xref: /freebsd/contrib/llvm-project/lld/COFF/Chunks.cpp (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 //===- Chunks.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Chunks.h"
10 #include "COFFLinkerContext.h"
11 #include "InputFiles.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "Writer.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/BinaryFormat/COFF.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <algorithm>
23 #include <iterator>
24 
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
28 using namespace llvm::COFF;
29 using llvm::support::ulittle32_t;
30 
31 namespace lld::coff {
32 
33 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h)
34     : Chunk(SectionKind), file(f), header(h), repl(this) {
35   // Initialize relocs.
36   if (file)
37     setRelocs(file->getCOFFObj()->getRelocations(header));
38 
39   // Initialize sectionName.
40   StringRef sectionName;
41   if (file) {
42     if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header))
43       sectionName = *e;
44   }
45   sectionNameData = sectionName.data();
46   sectionNameSize = sectionName.size();
47 
48   setAlignment(header->getAlignment());
49 
50   hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);
51 
52   // If linker GC is disabled, every chunk starts out alive.  If linker GC is
53   // enabled, treat non-comdat sections as roots. Generally optimized object
54   // files will be built with -ffunction-sections or /Gy, so most things worth
55   // stripping will be in a comdat.
56   if (file)
57     live = !file->ctx.config.doGC || !isCOMDAT();
58   else
59     live = true;
60 }
61 
62 // SectionChunk is one of the most frequently allocated classes, so it is
63 // important to keep it as compact as possible. As of this writing, the number
64 // below is the size of this class on x64 platforms.
65 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly");
66 
67 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); }
68 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); }
69 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); }
70 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); }
71 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); }
72 
73 // Verify that given sections are appropriate targets for SECREL
74 // relocations. This check is relaxed because unfortunately debug
75 // sections have section-relative relocations against absolute symbols.
76 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) {
77   if (os)
78     return true;
79   if (sec->isCodeView())
80     return false;
81   error("SECREL relocation cannot be applied to absolute symbols");
82   return false;
83 }
84 
85 static void applySecRel(const SectionChunk *sec, uint8_t *off,
86                         OutputSection *os, uint64_t s) {
87   if (!checkSecRel(sec, os))
88     return;
89   uint64_t secRel = s - os->getRVA();
90   if (secRel > UINT32_MAX) {
91     error("overflow in SECREL relocation in section: " + sec->getSectionName());
92     return;
93   }
94   add32(off, secRel);
95 }
96 
97 static void applySecIdx(uint8_t *off, OutputSection *os,
98                         unsigned numOutputSections) {
99   // numOutputSections is the largest valid section index. Make sure that
100   // it fits in 16 bits.
101   assert(numOutputSections <= 0xffff && "size of outputSections is too big");
102 
103   // Absolute symbol doesn't have section index, but section index relocation
104   // against absolute symbol should be resolved to one plus the last output
105   // section index. This is required for compatibility with MSVC.
106   if (os)
107     add16(off, os->sectionIndex);
108   else
109     add16(off, numOutputSections + 1);
110 }
111 
112 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os,
113                                uint64_t s, uint64_t p,
114                                uint64_t imageBase) const {
115   switch (type) {
116   case IMAGE_REL_AMD64_ADDR32:
117     add32(off, s + imageBase);
118     break;
119   case IMAGE_REL_AMD64_ADDR64:
120     add64(off, s + imageBase);
121     break;
122   case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break;
123   case IMAGE_REL_AMD64_REL32:    add32(off, s - p - 4); break;
124   case IMAGE_REL_AMD64_REL32_1:  add32(off, s - p - 5); break;
125   case IMAGE_REL_AMD64_REL32_2:  add32(off, s - p - 6); break;
126   case IMAGE_REL_AMD64_REL32_3:  add32(off, s - p - 7); break;
127   case IMAGE_REL_AMD64_REL32_4:  add32(off, s - p - 8); break;
128   case IMAGE_REL_AMD64_REL32_5:  add32(off, s - p - 9); break;
129   case IMAGE_REL_AMD64_SECTION:
130     applySecIdx(off, os, file->ctx.outputSections.size());
131     break;
132   case IMAGE_REL_AMD64_SECREL:   applySecRel(this, off, os, s); break;
133   default:
134     error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
135           toString(file));
136   }
137 }
138 
139 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os,
140                                uint64_t s, uint64_t p,
141                                uint64_t imageBase) const {
142   switch (type) {
143   case IMAGE_REL_I386_ABSOLUTE: break;
144   case IMAGE_REL_I386_DIR32:
145     add32(off, s + imageBase);
146     break;
147   case IMAGE_REL_I386_DIR32NB:  add32(off, s); break;
148   case IMAGE_REL_I386_REL32:    add32(off, s - p - 4); break;
149   case IMAGE_REL_I386_SECTION:
150     applySecIdx(off, os, file->ctx.outputSections.size());
151     break;
152   case IMAGE_REL_I386_SECREL:   applySecRel(this, off, os, s); break;
153   default:
154     error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
155           toString(file));
156   }
157 }
158 
159 static void applyMOV(uint8_t *off, uint16_t v) {
160   write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf));
161   write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff));
162 }
163 
164 static uint16_t readMOV(uint8_t *off, bool movt) {
165   uint16_t op1 = read16le(off);
166   if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240))
167     error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
168           " instruction in MOV32T relocation");
169   uint16_t op2 = read16le(off + 2);
170   if ((op2 & 0x8000) != 0)
171     error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
172           " instruction in MOV32T relocation");
173   return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) |
174          ((op1 & 0x000f) << 12);
175 }
176 
177 void applyMOV32T(uint8_t *off, uint32_t v) {
178   uint16_t immW = readMOV(off, false);    // read MOVW operand
179   uint16_t immT = readMOV(off + 4, true); // read MOVT operand
180   uint32_t imm = immW | (immT << 16);
181   v += imm;                         // add the immediate offset
182   applyMOV(off, v);           // set MOVW operand
183   applyMOV(off + 4, v >> 16); // set MOVT operand
184 }
185 
186 static void applyBranch20T(uint8_t *off, int32_t v) {
187   if (!isInt<21>(v))
188     error("relocation out of range");
189   uint32_t s = v < 0 ? 1 : 0;
190   uint32_t j1 = (v >> 19) & 1;
191   uint32_t j2 = (v >> 18) & 1;
192   or16(off, (s << 10) | ((v >> 12) & 0x3f));
193   or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
194 }
195 
196 void applyBranch24T(uint8_t *off, int32_t v) {
197   if (!isInt<25>(v))
198     error("relocation out of range");
199   uint32_t s = v < 0 ? 1 : 0;
200   uint32_t j1 = ((~v >> 23) & 1) ^ s;
201   uint32_t j2 = ((~v >> 22) & 1) ^ s;
202   or16(off, (s << 10) | ((v >> 12) & 0x3ff));
203   // Clear out the J1 and J2 bits which may be set.
204   write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
205 }
206 
207 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os,
208                                uint64_t s, uint64_t p,
209                                uint64_t imageBase) const {
210   // Pointer to thumb code must have the LSB set.
211   uint64_t sx = s;
212   if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE))
213     sx |= 1;
214   switch (type) {
215   case IMAGE_REL_ARM_ADDR32:
216     add32(off, sx + imageBase);
217     break;
218   case IMAGE_REL_ARM_ADDR32NB:  add32(off, sx); break;
219   case IMAGE_REL_ARM_MOV32T:
220     applyMOV32T(off, sx + imageBase);
221     break;
222   case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break;
223   case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break;
224   case IMAGE_REL_ARM_BLX23T:    applyBranch24T(off, sx - p - 4); break;
225   case IMAGE_REL_ARM_SECTION:
226     applySecIdx(off, os, file->ctx.outputSections.size());
227     break;
228   case IMAGE_REL_ARM_SECREL:    applySecRel(this, off, os, s); break;
229   case IMAGE_REL_ARM_REL32:     add32(off, sx - p - 4); break;
230   default:
231     error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
232           toString(file));
233   }
234 }
235 
236 // Interpret the existing immediate value as a byte offset to the
237 // target symbol, then update the instruction with the immediate as
238 // the page offset from the current instruction to the target.
239 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) {
240   uint32_t orig = read32le(off);
241   int64_t imm =
242       SignExtend64<21>(((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC));
243   s += imm;
244   imm = (s >> shift) - (p >> shift);
245   uint32_t immLo = (imm & 0x3) << 29;
246   uint32_t immHi = (imm & 0x1FFFFC) << 3;
247   uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
248   write32le(off, (orig & ~mask) | immLo | immHi);
249 }
250 
251 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
252 // Optionally limit the range of the written immediate by one or more bits
253 // (rangeLimit).
254 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) {
255   uint32_t orig = read32le(off);
256   imm += (orig >> 10) & 0xFFF;
257   orig &= ~(0xFFF << 10);
258   write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10));
259 }
260 
261 // Add the 12 bit page offset to the existing immediate.
262 // Ldr/str instructions store the opcode immediate scaled
263 // by the load/store size (giving a larger range for larger
264 // loads/stores). The immediate is always (both before and after
265 // fixing up the relocation) stored scaled similarly.
266 // Even if larger loads/stores have a larger range, limit the
267 // effective offset to 12 bit, since it is intended to be a
268 // page offset.
269 static void applyArm64Ldr(uint8_t *off, uint64_t imm) {
270   uint32_t orig = read32le(off);
271   uint32_t size = orig >> 30;
272   // 0x04000000 indicates SIMD/FP registers
273   // 0x00800000 indicates 128 bit
274   if ((orig & 0x4800000) == 0x4800000)
275     size += 4;
276   if ((imm & ((1 << size) - 1)) != 0)
277     error("misaligned ldr/str offset");
278   applyArm64Imm(off, imm >> size, size);
279 }
280 
281 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off,
282                               OutputSection *os, uint64_t s) {
283   if (checkSecRel(sec, os))
284     applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0);
285 }
286 
287 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off,
288                                OutputSection *os, uint64_t s) {
289   if (!checkSecRel(sec, os))
290     return;
291   uint64_t secRel = (s - os->getRVA()) >> 12;
292   if (0xfff < secRel) {
293     error("overflow in SECREL_HIGH12A relocation in section: " +
294           sec->getSectionName());
295     return;
296   }
297   applyArm64Imm(off, secRel & 0xfff, 0);
298 }
299 
300 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off,
301                            OutputSection *os, uint64_t s) {
302   if (checkSecRel(sec, os))
303     applyArm64Ldr(off, (s - os->getRVA()) & 0xfff);
304 }
305 
306 void applyArm64Branch26(uint8_t *off, int64_t v) {
307   if (!isInt<28>(v))
308     error("relocation out of range");
309   or32(off, (v & 0x0FFFFFFC) >> 2);
310 }
311 
312 static void applyArm64Branch19(uint8_t *off, int64_t v) {
313   if (!isInt<21>(v))
314     error("relocation out of range");
315   or32(off, (v & 0x001FFFFC) << 3);
316 }
317 
318 static void applyArm64Branch14(uint8_t *off, int64_t v) {
319   if (!isInt<16>(v))
320     error("relocation out of range");
321   or32(off, (v & 0x0000FFFC) << 3);
322 }
323 
324 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os,
325                                  uint64_t s, uint64_t p,
326                                  uint64_t imageBase) const {
327   switch (type) {
328   case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break;
329   case IMAGE_REL_ARM64_REL21:          applyArm64Addr(off, s, p, 0); break;
330   case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break;
331   case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break;
332   case IMAGE_REL_ARM64_BRANCH26:       applyArm64Branch26(off, s - p); break;
333   case IMAGE_REL_ARM64_BRANCH19:       applyArm64Branch19(off, s - p); break;
334   case IMAGE_REL_ARM64_BRANCH14:       applyArm64Branch14(off, s - p); break;
335   case IMAGE_REL_ARM64_ADDR32:
336     add32(off, s + imageBase);
337     break;
338   case IMAGE_REL_ARM64_ADDR32NB:       add32(off, s); break;
339   case IMAGE_REL_ARM64_ADDR64:
340     add64(off, s + imageBase);
341     break;
342   case IMAGE_REL_ARM64_SECREL:         applySecRel(this, off, os, s); break;
343   case IMAGE_REL_ARM64_SECREL_LOW12A:  applySecRelLow12A(this, off, os, s); break;
344   case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break;
345   case IMAGE_REL_ARM64_SECREL_LOW12L:  applySecRelLdr(this, off, os, s); break;
346   case IMAGE_REL_ARM64_SECTION:
347     applySecIdx(off, os, file->ctx.outputSections.size());
348     break;
349   case IMAGE_REL_ARM64_REL32:          add32(off, s - p - 4); break;
350   default:
351     error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
352           toString(file));
353   }
354 }
355 
356 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk,
357                                              Defined *sym,
358                                              const coff_relocation &rel,
359                                              bool isMinGW) {
360   // Don't report these errors when the relocation comes from a debug info
361   // section or in mingw mode. MinGW mode object files (built by GCC) can
362   // have leftover sections with relocations against discarded comdat
363   // sections. Such sections are left as is, with relocations untouched.
364   if (fromChunk->isCodeView() || fromChunk->isDWARF() || isMinGW)
365     return;
366 
367   // Get the name of the symbol. If it's null, it was discarded early, so we
368   // have to go back to the object file.
369   ObjFile *file = fromChunk->file;
370   StringRef name;
371   if (sym) {
372     name = sym->getName();
373   } else {
374     COFFSymbolRef coffSym =
375         check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex));
376     name = check(file->getCOFFObj()->getSymbolName(coffSym));
377   }
378 
379   std::vector<std::string> symbolLocations =
380       getSymbolLocations(file, rel.SymbolTableIndex);
381 
382   std::string out;
383   llvm::raw_string_ostream os(out);
384   os << "relocation against symbol in discarded section: " + name;
385   for (const std::string &s : symbolLocations)
386     os << s;
387   error(os.str());
388 }
389 
390 void SectionChunk::writeTo(uint8_t *buf) const {
391   if (!hasData)
392     return;
393   // Copy section contents from source object file to output file.
394   ArrayRef<uint8_t> a = getContents();
395   if (!a.empty())
396     memcpy(buf, a.data(), a.size());
397 
398   // Apply relocations.
399   size_t inputSize = getSize();
400   for (const coff_relocation &rel : getRelocs()) {
401     // Check for an invalid relocation offset. This check isn't perfect, because
402     // we don't have the relocation size, which is only known after checking the
403     // machine and relocation type. As a result, a relocation may overwrite the
404     // beginning of the following input section.
405     if (rel.VirtualAddress >= inputSize) {
406       error("relocation points beyond the end of its parent section");
407       continue;
408     }
409 
410     applyRelocation(buf + rel.VirtualAddress, rel);
411   }
412 }
413 
414 void SectionChunk::applyRelocation(uint8_t *off,
415                                    const coff_relocation &rel) const {
416   auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
417 
418   // Get the output section of the symbol for this relocation.  The output
419   // section is needed to compute SECREL and SECTION relocations used in debug
420   // info.
421   Chunk *c = sym ? sym->getChunk() : nullptr;
422   OutputSection *os = c ? file->ctx.getOutputSection(c) : nullptr;
423 
424   // Skip the relocation if it refers to a discarded section, and diagnose it
425   // as an error if appropriate. If a symbol was discarded early, it may be
426   // null. If it was discarded late, the output section will be null, unless
427   // it was an absolute or synthetic symbol.
428   if (!sym ||
429       (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) {
430     maybeReportRelocationToDiscarded(this, sym, rel, file->ctx.config.mingw);
431     return;
432   }
433 
434   uint64_t s = sym->getRVA();
435 
436   // Compute the RVA of the relocation for relative relocations.
437   uint64_t p = rva + rel.VirtualAddress;
438   uint64_t imageBase = file->ctx.config.imageBase;
439   switch (file->ctx.config.machine) {
440   case AMD64:
441     applyRelX64(off, rel.Type, os, s, p, imageBase);
442     break;
443   case I386:
444     applyRelX86(off, rel.Type, os, s, p, imageBase);
445     break;
446   case ARMNT:
447     applyRelARM(off, rel.Type, os, s, p, imageBase);
448     break;
449   case ARM64:
450     applyRelARM64(off, rel.Type, os, s, p, imageBase);
451     break;
452   default:
453     llvm_unreachable("unknown machine type");
454   }
455 }
456 
457 // Defend against unsorted relocations. This may be overly conservative.
458 void SectionChunk::sortRelocations() {
459   auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) {
460     return l.VirtualAddress < r.VirtualAddress;
461   };
462   if (llvm::is_sorted(getRelocs(), cmpByVa))
463     return;
464   warn("some relocations in " + file->getName() + " are not sorted");
465   MutableArrayRef<coff_relocation> newRelocs(
466       bAlloc().Allocate<coff_relocation>(relocsSize), relocsSize);
467   memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation));
468   llvm::sort(newRelocs, cmpByVa);
469   setRelocs(newRelocs);
470 }
471 
472 // Similar to writeTo, but suitable for relocating a subsection of the overall
473 // section.
474 void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec,
475                                               ArrayRef<uint8_t> subsec,
476                                               uint32_t &nextRelocIndex,
477                                               uint8_t *buf) const {
478   assert(!subsec.empty() && !sec.empty());
479   assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() &&
480          "subsection is not part of this section");
481   size_t vaBegin = std::distance(sec.begin(), subsec.begin());
482   size_t vaEnd = std::distance(sec.begin(), subsec.end());
483   memcpy(buf, subsec.data(), subsec.size());
484   for (; nextRelocIndex < relocsSize; ++nextRelocIndex) {
485     const coff_relocation &rel = relocsData[nextRelocIndex];
486     // Only apply relocations that apply to this subsection. These checks
487     // assume that all subsections completely contain their relocations.
488     // Relocations must not straddle the beginning or end of a subsection.
489     if (rel.VirtualAddress < vaBegin)
490       continue;
491     if (rel.VirtualAddress + 1 >= vaEnd)
492       break;
493     applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel);
494   }
495 }
496 
497 void SectionChunk::addAssociative(SectionChunk *child) {
498   // Insert the child section into the list of associated children. Keep the
499   // list ordered by section name so that ICF does not depend on section order.
500   assert(child->assocChildren == nullptr &&
501          "associated sections cannot have their own associated children");
502   SectionChunk *prev = this;
503   SectionChunk *next = assocChildren;
504   for (; next != nullptr; prev = next, next = next->assocChildren) {
505     if (next->getSectionName() <= child->getSectionName())
506       break;
507   }
508 
509   // Insert child between prev and next.
510   assert(prev->assocChildren == next);
511   prev->assocChildren = child;
512   child->assocChildren = next;
513 }
514 
515 static uint8_t getBaserelType(const coff_relocation &rel,
516                               llvm::COFF::MachineTypes machine) {
517   switch (machine) {
518   case AMD64:
519     if (rel.Type == IMAGE_REL_AMD64_ADDR64)
520       return IMAGE_REL_BASED_DIR64;
521     if (rel.Type == IMAGE_REL_AMD64_ADDR32)
522       return IMAGE_REL_BASED_HIGHLOW;
523     return IMAGE_REL_BASED_ABSOLUTE;
524   case I386:
525     if (rel.Type == IMAGE_REL_I386_DIR32)
526       return IMAGE_REL_BASED_HIGHLOW;
527     return IMAGE_REL_BASED_ABSOLUTE;
528   case ARMNT:
529     if (rel.Type == IMAGE_REL_ARM_ADDR32)
530       return IMAGE_REL_BASED_HIGHLOW;
531     if (rel.Type == IMAGE_REL_ARM_MOV32T)
532       return IMAGE_REL_BASED_ARM_MOV32T;
533     return IMAGE_REL_BASED_ABSOLUTE;
534   case ARM64:
535     if (rel.Type == IMAGE_REL_ARM64_ADDR64)
536       return IMAGE_REL_BASED_DIR64;
537     return IMAGE_REL_BASED_ABSOLUTE;
538   default:
539     llvm_unreachable("unknown machine type");
540   }
541 }
542 
543 // Windows-specific.
544 // Collect all locations that contain absolute addresses, which need to be
545 // fixed by the loader if load-time relocation is needed.
546 // Only called when base relocation is enabled.
547 void SectionChunk::getBaserels(std::vector<Baserel> *res) {
548   for (const coff_relocation &rel : getRelocs()) {
549     uint8_t ty = getBaserelType(rel, file->ctx.config.machine);
550     if (ty == IMAGE_REL_BASED_ABSOLUTE)
551       continue;
552     Symbol *target = file->getSymbol(rel.SymbolTableIndex);
553     if (!target || isa<DefinedAbsolute>(target))
554       continue;
555     res->emplace_back(rva + rel.VirtualAddress, ty);
556   }
557 }
558 
559 // MinGW specific.
560 // Check whether a static relocation of type Type can be deferred and
561 // handled at runtime as a pseudo relocation (for references to a module
562 // local variable, which turned out to actually need to be imported from
563 // another DLL) This returns the size the relocation is supposed to update,
564 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo
565 // relocation.
566 static int getRuntimePseudoRelocSize(uint16_t type,
567                                      llvm::COFF::MachineTypes machine) {
568   // Relocations that either contain an absolute address, or a plain
569   // relative offset, since the runtime pseudo reloc implementation
570   // adds 8/16/32/64 bit values to a memory address.
571   //
572   // Given a pseudo relocation entry,
573   //
574   // typedef struct {
575   //   DWORD sym;
576   //   DWORD target;
577   //   DWORD flags;
578   // } runtime_pseudo_reloc_item_v2;
579   //
580   // the runtime relocation performs this adjustment:
581   //     *(base + .target) += *(base + .sym) - (base + .sym)
582   //
583   // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64,
584   // IMAGE_REL_I386_DIR32, where the memory location initially contains
585   // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32),
586   // where the memory location originally contains the relative offset to the
587   // IAT slot.
588   //
589   // This requires the target address to be writable, either directly out of
590   // the image, or temporarily changed at runtime with VirtualProtect.
591   // Since this only operates on direct address values, it doesn't work for
592   // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations.
593   switch (machine) {
594   case AMD64:
595     switch (type) {
596     case IMAGE_REL_AMD64_ADDR64:
597       return 64;
598     case IMAGE_REL_AMD64_ADDR32:
599     case IMAGE_REL_AMD64_REL32:
600     case IMAGE_REL_AMD64_REL32_1:
601     case IMAGE_REL_AMD64_REL32_2:
602     case IMAGE_REL_AMD64_REL32_3:
603     case IMAGE_REL_AMD64_REL32_4:
604     case IMAGE_REL_AMD64_REL32_5:
605       return 32;
606     default:
607       return 0;
608     }
609   case I386:
610     switch (type) {
611     case IMAGE_REL_I386_DIR32:
612     case IMAGE_REL_I386_REL32:
613       return 32;
614     default:
615       return 0;
616     }
617   case ARMNT:
618     switch (type) {
619     case IMAGE_REL_ARM_ADDR32:
620       return 32;
621     default:
622       return 0;
623     }
624   case ARM64:
625     switch (type) {
626     case IMAGE_REL_ARM64_ADDR64:
627       return 64;
628     case IMAGE_REL_ARM64_ADDR32:
629       return 32;
630     default:
631       return 0;
632     }
633   default:
634     llvm_unreachable("unknown machine type");
635   }
636 }
637 
638 // MinGW specific.
639 // Append information to the provided vector about all relocations that
640 // need to be handled at runtime as runtime pseudo relocations (references
641 // to a module local variable, which turned out to actually need to be
642 // imported from another DLL).
643 void SectionChunk::getRuntimePseudoRelocs(
644     std::vector<RuntimePseudoReloc> &res) {
645   for (const coff_relocation &rel : getRelocs()) {
646     auto *target =
647         dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
648     if (!target || !target->isRuntimePseudoReloc)
649       continue;
650     int sizeInBits =
651         getRuntimePseudoRelocSize(rel.Type, file->ctx.config.machine);
652     if (sizeInBits == 0) {
653       error("unable to automatically import from " + target->getName() +
654             " with relocation type " +
655             file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " +
656             toString(file));
657       continue;
658     }
659     // sizeInBits is used to initialize the Flags field; currently no
660     // other flags are defined.
661     res.emplace_back(
662         RuntimePseudoReloc(target, this, rel.VirtualAddress, sizeInBits));
663   }
664 }
665 
666 bool SectionChunk::isCOMDAT() const {
667   return header->Characteristics & IMAGE_SCN_LNK_COMDAT;
668 }
669 
670 void SectionChunk::printDiscardedMessage() const {
671   // Removed by dead-stripping. If it's removed by ICF, ICF already
672   // printed out the name, so don't repeat that here.
673   if (sym && this == repl)
674     log("Discarded " + sym->getName());
675 }
676 
677 StringRef SectionChunk::getDebugName() const {
678   if (sym)
679     return sym->getName();
680   return "";
681 }
682 
683 ArrayRef<uint8_t> SectionChunk::getContents() const {
684   ArrayRef<uint8_t> a;
685   cantFail(file->getCOFFObj()->getSectionContents(header, a));
686   return a;
687 }
688 
689 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() {
690   assert(isCodeView());
691   return consumeDebugMagic(getContents(), getSectionName());
692 }
693 
694 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data,
695                                                   StringRef sectionName) {
696   if (data.empty())
697     return {};
698 
699   // First 4 bytes are section magic.
700   if (data.size() < 4)
701     fatal("the section is too short: " + sectionName);
702 
703   if (!sectionName.startswith(".debug$"))
704     fatal("invalid section: " + sectionName);
705 
706   uint32_t magic = support::endian::read32le(data.data());
707   uint32_t expectedMagic = sectionName == ".debug$H"
708                                ? DEBUG_HASHES_SECTION_MAGIC
709                                : DEBUG_SECTION_MAGIC;
710   if (magic != expectedMagic) {
711     warn("ignoring section " + sectionName + " with unrecognized magic 0x" +
712          utohexstr(magic));
713     return {};
714   }
715   return data.slice(4);
716 }
717 
718 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections,
719                                        StringRef name) {
720   for (SectionChunk *c : sections)
721     if (c->getSectionName() == name)
722       return c;
723   return nullptr;
724 }
725 
726 void SectionChunk::replace(SectionChunk *other) {
727   p2Align = std::max(p2Align, other->p2Align);
728   other->repl = repl;
729   other->live = false;
730 }
731 
732 uint32_t SectionChunk::getSectionNumber() const {
733   DataRefImpl r;
734   r.p = reinterpret_cast<uintptr_t>(header);
735   SectionRef s(r, file->getCOFFObj());
736   return s.getIndex() + 1;
737 }
738 
739 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) {
740   // The value of a common symbol is its size. Align all common symbols smaller
741   // than 32 bytes naturally, i.e. round the size up to the next power of two.
742   // This is what MSVC link.exe does.
743   setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue()))));
744   hasData = false;
745 }
746 
747 uint32_t CommonChunk::getOutputCharacteristics() const {
748   return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
749          IMAGE_SCN_MEM_WRITE;
750 }
751 
752 void StringChunk::writeTo(uint8_t *buf) const {
753   memcpy(buf, str.data(), str.size());
754   buf[str.size()] = '\0';
755 }
756 
757 ImportThunkChunkX64::ImportThunkChunkX64(COFFLinkerContext &ctx, Defined *s)
758     : ImportThunkChunk(ctx, s) {
759   // Intel Optimization Manual says that all branch targets
760   // should be 16-byte aligned. MSVC linker does this too.
761   setAlignment(16);
762 }
763 
764 void ImportThunkChunkX64::writeTo(uint8_t *buf) const {
765   memcpy(buf, importThunkX86, sizeof(importThunkX86));
766   // The first two bytes is a JMP instruction. Fill its operand.
767   write32le(buf + 2, impSymbol->getRVA() - rva - getSize());
768 }
769 
770 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) {
771   res->emplace_back(getRVA() + 2, ctx.config.machine);
772 }
773 
774 void ImportThunkChunkX86::writeTo(uint8_t *buf) const {
775   memcpy(buf, importThunkX86, sizeof(importThunkX86));
776   // The first two bytes is a JMP instruction. Fill its operand.
777   write32le(buf + 2, impSymbol->getRVA() + ctx.config.imageBase);
778 }
779 
780 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) {
781   res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T);
782 }
783 
784 void ImportThunkChunkARM::writeTo(uint8_t *buf) const {
785   memcpy(buf, importThunkARM, sizeof(importThunkARM));
786   // Fix mov.w and mov.t operands.
787   applyMOV32T(buf, impSymbol->getRVA() + ctx.config.imageBase);
788 }
789 
790 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const {
791   int64_t off = impSymbol->getRVA() & 0xfff;
792   memcpy(buf, importThunkARM64, sizeof(importThunkARM64));
793   applyArm64Addr(buf, impSymbol->getRVA(), rva, 12);
794   applyArm64Ldr(buf + 4, off);
795 }
796 
797 // A Thumb2, PIC, non-interworking range extension thunk.
798 const uint8_t armThunk[] = {
799     0x40, 0xf2, 0x00, 0x0c, // P:  movw ip,:lower16:S - (P + (L1-P) + 4)
800     0xc0, 0xf2, 0x00, 0x0c, //     movt ip,:upper16:S - (P + (L1-P) + 4)
801     0xe7, 0x44,             // L1: add  pc, ip
802 };
803 
804 size_t RangeExtensionThunkARM::getSize() const {
805   assert(ctx.config.machine == ARMNT);
806   (void)&ctx;
807   return sizeof(armThunk);
808 }
809 
810 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const {
811   assert(ctx.config.machine == ARMNT);
812   uint64_t offset = target->getRVA() - rva - 12;
813   memcpy(buf, armThunk, sizeof(armThunk));
814   applyMOV32T(buf, uint32_t(offset));
815 }
816 
817 // A position independent ARM64 adrp+add thunk, with a maximum range of
818 // +/- 4 GB, which is enough for any PE-COFF.
819 const uint8_t arm64Thunk[] = {
820     0x10, 0x00, 0x00, 0x90, // adrp x16, Dest
821     0x10, 0x02, 0x00, 0x91, // add  x16, x16, :lo12:Dest
822     0x00, 0x02, 0x1f, 0xd6, // br   x16
823 };
824 
825 size_t RangeExtensionThunkARM64::getSize() const {
826   assert(ctx.config.machine == ARM64);
827   (void)&ctx;
828   return sizeof(arm64Thunk);
829 }
830 
831 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const {
832   assert(ctx.config.machine == ARM64);
833   memcpy(buf, arm64Thunk, sizeof(arm64Thunk));
834   applyArm64Addr(buf + 0, target->getRVA(), rva, 12);
835   applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0);
836 }
837 
838 LocalImportChunk::LocalImportChunk(COFFLinkerContext &c, Defined *s)
839     : sym(s), ctx(c) {
840   setAlignment(ctx.config.wordsize);
841 }
842 
843 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) {
844   res->emplace_back(getRVA(), ctx.config.machine);
845 }
846 
847 size_t LocalImportChunk::getSize() const { return ctx.config.wordsize; }
848 
849 void LocalImportChunk::writeTo(uint8_t *buf) const {
850   if (ctx.config.is64()) {
851     write64le(buf, sym->getRVA() + ctx.config.imageBase);
852   } else {
853     write32le(buf, sym->getRVA() + ctx.config.imageBase);
854   }
855 }
856 
857 void RVATableChunk::writeTo(uint8_t *buf) const {
858   ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf);
859   size_t cnt = 0;
860   for (const ChunkAndOffset &co : syms)
861     begin[cnt++] = co.inputChunk->getRVA() + co.offset;
862   llvm::sort(begin, begin + cnt);
863   assert(std::unique(begin, begin + cnt) == begin + cnt &&
864          "RVA tables should be de-duplicated");
865 }
866 
867 void RVAFlagTableChunk::writeTo(uint8_t *buf) const {
868   struct RVAFlag {
869     ulittle32_t rva;
870     uint8_t flag;
871   };
872   auto flags =
873       MutableArrayRef(reinterpret_cast<RVAFlag *>(buf), syms.size());
874   for (auto t : zip(syms, flags)) {
875     const auto &sym = std::get<0>(t);
876     auto &flag = std::get<1>(t);
877     flag.rva = sym.inputChunk->getRVA() + sym.offset;
878     flag.flag = 0;
879   }
880   llvm::sort(flags,
881              [](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; });
882   assert(llvm::unique(flags, [](const RVAFlag &a,
883                                 const RVAFlag &b) { return a.rva == b.rva; }) ==
884              flags.end() &&
885          "RVA tables should be de-duplicated");
886 }
887 
888 // MinGW specific, for the "automatic import of variables from DLLs" feature.
889 size_t PseudoRelocTableChunk::getSize() const {
890   if (relocs.empty())
891     return 0;
892   return 12 + 12 * relocs.size();
893 }
894 
895 // MinGW specific.
896 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const {
897   if (relocs.empty())
898     return;
899 
900   ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf);
901   // This is the list header, to signal the runtime pseudo relocation v2
902   // format.
903   table[0] = 0;
904   table[1] = 0;
905   table[2] = 1;
906 
907   size_t idx = 3;
908   for (const RuntimePseudoReloc &rpr : relocs) {
909     table[idx + 0] = rpr.sym->getRVA();
910     table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset;
911     table[idx + 2] = rpr.flags;
912     idx += 3;
913   }
914 }
915 
916 // Windows-specific. This class represents a block in .reloc section.
917 // The format is described here.
918 //
919 // On Windows, each DLL is linked against a fixed base address and
920 // usually loaded to that address. However, if there's already another
921 // DLL that overlaps, the loader has to relocate it. To do that, DLLs
922 // contain .reloc sections which contain offsets that need to be fixed
923 // up at runtime. If the loader finds that a DLL cannot be loaded to its
924 // desired base address, it loads it to somewhere else, and add <actual
925 // base address> - <desired base address> to each offset that is
926 // specified by the .reloc section. In ELF terms, .reloc sections
927 // contain relative relocations in REL format (as opposed to RELA.)
928 //
929 // This already significantly reduces the size of relocations compared
930 // to ELF .rel.dyn, but Windows does more to reduce it (probably because
931 // it was invented for PCs in the late '80s or early '90s.)  Offsets in
932 // .reloc are grouped by page where the page size is 12 bits, and
933 // offsets sharing the same page address are stored consecutively to
934 // represent them with less space. This is very similar to the page
935 // table which is grouped by (multiple stages of) pages.
936 //
937 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00,
938 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4
939 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they
940 // are represented like this:
941 //
942 //   0x00000  -- page address (4 bytes)
943 //   16       -- size of this block (4 bytes)
944 //     0xA030 -- entries (2 bytes each)
945 //     0xA500
946 //     0xA700
947 //     0xAA00
948 //   0x20000  -- page address (4 bytes)
949 //   12       -- size of this block (4 bytes)
950 //     0xA004 -- entries (2 bytes each)
951 //     0xA008
952 //
953 // Usually we have a lot of relocations for each page, so the number of
954 // bytes for one .reloc entry is close to 2 bytes on average.
955 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) {
956   // Block header consists of 4 byte page RVA and 4 byte block size.
957   // Each entry is 2 byte. Last entry may be padding.
958   data.resize(alignTo((end - begin) * 2 + 8, 4));
959   uint8_t *p = data.data();
960   write32le(p, page);
961   write32le(p + 4, data.size());
962   p += 8;
963   for (Baserel *i = begin; i != end; ++i) {
964     write16le(p, (i->type << 12) | (i->rva - page));
965     p += 2;
966   }
967 }
968 
969 void BaserelChunk::writeTo(uint8_t *buf) const {
970   memcpy(buf, data.data(), data.size());
971 }
972 
973 uint8_t Baserel::getDefaultType(llvm::COFF::MachineTypes machine) {
974   switch (machine) {
975   case AMD64:
976   case ARM64:
977     return IMAGE_REL_BASED_DIR64;
978   case I386:
979   case ARMNT:
980     return IMAGE_REL_BASED_HIGHLOW;
981   default:
982     llvm_unreachable("unknown machine type");
983   }
984 }
985 
986 MergeChunk::MergeChunk(uint32_t alignment)
987     : builder(StringTableBuilder::RAW, llvm::Align(alignment)) {
988   setAlignment(alignment);
989 }
990 
991 void MergeChunk::addSection(COFFLinkerContext &ctx, SectionChunk *c) {
992   assert(isPowerOf2_32(c->getAlignment()));
993   uint8_t p2Align = llvm::Log2_32(c->getAlignment());
994   assert(p2Align < std::size(ctx.mergeChunkInstances));
995   auto *&mc = ctx.mergeChunkInstances[p2Align];
996   if (!mc)
997     mc = make<MergeChunk>(c->getAlignment());
998   mc->sections.push_back(c);
999 }
1000 
1001 void MergeChunk::finalizeContents() {
1002   assert(!finalized && "should only finalize once");
1003   for (SectionChunk *c : sections)
1004     if (c->live)
1005       builder.add(toStringRef(c->getContents()));
1006   builder.finalize();
1007   finalized = true;
1008 }
1009 
1010 void MergeChunk::assignSubsectionRVAs() {
1011   for (SectionChunk *c : sections) {
1012     if (!c->live)
1013       continue;
1014     size_t off = builder.getOffset(toStringRef(c->getContents()));
1015     c->setRVA(rva + off);
1016   }
1017 }
1018 
1019 uint32_t MergeChunk::getOutputCharacteristics() const {
1020   return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA;
1021 }
1022 
1023 size_t MergeChunk::getSize() const {
1024   return builder.getSize();
1025 }
1026 
1027 void MergeChunk::writeTo(uint8_t *buf) const {
1028   builder.write(buf);
1029 }
1030 
1031 // MinGW specific.
1032 size_t AbsolutePointerChunk::getSize() const { return ctx.config.wordsize; }
1033 
1034 void AbsolutePointerChunk::writeTo(uint8_t *buf) const {
1035   if (ctx.config.is64()) {
1036     write64le(buf, value);
1037   } else {
1038     write32le(buf, value);
1039   }
1040 }
1041 
1042 } // namespace lld::coff
1043