xref: /freebsd/contrib/llvm-project/lld/COFF/CallGraphSort.cpp (revision 370e009188ba90c3290b1479aa06ec98b66e140a)
1 //===- CallGraphSort.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This is based on the ELF port, see ELF/CallGraphSort.cpp for the details
10 /// about the algorithm.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "CallGraphSort.h"
15 #include "COFFLinkerContext.h"
16 #include "InputFiles.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "lld/Common/ErrorHandler.h"
20 
21 #include <numeric>
22 
23 using namespace llvm;
24 using namespace lld;
25 using namespace lld::coff;
26 
27 namespace {
28 struct Edge {
29   int from;
30   uint64_t weight;
31 };
32 
33 struct Cluster {
34   Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
35 
36   double getDensity() const {
37     if (size == 0)
38       return 0;
39     return double(weight) / double(size);
40   }
41 
42   int next;
43   int prev;
44   uint64_t size;
45   uint64_t weight = 0;
46   uint64_t initialWeight = 0;
47   Edge bestPred = {-1, 0};
48 };
49 
50 class CallGraphSort {
51 public:
52   CallGraphSort(const COFFLinkerContext &ctx);
53 
54   DenseMap<const SectionChunk *, int> run();
55 
56 private:
57   std::vector<Cluster> clusters;
58   std::vector<const SectionChunk *> sections;
59 };
60 
61 // Maximum amount the combined cluster density can be worse than the original
62 // cluster to consider merging.
63 constexpr int MAX_DENSITY_DEGRADATION = 8;
64 
65 // Maximum cluster size in bytes.
66 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
67 } // end anonymous namespace
68 
69 using SectionPair = std::pair<const SectionChunk *, const SectionChunk *>;
70 
71 // Take the edge list in Config->CallGraphProfile, resolve symbol names to
72 // Symbols, and generate a graph between InputSections with the provided
73 // weights.
74 CallGraphSort::CallGraphSort(const COFFLinkerContext &ctx) {
75   MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
76   DenseMap<const SectionChunk *, int> secToCluster;
77 
78   auto getOrCreateNode = [&](const SectionChunk *isec) -> int {
79     auto res = secToCluster.try_emplace(isec, clusters.size());
80     if (res.second) {
81       sections.push_back(isec);
82       clusters.emplace_back(clusters.size(), isec->getSize());
83     }
84     return res.first->second;
85   };
86 
87   // Create the graph.
88   for (std::pair<SectionPair, uint64_t> &c : profile) {
89     const auto *fromSec = cast<SectionChunk>(c.first.first->repl);
90     const auto *toSec = cast<SectionChunk>(c.first.second->repl);
91     uint64_t weight = c.second;
92 
93     // Ignore edges between input sections belonging to different output
94     // sections.  This is done because otherwise we would end up with clusters
95     // containing input sections that can't actually be placed adjacently in the
96     // output.  This messes with the cluster size and density calculations.  We
97     // would also end up moving input sections in other output sections without
98     // moving them closer to what calls them.
99     if (ctx.getOutputSection(fromSec) != ctx.getOutputSection(toSec))
100       continue;
101 
102     int from = getOrCreateNode(fromSec);
103     int to = getOrCreateNode(toSec);
104 
105     clusters[to].weight += weight;
106 
107     if (from == to)
108       continue;
109 
110     // Remember the best edge.
111     Cluster &toC = clusters[to];
112     if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
113       toC.bestPred.from = from;
114       toC.bestPred.weight = weight;
115     }
116   }
117   for (Cluster &c : clusters)
118     c.initialWeight = c.weight;
119 }
120 
121 // It's bad to merge clusters which would degrade the density too much.
122 static bool isNewDensityBad(Cluster &a, Cluster &b) {
123   double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
124   return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
125 }
126 
127 // Find the leader of V's belonged cluster (represented as an equivalence
128 // class). We apply union-find path-halving technique (simple to implement) in
129 // the meantime as it decreases depths and the time complexity.
130 static int getLeader(std::vector<int> &leaders, int v) {
131   while (leaders[v] != v) {
132     leaders[v] = leaders[leaders[v]];
133     v = leaders[v];
134   }
135   return v;
136 }
137 
138 static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
139                           Cluster &from, int fromIdx) {
140   int tail1 = into.prev, tail2 = from.prev;
141   into.prev = tail2;
142   cs[tail2].next = intoIdx;
143   from.prev = tail1;
144   cs[tail1].next = fromIdx;
145   into.size += from.size;
146   into.weight += from.weight;
147   from.size = 0;
148   from.weight = 0;
149 }
150 
151 // Group InputSections into clusters using the Call-Chain Clustering heuristic
152 // then sort the clusters by density.
153 DenseMap<const SectionChunk *, int> CallGraphSort::run() {
154   std::vector<int> sorted(clusters.size());
155   std::vector<int> leaders(clusters.size());
156 
157   std::iota(leaders.begin(), leaders.end(), 0);
158   std::iota(sorted.begin(), sorted.end(), 0);
159   llvm::stable_sort(sorted, [&](int a, int b) {
160     return clusters[a].getDensity() > clusters[b].getDensity();
161   });
162 
163   for (int l : sorted) {
164     // The cluster index is the same as the index of its leader here because
165     // clusters[L] has not been merged into another cluster yet.
166     Cluster &c = clusters[l];
167 
168     // Don't consider merging if the edge is unlikely.
169     if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
170       continue;
171 
172     int predL = getLeader(leaders, c.bestPred.from);
173     if (l == predL)
174       continue;
175 
176     Cluster *predC = &clusters[predL];
177     if (c.size + predC->size > MAX_CLUSTER_SIZE)
178       continue;
179 
180     if (isNewDensityBad(*predC, c))
181       continue;
182 
183     leaders[l] = predL;
184     mergeClusters(clusters, *predC, predL, c, l);
185   }
186 
187   // Sort remaining non-empty clusters by density.
188   sorted.clear();
189   for (int i = 0, e = (int)clusters.size(); i != e; ++i)
190     if (clusters[i].size > 0)
191       sorted.push_back(i);
192   llvm::stable_sort(sorted, [&](int a, int b) {
193     return clusters[a].getDensity() > clusters[b].getDensity();
194   });
195 
196   DenseMap<const SectionChunk *, int> orderMap;
197   // Sections will be sorted by increasing order. Absent sections will have
198   // priority 0 and be placed at the end of sections.
199   int curOrder = INT_MIN;
200   for (int leader : sorted) {
201     for (int i = leader;;) {
202       orderMap[sections[i]] = curOrder++;
203       i = clusters[i].next;
204       if (i == leader)
205         break;
206     }
207   }
208   if (!config->printSymbolOrder.empty()) {
209     std::error_code ec;
210     raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None);
211     if (ec) {
212       error("cannot open " + config->printSymbolOrder + ": " + ec.message());
213       return orderMap;
214     }
215     // Print the symbols ordered by C3, in the order of increasing curOrder
216     // Instead of sorting all the orderMap, just repeat the loops above.
217     for (int leader : sorted)
218       for (int i = leader;;) {
219         const SectionChunk *sc = sections[i];
220 
221         // Search all the symbols in the file of the section
222         // and find out a DefinedCOFF symbol with name that is within the
223         // section.
224         for (Symbol *sym : sc->file->getSymbols())
225           if (auto *d = dyn_cast_or_null<DefinedCOFF>(sym))
226             // Filter out non-COMDAT symbols and section symbols.
227             if (d->isCOMDAT && !d->getCOFFSymbol().isSection() &&
228                 sc == d->getChunk())
229               os << sym->getName() << "\n";
230         i = clusters[i].next;
231         if (i == leader)
232           break;
233       }
234   }
235 
236   return orderMap;
237 }
238 
239 // Sort sections by the profile data provided by  /call-graph-ordering-file
240 //
241 // This first builds a call graph based on the profile data then merges sections
242 // according to the C³ heuristic. All clusters are then sorted by a density
243 // metric to further improve locality.
244 DenseMap<const SectionChunk *, int>
245 coff::computeCallGraphProfileOrder(const COFFLinkerContext &ctx) {
246   return CallGraphSort(ctx).run();
247 }
248