1 //===- Chunks.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Chunks.h" 10 #include "InputFiles.h" 11 #include "Symbols.h" 12 #include "Writer.h" 13 #include "SymbolTable.h" 14 #include "lld/Common/ErrorHandler.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/BinaryFormat/COFF.h" 17 #include "llvm/Object/COFF.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/Endian.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <algorithm> 22 23 using namespace llvm; 24 using namespace llvm::object; 25 using namespace llvm::support::endian; 26 using namespace llvm::COFF; 27 using llvm::support::ulittle32_t; 28 29 namespace lld { 30 namespace coff { 31 32 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h) 33 : Chunk(SectionKind), file(f), header(h), repl(this) { 34 // Initialize relocs. 35 setRelocs(file->getCOFFObj()->getRelocations(header)); 36 37 // Initialize sectionName. 38 StringRef sectionName; 39 if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header)) 40 sectionName = *e; 41 sectionNameData = sectionName.data(); 42 sectionNameSize = sectionName.size(); 43 44 setAlignment(header->getAlignment()); 45 46 hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); 47 48 // If linker GC is disabled, every chunk starts out alive. If linker GC is 49 // enabled, treat non-comdat sections as roots. Generally optimized object 50 // files will be built with -ffunction-sections or /Gy, so most things worth 51 // stripping will be in a comdat. 52 live = !config->doGC || !isCOMDAT(); 53 } 54 55 // SectionChunk is one of the most frequently allocated classes, so it is 56 // important to keep it as compact as possible. As of this writing, the number 57 // below is the size of this class on x64 platforms. 58 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly"); 59 60 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); } 61 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); } 62 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); } 63 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); } 64 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); } 65 66 // Verify that given sections are appropriate targets for SECREL 67 // relocations. This check is relaxed because unfortunately debug 68 // sections have section-relative relocations against absolute symbols. 69 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) { 70 if (os) 71 return true; 72 if (sec->isCodeView()) 73 return false; 74 error("SECREL relocation cannot be applied to absolute symbols"); 75 return false; 76 } 77 78 static void applySecRel(const SectionChunk *sec, uint8_t *off, 79 OutputSection *os, uint64_t s) { 80 if (!checkSecRel(sec, os)) 81 return; 82 uint64_t secRel = s - os->getRVA(); 83 if (secRel > UINT32_MAX) { 84 error("overflow in SECREL relocation in section: " + sec->getSectionName()); 85 return; 86 } 87 add32(off, secRel); 88 } 89 90 static void applySecIdx(uint8_t *off, OutputSection *os) { 91 // Absolute symbol doesn't have section index, but section index relocation 92 // against absolute symbol should be resolved to one plus the last output 93 // section index. This is required for compatibility with MSVC. 94 if (os) 95 add16(off, os->sectionIndex); 96 else 97 add16(off, DefinedAbsolute::numOutputSections + 1); 98 } 99 100 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os, 101 uint64_t s, uint64_t p) const { 102 switch (type) { 103 case IMAGE_REL_AMD64_ADDR32: add32(off, s + config->imageBase); break; 104 case IMAGE_REL_AMD64_ADDR64: add64(off, s + config->imageBase); break; 105 case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break; 106 case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break; 107 case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break; 108 case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break; 109 case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break; 110 case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break; 111 case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break; 112 case IMAGE_REL_AMD64_SECTION: applySecIdx(off, os); break; 113 case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break; 114 default: 115 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 116 toString(file)); 117 } 118 } 119 120 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os, 121 uint64_t s, uint64_t p) const { 122 switch (type) { 123 case IMAGE_REL_I386_ABSOLUTE: break; 124 case IMAGE_REL_I386_DIR32: add32(off, s + config->imageBase); break; 125 case IMAGE_REL_I386_DIR32NB: add32(off, s); break; 126 case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break; 127 case IMAGE_REL_I386_SECTION: applySecIdx(off, os); break; 128 case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break; 129 default: 130 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 131 toString(file)); 132 } 133 } 134 135 static void applyMOV(uint8_t *off, uint16_t v) { 136 write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf)); 137 write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff)); 138 } 139 140 static uint16_t readMOV(uint8_t *off, bool movt) { 141 uint16_t op1 = read16le(off); 142 if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240)) 143 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 144 " instruction in MOV32T relocation"); 145 uint16_t op2 = read16le(off + 2); 146 if ((op2 & 0x8000) != 0) 147 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 148 " instruction in MOV32T relocation"); 149 return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) | 150 ((op1 & 0x000f) << 12); 151 } 152 153 void applyMOV32T(uint8_t *off, uint32_t v) { 154 uint16_t immW = readMOV(off, false); // read MOVW operand 155 uint16_t immT = readMOV(off + 4, true); // read MOVT operand 156 uint32_t imm = immW | (immT << 16); 157 v += imm; // add the immediate offset 158 applyMOV(off, v); // set MOVW operand 159 applyMOV(off + 4, v >> 16); // set MOVT operand 160 } 161 162 static void applyBranch20T(uint8_t *off, int32_t v) { 163 if (!isInt<21>(v)) 164 error("relocation out of range"); 165 uint32_t s = v < 0 ? 1 : 0; 166 uint32_t j1 = (v >> 19) & 1; 167 uint32_t j2 = (v >> 18) & 1; 168 or16(off, (s << 10) | ((v >> 12) & 0x3f)); 169 or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 170 } 171 172 void applyBranch24T(uint8_t *off, int32_t v) { 173 if (!isInt<25>(v)) 174 error("relocation out of range"); 175 uint32_t s = v < 0 ? 1 : 0; 176 uint32_t j1 = ((~v >> 23) & 1) ^ s; 177 uint32_t j2 = ((~v >> 22) & 1) ^ s; 178 or16(off, (s << 10) | ((v >> 12) & 0x3ff)); 179 // Clear out the J1 and J2 bits which may be set. 180 write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 181 } 182 183 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os, 184 uint64_t s, uint64_t p) const { 185 // Pointer to thumb code must have the LSB set. 186 uint64_t sx = s; 187 if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) 188 sx |= 1; 189 switch (type) { 190 case IMAGE_REL_ARM_ADDR32: add32(off, sx + config->imageBase); break; 191 case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break; 192 case IMAGE_REL_ARM_MOV32T: applyMOV32T(off, sx + config->imageBase); break; 193 case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break; 194 case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break; 195 case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break; 196 case IMAGE_REL_ARM_SECTION: applySecIdx(off, os); break; 197 case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break; 198 case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break; 199 default: 200 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 201 toString(file)); 202 } 203 } 204 205 // Interpret the existing immediate value as a byte offset to the 206 // target symbol, then update the instruction with the immediate as 207 // the page offset from the current instruction to the target. 208 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) { 209 uint32_t orig = read32le(off); 210 uint64_t imm = ((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC); 211 s += imm; 212 imm = (s >> shift) - (p >> shift); 213 uint32_t immLo = (imm & 0x3) << 29; 214 uint32_t immHi = (imm & 0x1FFFFC) << 3; 215 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); 216 write32le(off, (orig & ~mask) | immLo | immHi); 217 } 218 219 // Update the immediate field in a AARCH64 ldr, str, and add instruction. 220 // Optionally limit the range of the written immediate by one or more bits 221 // (rangeLimit). 222 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) { 223 uint32_t orig = read32le(off); 224 imm += (orig >> 10) & 0xFFF; 225 orig &= ~(0xFFF << 10); 226 write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10)); 227 } 228 229 // Add the 12 bit page offset to the existing immediate. 230 // Ldr/str instructions store the opcode immediate scaled 231 // by the load/store size (giving a larger range for larger 232 // loads/stores). The immediate is always (both before and after 233 // fixing up the relocation) stored scaled similarly. 234 // Even if larger loads/stores have a larger range, limit the 235 // effective offset to 12 bit, since it is intended to be a 236 // page offset. 237 static void applyArm64Ldr(uint8_t *off, uint64_t imm) { 238 uint32_t orig = read32le(off); 239 uint32_t size = orig >> 30; 240 // 0x04000000 indicates SIMD/FP registers 241 // 0x00800000 indicates 128 bit 242 if ((orig & 0x4800000) == 0x4800000) 243 size += 4; 244 if ((imm & ((1 << size) - 1)) != 0) 245 error("misaligned ldr/str offset"); 246 applyArm64Imm(off, imm >> size, size); 247 } 248 249 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off, 250 OutputSection *os, uint64_t s) { 251 if (checkSecRel(sec, os)) 252 applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0); 253 } 254 255 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off, 256 OutputSection *os, uint64_t s) { 257 if (!checkSecRel(sec, os)) 258 return; 259 uint64_t secRel = (s - os->getRVA()) >> 12; 260 if (0xfff < secRel) { 261 error("overflow in SECREL_HIGH12A relocation in section: " + 262 sec->getSectionName()); 263 return; 264 } 265 applyArm64Imm(off, secRel & 0xfff, 0); 266 } 267 268 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off, 269 OutputSection *os, uint64_t s) { 270 if (checkSecRel(sec, os)) 271 applyArm64Ldr(off, (s - os->getRVA()) & 0xfff); 272 } 273 274 void applyArm64Branch26(uint8_t *off, int64_t v) { 275 if (!isInt<28>(v)) 276 error("relocation out of range"); 277 or32(off, (v & 0x0FFFFFFC) >> 2); 278 } 279 280 static void applyArm64Branch19(uint8_t *off, int64_t v) { 281 if (!isInt<21>(v)) 282 error("relocation out of range"); 283 or32(off, (v & 0x001FFFFC) << 3); 284 } 285 286 static void applyArm64Branch14(uint8_t *off, int64_t v) { 287 if (!isInt<16>(v)) 288 error("relocation out of range"); 289 or32(off, (v & 0x0000FFFC) << 3); 290 } 291 292 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os, 293 uint64_t s, uint64_t p) const { 294 switch (type) { 295 case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break; 296 case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break; 297 case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break; 298 case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break; 299 case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break; 300 case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break; 301 case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break; 302 case IMAGE_REL_ARM64_ADDR32: add32(off, s + config->imageBase); break; 303 case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break; 304 case IMAGE_REL_ARM64_ADDR64: add64(off, s + config->imageBase); break; 305 case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break; 306 case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break; 307 case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break; 308 case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break; 309 case IMAGE_REL_ARM64_SECTION: applySecIdx(off, os); break; 310 case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break; 311 default: 312 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 313 toString(file)); 314 } 315 } 316 317 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk, 318 Defined *sym, 319 const coff_relocation &rel) { 320 // Don't report these errors when the relocation comes from a debug info 321 // section or in mingw mode. MinGW mode object files (built by GCC) can 322 // have leftover sections with relocations against discarded comdat 323 // sections. Such sections are left as is, with relocations untouched. 324 if (fromChunk->isCodeView() || fromChunk->isDWARF() || config->mingw) 325 return; 326 327 // Get the name of the symbol. If it's null, it was discarded early, so we 328 // have to go back to the object file. 329 ObjFile *file = fromChunk->file; 330 StringRef name; 331 if (sym) { 332 name = sym->getName(); 333 } else { 334 COFFSymbolRef coffSym = 335 check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex)); 336 file->getCOFFObj()->getSymbolName(coffSym, name); 337 } 338 339 std::vector<std::string> symbolLocations = 340 getSymbolLocations(file, rel.SymbolTableIndex); 341 342 std::string out; 343 llvm::raw_string_ostream os(out); 344 os << "relocation against symbol in discarded section: " + name; 345 for (const std::string &s : symbolLocations) 346 os << s; 347 error(os.str()); 348 } 349 350 void SectionChunk::writeTo(uint8_t *buf) const { 351 if (!hasData) 352 return; 353 // Copy section contents from source object file to output file. 354 ArrayRef<uint8_t> a = getContents(); 355 if (!a.empty()) 356 memcpy(buf, a.data(), a.size()); 357 358 // Apply relocations. 359 size_t inputSize = getSize(); 360 for (size_t i = 0, e = relocsSize; i < e; i++) { 361 const coff_relocation &rel = relocsData[i]; 362 363 // Check for an invalid relocation offset. This check isn't perfect, because 364 // we don't have the relocation size, which is only known after checking the 365 // machine and relocation type. As a result, a relocation may overwrite the 366 // beginning of the following input section. 367 if (rel.VirtualAddress >= inputSize) { 368 error("relocation points beyond the end of its parent section"); 369 continue; 370 } 371 372 uint8_t *off = buf + rel.VirtualAddress; 373 374 auto *sym = 375 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 376 377 // Get the output section of the symbol for this relocation. The output 378 // section is needed to compute SECREL and SECTION relocations used in debug 379 // info. 380 Chunk *c = sym ? sym->getChunk() : nullptr; 381 OutputSection *os = c ? c->getOutputSection() : nullptr; 382 383 // Skip the relocation if it refers to a discarded section, and diagnose it 384 // as an error if appropriate. If a symbol was discarded early, it may be 385 // null. If it was discarded late, the output section will be null, unless 386 // it was an absolute or synthetic symbol. 387 if (!sym || 388 (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) { 389 maybeReportRelocationToDiscarded(this, sym, rel); 390 continue; 391 } 392 393 uint64_t s = sym->getRVA(); 394 395 // Compute the RVA of the relocation for relative relocations. 396 uint64_t p = rva + rel.VirtualAddress; 397 switch (config->machine) { 398 case AMD64: 399 applyRelX64(off, rel.Type, os, s, p); 400 break; 401 case I386: 402 applyRelX86(off, rel.Type, os, s, p); 403 break; 404 case ARMNT: 405 applyRelARM(off, rel.Type, os, s, p); 406 break; 407 case ARM64: 408 applyRelARM64(off, rel.Type, os, s, p); 409 break; 410 default: 411 llvm_unreachable("unknown machine type"); 412 } 413 } 414 } 415 416 void SectionChunk::addAssociative(SectionChunk *child) { 417 // Insert this child at the head of the list. 418 assert(child->assocChildren == nullptr && 419 "associated sections cannot have their own associated children"); 420 child->assocChildren = assocChildren; 421 assocChildren = child; 422 } 423 424 static uint8_t getBaserelType(const coff_relocation &rel) { 425 switch (config->machine) { 426 case AMD64: 427 if (rel.Type == IMAGE_REL_AMD64_ADDR64) 428 return IMAGE_REL_BASED_DIR64; 429 return IMAGE_REL_BASED_ABSOLUTE; 430 case I386: 431 if (rel.Type == IMAGE_REL_I386_DIR32) 432 return IMAGE_REL_BASED_HIGHLOW; 433 return IMAGE_REL_BASED_ABSOLUTE; 434 case ARMNT: 435 if (rel.Type == IMAGE_REL_ARM_ADDR32) 436 return IMAGE_REL_BASED_HIGHLOW; 437 if (rel.Type == IMAGE_REL_ARM_MOV32T) 438 return IMAGE_REL_BASED_ARM_MOV32T; 439 return IMAGE_REL_BASED_ABSOLUTE; 440 case ARM64: 441 if (rel.Type == IMAGE_REL_ARM64_ADDR64) 442 return IMAGE_REL_BASED_DIR64; 443 return IMAGE_REL_BASED_ABSOLUTE; 444 default: 445 llvm_unreachable("unknown machine type"); 446 } 447 } 448 449 // Windows-specific. 450 // Collect all locations that contain absolute addresses, which need to be 451 // fixed by the loader if load-time relocation is needed. 452 // Only called when base relocation is enabled. 453 void SectionChunk::getBaserels(std::vector<Baserel> *res) { 454 for (size_t i = 0, e = relocsSize; i < e; i++) { 455 const coff_relocation &rel = relocsData[i]; 456 uint8_t ty = getBaserelType(rel); 457 if (ty == IMAGE_REL_BASED_ABSOLUTE) 458 continue; 459 Symbol *target = file->getSymbol(rel.SymbolTableIndex); 460 if (!target || isa<DefinedAbsolute>(target)) 461 continue; 462 res->emplace_back(rva + rel.VirtualAddress, ty); 463 } 464 } 465 466 // MinGW specific. 467 // Check whether a static relocation of type Type can be deferred and 468 // handled at runtime as a pseudo relocation (for references to a module 469 // local variable, which turned out to actually need to be imported from 470 // another DLL) This returns the size the relocation is supposed to update, 471 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo 472 // relocation. 473 static int getRuntimePseudoRelocSize(uint16_t type) { 474 // Relocations that either contain an absolute address, or a plain 475 // relative offset, since the runtime pseudo reloc implementation 476 // adds 8/16/32/64 bit values to a memory address. 477 // 478 // Given a pseudo relocation entry, 479 // 480 // typedef struct { 481 // DWORD sym; 482 // DWORD target; 483 // DWORD flags; 484 // } runtime_pseudo_reloc_item_v2; 485 // 486 // the runtime relocation performs this adjustment: 487 // *(base + .target) += *(base + .sym) - (base + .sym) 488 // 489 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64, 490 // IMAGE_REL_I386_DIR32, where the memory location initially contains 491 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32), 492 // where the memory location originally contains the relative offset to the 493 // IAT slot. 494 // 495 // This requires the target address to be writable, either directly out of 496 // the image, or temporarily changed at runtime with VirtualProtect. 497 // Since this only operates on direct address values, it doesn't work for 498 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations. 499 switch (config->machine) { 500 case AMD64: 501 switch (type) { 502 case IMAGE_REL_AMD64_ADDR64: 503 return 64; 504 case IMAGE_REL_AMD64_ADDR32: 505 case IMAGE_REL_AMD64_REL32: 506 case IMAGE_REL_AMD64_REL32_1: 507 case IMAGE_REL_AMD64_REL32_2: 508 case IMAGE_REL_AMD64_REL32_3: 509 case IMAGE_REL_AMD64_REL32_4: 510 case IMAGE_REL_AMD64_REL32_5: 511 return 32; 512 default: 513 return 0; 514 } 515 case I386: 516 switch (type) { 517 case IMAGE_REL_I386_DIR32: 518 case IMAGE_REL_I386_REL32: 519 return 32; 520 default: 521 return 0; 522 } 523 case ARMNT: 524 switch (type) { 525 case IMAGE_REL_ARM_ADDR32: 526 return 32; 527 default: 528 return 0; 529 } 530 case ARM64: 531 switch (type) { 532 case IMAGE_REL_ARM64_ADDR64: 533 return 64; 534 case IMAGE_REL_ARM64_ADDR32: 535 return 32; 536 default: 537 return 0; 538 } 539 default: 540 llvm_unreachable("unknown machine type"); 541 } 542 } 543 544 // MinGW specific. 545 // Append information to the provided vector about all relocations that 546 // need to be handled at runtime as runtime pseudo relocations (references 547 // to a module local variable, which turned out to actually need to be 548 // imported from another DLL). 549 void SectionChunk::getRuntimePseudoRelocs( 550 std::vector<RuntimePseudoReloc> &res) { 551 for (const coff_relocation &rel : getRelocs()) { 552 auto *target = 553 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 554 if (!target || !target->isRuntimePseudoReloc) 555 continue; 556 int sizeInBits = getRuntimePseudoRelocSize(rel.Type); 557 if (sizeInBits == 0) { 558 error("unable to automatically import from " + target->getName() + 559 " with relocation type " + 560 file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " + 561 toString(file)); 562 continue; 563 } 564 // sizeInBits is used to initialize the Flags field; currently no 565 // other flags are defined. 566 res.emplace_back( 567 RuntimePseudoReloc(target, this, rel.VirtualAddress, sizeInBits)); 568 } 569 } 570 571 bool SectionChunk::isCOMDAT() const { 572 return header->Characteristics & IMAGE_SCN_LNK_COMDAT; 573 } 574 575 void SectionChunk::printDiscardedMessage() const { 576 // Removed by dead-stripping. If it's removed by ICF, ICF already 577 // printed out the name, so don't repeat that here. 578 if (sym && this == repl) 579 message("Discarded " + sym->getName()); 580 } 581 582 StringRef SectionChunk::getDebugName() const { 583 if (sym) 584 return sym->getName(); 585 return ""; 586 } 587 588 ArrayRef<uint8_t> SectionChunk::getContents() const { 589 ArrayRef<uint8_t> a; 590 cantFail(file->getCOFFObj()->getSectionContents(header, a)); 591 return a; 592 } 593 594 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() { 595 assert(isCodeView()); 596 return consumeDebugMagic(getContents(), getSectionName()); 597 } 598 599 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data, 600 StringRef sectionName) { 601 if (data.empty()) 602 return {}; 603 604 // First 4 bytes are section magic. 605 if (data.size() < 4) 606 fatal("the section is too short: " + sectionName); 607 608 if (!sectionName.startswith(".debug$")) 609 fatal("invalid section: " + sectionName); 610 611 uint32_t magic = support::endian::read32le(data.data()); 612 uint32_t expectedMagic = sectionName == ".debug$H" 613 ? DEBUG_HASHES_SECTION_MAGIC 614 : DEBUG_SECTION_MAGIC; 615 if (magic != expectedMagic) { 616 warn("ignoring section " + sectionName + " with unrecognized magic 0x" + 617 utohexstr(magic)); 618 return {}; 619 } 620 return data.slice(4); 621 } 622 623 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections, 624 StringRef name) { 625 for (SectionChunk *c : sections) 626 if (c->getSectionName() == name) 627 return c; 628 return nullptr; 629 } 630 631 void SectionChunk::replace(SectionChunk *other) { 632 p2Align = std::max(p2Align, other->p2Align); 633 other->repl = repl; 634 other->live = false; 635 } 636 637 uint32_t SectionChunk::getSectionNumber() const { 638 DataRefImpl r; 639 r.p = reinterpret_cast<uintptr_t>(header); 640 SectionRef s(r, file->getCOFFObj()); 641 return s.getIndex() + 1; 642 } 643 644 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) { 645 // The value of a common symbol is its size. Align all common symbols smaller 646 // than 32 bytes naturally, i.e. round the size up to the next power of two. 647 // This is what MSVC link.exe does. 648 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue())))); 649 hasData = false; 650 } 651 652 uint32_t CommonChunk::getOutputCharacteristics() const { 653 return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | 654 IMAGE_SCN_MEM_WRITE; 655 } 656 657 void StringChunk::writeTo(uint8_t *buf) const { 658 memcpy(buf, str.data(), str.size()); 659 buf[str.size()] = '\0'; 660 } 661 662 ImportThunkChunkX64::ImportThunkChunkX64(Defined *s) : ImportThunkChunk(s) { 663 // Intel Optimization Manual says that all branch targets 664 // should be 16-byte aligned. MSVC linker does this too. 665 setAlignment(16); 666 } 667 668 void ImportThunkChunkX64::writeTo(uint8_t *buf) const { 669 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 670 // The first two bytes is a JMP instruction. Fill its operand. 671 write32le(buf + 2, impSymbol->getRVA() - rva - getSize()); 672 } 673 674 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) { 675 res->emplace_back(getRVA() + 2); 676 } 677 678 void ImportThunkChunkX86::writeTo(uint8_t *buf) const { 679 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 680 // The first two bytes is a JMP instruction. Fill its operand. 681 write32le(buf + 2, 682 impSymbol->getRVA() + config->imageBase); 683 } 684 685 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) { 686 res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); 687 } 688 689 void ImportThunkChunkARM::writeTo(uint8_t *buf) const { 690 memcpy(buf, importThunkARM, sizeof(importThunkARM)); 691 // Fix mov.w and mov.t operands. 692 applyMOV32T(buf, impSymbol->getRVA() + config->imageBase); 693 } 694 695 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const { 696 int64_t off = impSymbol->getRVA() & 0xfff; 697 memcpy(buf, importThunkARM64, sizeof(importThunkARM64)); 698 applyArm64Addr(buf, impSymbol->getRVA(), rva, 12); 699 applyArm64Ldr(buf + 4, off); 700 } 701 702 // A Thumb2, PIC, non-interworking range extension thunk. 703 const uint8_t armThunk[] = { 704 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) 705 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) 706 0xe7, 0x44, // L1: add pc, ip 707 }; 708 709 size_t RangeExtensionThunkARM::getSize() const { 710 assert(config->machine == ARMNT); 711 return sizeof(armThunk); 712 } 713 714 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const { 715 assert(config->machine == ARMNT); 716 uint64_t offset = target->getRVA() - rva - 12; 717 memcpy(buf, armThunk, sizeof(armThunk)); 718 applyMOV32T(buf, uint32_t(offset)); 719 } 720 721 // A position independent ARM64 adrp+add thunk, with a maximum range of 722 // +/- 4 GB, which is enough for any PE-COFF. 723 const uint8_t arm64Thunk[] = { 724 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest 725 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest 726 0x00, 0x02, 0x1f, 0xd6, // br x16 727 }; 728 729 size_t RangeExtensionThunkARM64::getSize() const { 730 assert(config->machine == ARM64); 731 return sizeof(arm64Thunk); 732 } 733 734 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const { 735 assert(config->machine == ARM64); 736 memcpy(buf, arm64Thunk, sizeof(arm64Thunk)); 737 applyArm64Addr(buf + 0, target->getRVA(), rva, 12); 738 applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0); 739 } 740 741 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) { 742 res->emplace_back(getRVA()); 743 } 744 745 size_t LocalImportChunk::getSize() const { return config->wordsize; } 746 747 void LocalImportChunk::writeTo(uint8_t *buf) const { 748 if (config->is64()) { 749 write64le(buf, sym->getRVA() + config->imageBase); 750 } else { 751 write32le(buf, sym->getRVA() + config->imageBase); 752 } 753 } 754 755 void RVATableChunk::writeTo(uint8_t *buf) const { 756 ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf); 757 size_t cnt = 0; 758 for (const ChunkAndOffset &co : syms) 759 begin[cnt++] = co.inputChunk->getRVA() + co.offset; 760 std::sort(begin, begin + cnt); 761 assert(std::unique(begin, begin + cnt) == begin + cnt && 762 "RVA tables should be de-duplicated"); 763 } 764 765 // MinGW specific, for the "automatic import of variables from DLLs" feature. 766 size_t PseudoRelocTableChunk::getSize() const { 767 if (relocs.empty()) 768 return 0; 769 return 12 + 12 * relocs.size(); 770 } 771 772 // MinGW specific. 773 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const { 774 if (relocs.empty()) 775 return; 776 777 ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf); 778 // This is the list header, to signal the runtime pseudo relocation v2 779 // format. 780 table[0] = 0; 781 table[1] = 0; 782 table[2] = 1; 783 784 size_t idx = 3; 785 for (const RuntimePseudoReloc &rpr : relocs) { 786 table[idx + 0] = rpr.sym->getRVA(); 787 table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset; 788 table[idx + 2] = rpr.flags; 789 idx += 3; 790 } 791 } 792 793 // Windows-specific. This class represents a block in .reloc section. 794 // The format is described here. 795 // 796 // On Windows, each DLL is linked against a fixed base address and 797 // usually loaded to that address. However, if there's already another 798 // DLL that overlaps, the loader has to relocate it. To do that, DLLs 799 // contain .reloc sections which contain offsets that need to be fixed 800 // up at runtime. If the loader finds that a DLL cannot be loaded to its 801 // desired base address, it loads it to somewhere else, and add <actual 802 // base address> - <desired base address> to each offset that is 803 // specified by the .reloc section. In ELF terms, .reloc sections 804 // contain relative relocations in REL format (as opposed to RELA.) 805 // 806 // This already significantly reduces the size of relocations compared 807 // to ELF .rel.dyn, but Windows does more to reduce it (probably because 808 // it was invented for PCs in the late '80s or early '90s.) Offsets in 809 // .reloc are grouped by page where the page size is 12 bits, and 810 // offsets sharing the same page address are stored consecutively to 811 // represent them with less space. This is very similar to the page 812 // table which is grouped by (multiple stages of) pages. 813 // 814 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, 815 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 816 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they 817 // are represented like this: 818 // 819 // 0x00000 -- page address (4 bytes) 820 // 16 -- size of this block (4 bytes) 821 // 0xA030 -- entries (2 bytes each) 822 // 0xA500 823 // 0xA700 824 // 0xAA00 825 // 0x20000 -- page address (4 bytes) 826 // 12 -- size of this block (4 bytes) 827 // 0xA004 -- entries (2 bytes each) 828 // 0xA008 829 // 830 // Usually we have a lot of relocations for each page, so the number of 831 // bytes for one .reloc entry is close to 2 bytes on average. 832 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) { 833 // Block header consists of 4 byte page RVA and 4 byte block size. 834 // Each entry is 2 byte. Last entry may be padding. 835 data.resize(alignTo((end - begin) * 2 + 8, 4)); 836 uint8_t *p = data.data(); 837 write32le(p, page); 838 write32le(p + 4, data.size()); 839 p += 8; 840 for (Baserel *i = begin; i != end; ++i) { 841 write16le(p, (i->type << 12) | (i->rva - page)); 842 p += 2; 843 } 844 } 845 846 void BaserelChunk::writeTo(uint8_t *buf) const { 847 memcpy(buf, data.data(), data.size()); 848 } 849 850 uint8_t Baserel::getDefaultType() { 851 switch (config->machine) { 852 case AMD64: 853 case ARM64: 854 return IMAGE_REL_BASED_DIR64; 855 case I386: 856 case ARMNT: 857 return IMAGE_REL_BASED_HIGHLOW; 858 default: 859 llvm_unreachable("unknown machine type"); 860 } 861 } 862 863 MergeChunk *MergeChunk::instances[Log2MaxSectionAlignment + 1] = {}; 864 865 MergeChunk::MergeChunk(uint32_t alignment) 866 : builder(StringTableBuilder::RAW, alignment) { 867 setAlignment(alignment); 868 } 869 870 void MergeChunk::addSection(SectionChunk *c) { 871 assert(isPowerOf2_32(c->getAlignment())); 872 uint8_t p2Align = llvm::Log2_32(c->getAlignment()); 873 assert(p2Align < array_lengthof(instances)); 874 auto *&mc = instances[p2Align]; 875 if (!mc) 876 mc = make<MergeChunk>(c->getAlignment()); 877 mc->sections.push_back(c); 878 } 879 880 void MergeChunk::finalizeContents() { 881 assert(!finalized && "should only finalize once"); 882 for (SectionChunk *c : sections) 883 if (c->live) 884 builder.add(toStringRef(c->getContents())); 885 builder.finalize(); 886 finalized = true; 887 } 888 889 void MergeChunk::assignSubsectionRVAs() { 890 for (SectionChunk *c : sections) { 891 if (!c->live) 892 continue; 893 size_t off = builder.getOffset(toStringRef(c->getContents())); 894 c->setRVA(rva + off); 895 } 896 } 897 898 uint32_t MergeChunk::getOutputCharacteristics() const { 899 return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; 900 } 901 902 size_t MergeChunk::getSize() const { 903 return builder.getSize(); 904 } 905 906 void MergeChunk::writeTo(uint8_t *buf) const { 907 builder.write(buf); 908 } 909 910 // MinGW specific. 911 size_t AbsolutePointerChunk::getSize() const { return config->wordsize; } 912 913 void AbsolutePointerChunk::writeTo(uint8_t *buf) const { 914 if (config->is64()) { 915 write64le(buf, value); 916 } else { 917 write32le(buf, value); 918 } 919 } 920 921 } // namespace coff 922 } // namespace lld 923