 case IMAGE_REL_I386_DIR32: 617 case IMAGE_REL_I386_REL32: 618 return 32; 619 default: 620 return 0; 621 } 622 case ARMNT: 623 switch (type) { 624 case IMAGE_REL_ARM_ADDR32: 625 return 32; 626 default: 627 return 0; 628 } 629 case ARM64: 630 switch (type) { 631 case IMAGE_REL_ARM64_ADDR64: 632 return 64; 633 case IMAGE_REL_ARM64_ADDR32: 634 return 32; 635 default: 636 return 0; 637 } 638 default: 639 llvm_unreachable("unknown machine type"); 640 } 641 } 642 643 // MinGW specific. 644 // Append information to the provided vector about all relocations that 645 // need to be handled at runtime as runtime pseudo relocations (references 646 // to a module local variable, which turned out to actually need to be 647 // imported from another DLL). 648 void SectionChunk::getRuntimePseudoRelocs( 649 std::vector<RuntimePseudoReloc> &res) { 650 for (const coff_relocation &rel : getRelocs()) { 651 auto *target = 652 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 653 if (!target || !target->isRuntimePseudoReloc) 654 continue; 655 int sizeInBits = 656 getRuntimePseudoRelocSize(rel.Type, file->ctx.config.machine); 657 if (sizeInBits == 0) { 658 error("unable to automatically import from " + target->getName() + 659 " with relocation type " + 660 file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " + 661 toString(file)); 662 continue; 663 } 664 int addressSizeInBits = file->ctx.config.is64() ? 64 : 32; 665 if (sizeInBits < addressSizeInBits) { 666 warn("runtime pseudo relocation in " + toString(file) + " against " + 667 "symbol " + target->getName() + " is too narrow (only " + 668 Twine(sizeInBits) + " bits wide); this can fail at runtime " + 669 "depending on memory layout"); 670 } 671 // sizeInBits is used to initialize the Flags field; currently no 672 // other flags are defined. 673 res.emplace_back(target, this, rel.VirtualAddress, sizeInBits); 674 } 675 } 676 677 bool SectionChunk::isCOMDAT() const { 678 return header->Characteristics & IMAGE_SCN_LNK_COMDAT; 679 } 680 681 void SectionChunk::printDiscardedMessage() const { 682 // Removed by dead-stripping. If it's removed by ICF, ICF already 683 // printed out the name, so don't repeat that here. 684 if (sym && this == repl) 685 log("Discarded " + sym->getName()); 686 } 687 688 StringRef SectionChunk::getDebugName() const { 689 if (sym) 690 return sym->getName(); 691 return ""; 692 } 693 694 ArrayRef<uint8_t> SectionChunk::getContents() const { 695 ArrayRef<uint8_t> a; 696 cantFail(file->getCOFFObj()->getSectionContents(header, a)); 697 return a; 698 } 699 700 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() { 701 assert(isCodeView()); 702 return consumeDebugMagic(getContents(), getSectionName()); 703 } 704 705 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data, 706 StringRef sectionName) { 707 if (data.empty()) 708 return {}; 709 710 // First 4 bytes are section magic. 711 if (data.size() < 4) 712 fatal("the section is too short: " + sectionName); 713 714 if (!sectionName.starts_with(".debug$")) 715 fatal("invalid section: " + sectionName); 716 717 uint32_t magic = support::endian::read32le(data.data()); 718 uint32_t expectedMagic = sectionName == ".debug$H" 719 ? DEBUG_HASHES_SECTION_MAGIC 720 : DEBUG_SECTION_MAGIC; 721 if (magic != expectedMagic) { 722 warn("ignoring section " + sectionName + " with unrecognized magic 0x" + 723 utohexstr(magic)); 724 return {}; 725 } 726 return data.slice(4); 727 } 728 729 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections, 730 StringRef name) { 731 for (SectionChunk *c : sections) 732 if (c->getSectionName() == name) 733 return c; 734 return nullptr; 735 } 736 737 void SectionChunk::replace(SectionChunk *other) { 738 p2Align = std::max(p2Align, other->p2Align); 739 other->repl = repl; 740 other->live = false; 741 } 742 743 uint32_t SectionChunk::getSectionNumber() const { 744 DataRefImpl r; 745 r.p = reinterpret_cast<uintptr_t>(header); 746 SectionRef s(r, file->getCOFFObj()); 747 return s.getIndex() + 1; 748 } 749 750 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) { 751 // The value of a common symbol is its size. Align all common symbols smaller 752 // than 32 bytes naturally, i.e. round the size up to the next power of two. 753 // This is what MSVC link.exe does. 754 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue())))); 755 hasData = false; 756 } 757 758 uint32_t CommonChunk::getOutputCharacteristics() const { 759 return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | 760 IMAGE_SCN_MEM_WRITE; 761 } 762 763 void StringChunk::writeTo(uint8_t *buf) const { 764 memcpy(buf, str.data(), str.size()); 765 buf[str.size()] = '\0'; 766 } 767 768 ImportThunkChunkX64::ImportThunkChunkX64(COFFLinkerContext &ctx, Defined *s) 769 : ImportThunkChunk(ctx, s) { 770 // Intel Optimization Manual says that all branch targets 771 // should be 16-byte aligned. MSVC linker does this too. 772 setAlignment(16); 773 } 774 775 void ImportThunkChunkX64::writeTo(uint8_t *buf) const { 776 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 777 // The first two bytes is a JMP instruction. Fill its operand. 778 write32le(buf + 2, impSymbol->getRVA() - rva - getSize()); 779 } 780 781 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) { 782 res->emplace_back(getRVA() + 2, ctx.config.machine); 783 } 784 785 void ImportThunkChunkX86::writeTo(uint8_t *buf) const { 786 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 787 // The first two bytes is a JMP instruction. Fill its operand. 788 write32le(buf + 2, impSymbol->getRVA() + ctx.config.imageBase); 789 } 790 791 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) { 792 res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); 793 } 794 795 void ImportThunkChunkARM::writeTo(uint8_t *buf) const { 796 memcpy(buf, importThunkARM, sizeof(importThunkARM)); 797 // Fix mov.w and mov.t operands. 798 applyMOV32T(buf, impSymbol->getRVA() + ctx.config.imageBase); 799 } 800 801 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const { 802 int64_t off = impSymbol->getRVA() & 0xfff; 803 memcpy(buf, importThunkARM64, sizeof(importThunkARM64)); 804 applyArm64Addr(buf, impSymbol->getRVA(), rva, 12); 805 applyArm64Ldr(buf + 4, off); 806 } 807 808 // A Thumb2, PIC, non-interworking range extension thunk. 809 const uint8_t armThunk[] = { 810 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) 811 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) 812 0xe7, 0x44, // L1: add pc, ip 813 }; 814 815 size_t RangeExtensionThunkARM::getSize() const { 816 assert(ctx.config.machine == ARMNT); 817 (void)&ctx; 818 return sizeof(armThunk); 819 } 820 821 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const { 822 assert(ctx.config.machine == ARMNT); 823 uint64_t offset = target->getRVA() - rva - 12; 824 memcpy(buf, armThunk, sizeof(armThunk)); 825 applyMOV32T(buf, uint32_t(offset)); 826 } 827 828 // A position independent ARM64 adrp+add thunk, with a maximum range of 829 // +/- 4 GB, which is enough for any PE-COFF. 830 const uint8_t arm64Thunk[] = { 831 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest 832 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest 833 0x00, 0x02, 0x1f, 0xd6, // br x16 834 }; 835 836 size_t RangeExtensionThunkARM64::getSize() const { 837 assert(ctx.config.machine == ARM64); 838 (void)&ctx; 839 return sizeof(arm64Thunk); 840 } 841 842 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const { 843 assert(ctx.config.machine == ARM64); 844 memcpy(buf, arm64Thunk, sizeof(arm64Thunk)); 845 applyArm64Addr(buf + 0, target->getRVA(), rva, 12); 846 applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0); 847 } 848 849 LocalImportChunk::LocalImportChunk(COFFLinkerContext &c, Defined *s) 850 : sym(s), ctx(c) { 851 setAlignment(ctx.config.wordsize); 852 } 853 854 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) { 855 res->emplace_back(getRVA(), ctx.config.machine); 856 } 857 858 size_t LocalImportChunk::getSize() const { return ctx.config.wordsize; } 859 860 void LocalImportChunk::writeTo(uint8_t *buf) const { 861 if (ctx.config.is64()) { 862 write64le(buf, sym->getRVA() + ctx.config.imageBase); 863 } else { 864 write32le(buf, sym->getRVA() + ctx.config.imageBase); 865 } 866 } 867 868 void RVATableChunk::writeTo(uint8_t *buf) const { 869 ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf); 870 size_t cnt = 0; 871 for (const ChunkAndOffset &co : syms) 872 begin[cnt++] = co.inputChunk->getRVA() + co.offset; 873 llvm::sort(begin, begin + cnt); 874 assert(std::unique(begin, begin + cnt) == begin + cnt && 875 "RVA tables should be de-duplicated"); 876 } 877 878 void RVAFlagTableChunk::writeTo(uint8_t *buf) const { 879 struct RVAFlag { 880 ulittle32_t rva; 881 uint8_t flag; 882 }; 883 auto flags = 884 MutableArrayRef(reinterpret_cast<RVAFlag *>(buf), syms.size()); 885 for (auto t : zip(syms, flags)) { 886 const auto &sym = std::get<0>(t); 887 auto &flag = std::get<1>(t); 888 flag.rva = sym.inputChunk->getRVA() + sym.offset; 889 flag.flag = 0; 890 } 891 llvm::sort(flags, 892 [](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; }); 893 assert(llvm::unique(flags, [](const RVAFlag &a, 894 const RVAFlag &b) { return a.rva == b.rva; }) == 895 flags.end() && 896 "RVA tables should be de-duplicated"); 897 } 898 899 // MinGW specific, for the "automatic import of variables from DLLs" feature. 900 size_t PseudoRelocTableChunk::getSize() const { 901 if (relocs.empty()) 902 return 0; 903 return 12 + 12 * relocs.size(); 904 } 905 906 // MinGW specific. 907 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const { 908 if (relocs.empty()) 909 return; 910 911 ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf); 912 // This is the list header, to signal the runtime pseudo relocation v2 913 // format. 914 table[0] = 0; 915 table[1] = 0; 916 table[2] = 1; 917 918 size_t idx = 3; 919 for (const RuntimePseudoReloc &rpr : relocs) { 920 table[idx + 0] = rpr.sym->getRVA(); 921 table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset; 922 table[idx + 2] = rpr.flags; 923 idx += 3; 924 } 925 } 926 927 // Windows-specific. This class represents a block in .reloc section. 928 // The format is described here. 929 // 930 // On Windows, each DLL is linked against a fixed base address and 931 // usually loaded to that address. However, if there's already another 932 // DLL that overlaps, the loader has to relocate it. To do that, DLLs 933 // contain .reloc sections which contain offsets that need to be fixed 934 // up at runtime. If the loader finds that a DLL cannot be loaded to its 935 // desired base address, it loads it to somewhere else, and add <actual 936 // base address> - <desired base address> to each offset that is 937 // specified by the .reloc section. In ELF terms, .reloc sections 938 // contain relative relocations in REL format (as opposed to RELA.) 939 // 940 // This already significantly reduces the size of relocations compared 941 // to ELF .rel.dyn, but Windows does more to reduce it (probably because 942 // it was invented for PCs in the late '80s or early '90s.) Offsets in 943 // .reloc are grouped by page where the page size is 12 bits, and 944 // offsets sharing the same page address are stored consecutively to 945 // represent them with less space. This is very similar to the page 946 // table which is grouped by (multiple stages of) pages. 947 // 948 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, 949 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 950 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they 951 // are represented like this: 952 // 953 // 0x00000 -- page address (4 bytes) 954 // 16 -- size of this block (4 bytes) 955 // 0xA030 -- entries (2 bytes each) 956 // 0xA500 957 // 0xA700 958 // 0xAA00 959 // 0x20000 -- page address (4 bytes) 960 // 12 -- size of this block (4 bytes) 961 // 0xA004 -- entries (2 bytes each) 962 // 0xA008 963 // 964 // Usually we have a lot of relocations for each page, so the number of 965 // bytes for one .reloc entry is close to 2 bytes on average. 966 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) { 967 // Block header consists of 4 byte page RVA and 4 byte block size. 968 // Each entry is 2 byte. Last entry may be padding. 969 data.resize(alignTo((end - begin) * 2 + 8, 4)); 970 uint8_t *p = data.data(); 971 write32le(p, page); 972 write32le(p + 4, data.size()); 973 p += 8; 974 for (Baserel *i = begin; i != end; ++i) { 975 write16le(p, (i->type << 12) | (i->rva - page)); 976 p += 2; 977 } 978 } 979 980 void BaserelChunk::writeTo(uint8_t *buf) const { 981 memcpy(buf, data.data(), data.size()); 982 } 983 984 uint8_t Baserel::getDefaultType(llvm::COFF::MachineTypes machine) { 985 switch (machine) { 986 case AMD64: 987 case ARM64: 988 return IMAGE_REL_BASED_DIR64; 989 case I386: 990 case ARMNT: 991 return IMAGE_REL_BASED_HIGHLOW; 992 default: 993 llvm_unreachable("unknown machine type"); 994 } 995 } 996 997 MergeChunk::MergeChunk(uint32_t alignment) 998 : builder(StringTableBuilder::RAW, llvm::Align(alignment)) { 999 setAlignment(alignment); 1000 } 1001 1002 void MergeChunk::addSection(COFFLinkerContext &ctx, SectionChunk *c) { 1003 assert(isPowerOf2_32(c->getAlignment())); 1004 uint8_t p2Align = llvm::Log2_32(c->getAlignment()); 1005 assert(p2Align < std::size(ctx.mergeChunkInstances)); 1006 auto *&mc = ctx.mergeChunkInstances[p2Align]; 1007 if (!mc) 1008 mc = make<MergeChunk>(c->getAlignment()); 1009 mc->sections.push_back(c); 1010 } 1011 1012 void MergeChunk::finalizeContents() { 1013 assert(!finalized && "should only finalize once"); 1014 for (SectionChunk *c : sections) 1015 if (c->live) 1016 builder.add(toStringRef(c->getContents())); 1017 builder.finalize(); 1018 finalized = true; 1019 } 1020 1021 void MergeChunk::assignSubsectionRVAs() { 1022 for (SectionChunk *c : sections) { 1023 if (!c->live) 1024 continue; 1025 size_t off = builder.getOffset(toStringRef(c->getContents())); 1026 c->setRVA(rva + off); 1027 } 1028 } 1029 1030 uint32_t MergeChunk::getOutputCharacteristics() const { 1031 return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; 1032 } 1033 1034 size_t MergeChunk::getSize() const { 1035 return builder.getSize(); 1036 } 1037 1038 void MergeChunk::writeTo(uint8_t *buf) const { 1039 builder.write(buf); 1040 } 1041 1042 // MinGW specific. 1043 size_t AbsolutePointerChunk::getSize() const { return ctx.config.wordsize; } 1044 1045 void AbsolutePointerChunk::writeTo(uint8_t *buf) const { 1046 if (ctx.config.is64()) { 1047 write64le(buf, value); 1048 } else { 1049 write32le(buf, value); 1050 } 1051 } 1052 1053 } // namespace lld::coff 1054