xref: /freebsd/contrib/llvm-project/lld/COFF/CallGraphSort.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===- CallGraphSort.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This is based on the ELF port, see ELF/CallGraphSort.cpp for the details
10 /// about the algorithm.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "CallGraphSort.h"
15 #include "COFFLinkerContext.h"
16 #include "InputFiles.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "lld/Common/ErrorHandler.h"
20 
21 #include <numeric>
22 
23 using namespace llvm;
24 using namespace lld;
25 using namespace lld::coff;
26 
27 namespace {
28 struct Edge {
29   int from;
30   uint64_t weight;
31 };
32 
33 struct Cluster {
34   Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
35 
36   double getDensity() const {
37     if (size == 0)
38       return 0;
39     return double(weight) / double(size);
40   }
41 
42   int next;
43   int prev;
44   uint64_t size;
45   uint64_t weight = 0;
46   uint64_t initialWeight = 0;
47   Edge bestPred = {-1, 0};
48 };
49 
50 class CallGraphSort {
51 public:
52   CallGraphSort(const COFFLinkerContext &ctx);
53 
54   DenseMap<const SectionChunk *, int> run();
55 
56 private:
57   std::vector<Cluster> clusters;
58   std::vector<const SectionChunk *> sections;
59 
60   const COFFLinkerContext &ctx;
61 };
62 
63 // Maximum amount the combined cluster density can be worse than the original
64 // cluster to consider merging.
65 constexpr int MAX_DENSITY_DEGRADATION = 8;
66 
67 // Maximum cluster size in bytes.
68 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
69 } // end anonymous namespace
70 
71 using SectionPair = std::pair<const SectionChunk *, const SectionChunk *>;
72 
73 // Take the edge list in Config->CallGraphProfile, resolve symbol names to
74 // Symbols, and generate a graph between InputSections with the provided
75 // weights.
76 CallGraphSort::CallGraphSort(const COFFLinkerContext &ctx) : ctx(ctx) {
77   const MapVector<SectionPair, uint64_t> &profile = ctx.config.callGraphProfile;
78   DenseMap<const SectionChunk *, int> secToCluster;
79 
80   auto getOrCreateNode = [&](const SectionChunk *isec) -> int {
81     auto res = secToCluster.try_emplace(isec, clusters.size());
82     if (res.second) {
83       sections.push_back(isec);
84       clusters.emplace_back(clusters.size(), isec->getSize());
85     }
86     return res.first->second;
87   };
88 
89   // Create the graph.
90   for (const std::pair<SectionPair, uint64_t> &c : profile) {
91     const auto *fromSec = cast<SectionChunk>(c.first.first->repl);
92     const auto *toSec = cast<SectionChunk>(c.first.second->repl);
93     uint64_t weight = c.second;
94 
95     // Ignore edges between input sections belonging to different output
96     // sections.  This is done because otherwise we would end up with clusters
97     // containing input sections that can't actually be placed adjacently in the
98     // output.  This messes with the cluster size and density calculations.  We
99     // would also end up moving input sections in other output sections without
100     // moving them closer to what calls them.
101     if (ctx.getOutputSection(fromSec) != ctx.getOutputSection(toSec))
102       continue;
103 
104     int from = getOrCreateNode(fromSec);
105     int to = getOrCreateNode(toSec);
106 
107     clusters[to].weight += weight;
108 
109     if (from == to)
110       continue;
111 
112     // Remember the best edge.
113     Cluster &toC = clusters[to];
114     if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
115       toC.bestPred.from = from;
116       toC.bestPred.weight = weight;
117     }
118   }
119   for (Cluster &c : clusters)
120     c.initialWeight = c.weight;
121 }
122 
123 // It's bad to merge clusters which would degrade the density too much.
124 static bool isNewDensityBad(Cluster &a, Cluster &b) {
125   double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
126   return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
127 }
128 
129 // Find the leader of V's belonged cluster (represented as an equivalence
130 // class). We apply union-find path-halving technique (simple to implement) in
131 // the meantime as it decreases depths and the time complexity.
132 static int getLeader(std::vector<int> &leaders, int v) {
133   while (leaders[v] != v) {
134     leaders[v] = leaders[leaders[v]];
135     v = leaders[v];
136   }
137   return v;
138 }
139 
140 static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
141                           Cluster &from, int fromIdx) {
142   int tail1 = into.prev, tail2 = from.prev;
143   into.prev = tail2;
144   cs[tail2].next = intoIdx;
145   from.prev = tail1;
146   cs[tail1].next = fromIdx;
147   into.size += from.size;
148   into.weight += from.weight;
149   from.size = 0;
150   from.weight = 0;
151 }
152 
153 // Group InputSections into clusters using the Call-Chain Clustering heuristic
154 // then sort the clusters by density.
155 DenseMap<const SectionChunk *, int> CallGraphSort::run() {
156   std::vector<int> sorted(clusters.size());
157   std::vector<int> leaders(clusters.size());
158 
159   std::iota(leaders.begin(), leaders.end(), 0);
160   std::iota(sorted.begin(), sorted.end(), 0);
161   llvm::stable_sort(sorted, [&](int a, int b) {
162     return clusters[a].getDensity() > clusters[b].getDensity();
163   });
164 
165   for (int l : sorted) {
166     // The cluster index is the same as the index of its leader here because
167     // clusters[L] has not been merged into another cluster yet.
168     Cluster &c = clusters[l];
169 
170     // Don't consider merging if the edge is unlikely.
171     if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
172       continue;
173 
174     int predL = getLeader(leaders, c.bestPred.from);
175     if (l == predL)
176       continue;
177 
178     Cluster *predC = &clusters[predL];
179     if (c.size + predC->size > MAX_CLUSTER_SIZE)
180       continue;
181 
182     if (isNewDensityBad(*predC, c))
183       continue;
184 
185     leaders[l] = predL;
186     mergeClusters(clusters, *predC, predL, c, l);
187   }
188 
189   // Sort remaining non-empty clusters by density.
190   sorted.clear();
191   for (int i = 0, e = (int)clusters.size(); i != e; ++i)
192     if (clusters[i].size > 0)
193       sorted.push_back(i);
194   llvm::stable_sort(sorted, [&](int a, int b) {
195     return clusters[a].getDensity() > clusters[b].getDensity();
196   });
197 
198   DenseMap<const SectionChunk *, int> orderMap;
199   // Sections will be sorted by increasing order. Absent sections will have
200   // priority 0 and be placed at the end of sections.
201   int curOrder = INT_MIN;
202   for (int leader : sorted) {
203     for (int i = leader;;) {
204       orderMap[sections[i]] = curOrder++;
205       i = clusters[i].next;
206       if (i == leader)
207         break;
208     }
209   }
210   if (!ctx.config.printSymbolOrder.empty()) {
211     std::error_code ec;
212     raw_fd_ostream os(ctx.config.printSymbolOrder, ec, sys::fs::OF_None);
213     if (ec) {
214       error("cannot open " + ctx.config.printSymbolOrder + ": " + ec.message());
215       return orderMap;
216     }
217     // Print the symbols ordered by C3, in the order of increasing curOrder
218     // Instead of sorting all the orderMap, just repeat the loops above.
219     for (int leader : sorted)
220       for (int i = leader;;) {
221         const SectionChunk *sc = sections[i];
222 
223         // Search all the symbols in the file of the section
224         // and find out a DefinedCOFF symbol with name that is within the
225         // section.
226         for (Symbol *sym : sc->file->getSymbols())
227           if (auto *d = dyn_cast_or_null<DefinedCOFF>(sym))
228             // Filter out non-COMDAT symbols and section symbols.
229             if (d->isCOMDAT && !d->getCOFFSymbol().isSection() &&
230                 sc == d->getChunk())
231               os << sym->getName() << "\n";
232         i = clusters[i].next;
233         if (i == leader)
234           break;
235       }
236   }
237 
238   return orderMap;
239 }
240 
241 // Sort sections by the profile data provided by  /call-graph-ordering-file
242 //
243 // This first builds a call graph based on the profile data then merges sections
244 // according to the C³ heuristic. All clusters are then sorted by a density
245 // metric to further improve locality.
246 DenseMap<const SectionChunk *, int>
247 coff::computeCallGraphProfileOrder(const COFFLinkerContext &ctx) {
248   return CallGraphSort(ctx).run();
249 }
250