xref: /freebsd/contrib/llvm-project/libunwind/src/UnwindCursor.hpp (revision a4e5e0106ac7145f56eb39a691e302cabb4635be)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //
8 // C++ interface to lower levels of libunwind
9 //===----------------------------------------------------------------------===//
10 
11 #ifndef __UNWINDCURSOR_HPP__
12 #define __UNWINDCURSOR_HPP__
13 
14 #include "cet_unwind.h"
15 #include <stdint.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <unwind.h>
19 
20 #ifdef _WIN32
21   #include <windows.h>
22   #include <ntverp.h>
23 #endif
24 #ifdef __APPLE__
25   #include <mach-o/dyld.h>
26 #endif
27 #ifdef _AIX
28 #include <dlfcn.h>
29 #include <sys/debug.h>
30 #include <sys/pseg.h>
31 #endif
32 
33 #if defined(_LIBUNWIND_TARGET_LINUX) &&                                        \
34     (defined(_LIBUNWIND_TARGET_AARCH64) || defined(_LIBUNWIND_TARGET_RISCV) || \
35      defined(_LIBUNWIND_TARGET_S390X))
36 #include <sys/syscall.h>
37 #include <sys/uio.h>
38 #include <unistd.h>
39 #define _LIBUNWIND_CHECK_LINUX_SIGRETURN 1
40 #endif
41 
42 #include "AddressSpace.hpp"
43 #include "CompactUnwinder.hpp"
44 #include "config.h"
45 #include "DwarfInstructions.hpp"
46 #include "EHHeaderParser.hpp"
47 #include "libunwind.h"
48 #include "libunwind_ext.h"
49 #include "Registers.hpp"
50 #include "RWMutex.hpp"
51 #include "Unwind-EHABI.h"
52 
53 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
54 // Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and
55 // earlier) SDKs.
56 // MinGW-w64 has always provided this struct.
57   #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \
58       !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000
59 struct _DISPATCHER_CONTEXT {
60   ULONG64 ControlPc;
61   ULONG64 ImageBase;
62   PRUNTIME_FUNCTION FunctionEntry;
63   ULONG64 EstablisherFrame;
64   ULONG64 TargetIp;
65   PCONTEXT ContextRecord;
66   PEXCEPTION_ROUTINE LanguageHandler;
67   PVOID HandlerData;
68   PUNWIND_HISTORY_TABLE HistoryTable;
69   ULONG ScopeIndex;
70   ULONG Fill0;
71 };
72   #endif
73 
74 struct UNWIND_INFO {
75   uint8_t Version : 3;
76   uint8_t Flags : 5;
77   uint8_t SizeOfProlog;
78   uint8_t CountOfCodes;
79   uint8_t FrameRegister : 4;
80   uint8_t FrameOffset : 4;
81   uint16_t UnwindCodes[2];
82 };
83 
84 extern "C" _Unwind_Reason_Code __libunwind_seh_personality(
85     int, _Unwind_Action, uint64_t, _Unwind_Exception *,
86     struct _Unwind_Context *);
87 
88 #endif
89 
90 namespace libunwind {
91 
92 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
93 /// Cache of recently found FDEs.
94 template <typename A>
95 class _LIBUNWIND_HIDDEN DwarfFDECache {
96   typedef typename A::pint_t pint_t;
97 public:
98   static constexpr pint_t kSearchAll = static_cast<pint_t>(-1);
99   static pint_t findFDE(pint_t mh, pint_t pc);
100   static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde);
101   static void removeAllIn(pint_t mh);
102   static void iterateCacheEntries(void (*func)(unw_word_t ip_start,
103                                                unw_word_t ip_end,
104                                                unw_word_t fde, unw_word_t mh));
105 
106 private:
107 
108   struct entry {
109     pint_t mh;
110     pint_t ip_start;
111     pint_t ip_end;
112     pint_t fde;
113   };
114 
115   // These fields are all static to avoid needing an initializer.
116   // There is only one instance of this class per process.
117   static RWMutex _lock;
118 #ifdef __APPLE__
119   static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide);
120   static bool _registeredForDyldUnloads;
121 #endif
122   static entry *_buffer;
123   static entry *_bufferUsed;
124   static entry *_bufferEnd;
125   static entry _initialBuffer[64];
126 };
127 
128 template <typename A>
129 typename DwarfFDECache<A>::entry *
130 DwarfFDECache<A>::_buffer = _initialBuffer;
131 
132 template <typename A>
133 typename DwarfFDECache<A>::entry *
134 DwarfFDECache<A>::_bufferUsed = _initialBuffer;
135 
136 template <typename A>
137 typename DwarfFDECache<A>::entry *
138 DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64];
139 
140 template <typename A>
141 typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64];
142 
143 template <typename A>
144 RWMutex DwarfFDECache<A>::_lock;
145 
146 #ifdef __APPLE__
147 template <typename A>
148 bool DwarfFDECache<A>::_registeredForDyldUnloads = false;
149 #endif
150 
151 template <typename A>
152 typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) {
153   pint_t result = 0;
154   _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared());
155   for (entry *p = _buffer; p < _bufferUsed; ++p) {
156     if ((mh == p->mh) || (mh == kSearchAll)) {
157       if ((p->ip_start <= pc) && (pc < p->ip_end)) {
158         result = p->fde;
159         break;
160       }
161     }
162   }
163   _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared());
164   return result;
165 }
166 
167 template <typename A>
168 void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end,
169                            pint_t fde) {
170 #if !defined(_LIBUNWIND_NO_HEAP)
171   _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
172   if (_bufferUsed >= _bufferEnd) {
173     size_t oldSize = (size_t)(_bufferEnd - _buffer);
174     size_t newSize = oldSize * 4;
175     // Can't use operator new (we are below it).
176     entry *newBuffer = (entry *)malloc(newSize * sizeof(entry));
177     memcpy(newBuffer, _buffer, oldSize * sizeof(entry));
178     if (_buffer != _initialBuffer)
179       free(_buffer);
180     _buffer = newBuffer;
181     _bufferUsed = &newBuffer[oldSize];
182     _bufferEnd = &newBuffer[newSize];
183   }
184   _bufferUsed->mh = mh;
185   _bufferUsed->ip_start = ip_start;
186   _bufferUsed->ip_end = ip_end;
187   _bufferUsed->fde = fde;
188   ++_bufferUsed;
189 #ifdef __APPLE__
190   if (!_registeredForDyldUnloads) {
191     _dyld_register_func_for_remove_image(&dyldUnloadHook);
192     _registeredForDyldUnloads = true;
193   }
194 #endif
195   _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
196 #endif
197 }
198 
199 template <typename A>
200 void DwarfFDECache<A>::removeAllIn(pint_t mh) {
201   _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
202   entry *d = _buffer;
203   for (const entry *s = _buffer; s < _bufferUsed; ++s) {
204     if (s->mh != mh) {
205       if (d != s)
206         *d = *s;
207       ++d;
208     }
209   }
210   _bufferUsed = d;
211   _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
212 }
213 
214 #ifdef __APPLE__
215 template <typename A>
216 void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) {
217   removeAllIn((pint_t) mh);
218 }
219 #endif
220 
221 template <typename A>
222 void DwarfFDECache<A>::iterateCacheEntries(void (*func)(
223     unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) {
224   _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
225   for (entry *p = _buffer; p < _bufferUsed; ++p) {
226     (*func)(p->ip_start, p->ip_end, p->fde, p->mh);
227   }
228   _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
229 }
230 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
231 
232 
233 #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field))
234 
235 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
236 template <typename A> class UnwindSectionHeader {
237 public:
238   UnwindSectionHeader(A &addressSpace, typename A::pint_t addr)
239       : _addressSpace(addressSpace), _addr(addr) {}
240 
241   uint32_t version() const {
242     return _addressSpace.get32(_addr +
243                                offsetof(unwind_info_section_header, version));
244   }
245   uint32_t commonEncodingsArraySectionOffset() const {
246     return _addressSpace.get32(_addr +
247                                offsetof(unwind_info_section_header,
248                                         commonEncodingsArraySectionOffset));
249   }
250   uint32_t commonEncodingsArrayCount() const {
251     return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
252                                                 commonEncodingsArrayCount));
253   }
254   uint32_t personalityArraySectionOffset() const {
255     return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
256                                                 personalityArraySectionOffset));
257   }
258   uint32_t personalityArrayCount() const {
259     return _addressSpace.get32(
260         _addr + offsetof(unwind_info_section_header, personalityArrayCount));
261   }
262   uint32_t indexSectionOffset() const {
263     return _addressSpace.get32(
264         _addr + offsetof(unwind_info_section_header, indexSectionOffset));
265   }
266   uint32_t indexCount() const {
267     return _addressSpace.get32(
268         _addr + offsetof(unwind_info_section_header, indexCount));
269   }
270 
271 private:
272   A                     &_addressSpace;
273   typename A::pint_t     _addr;
274 };
275 
276 template <typename A> class UnwindSectionIndexArray {
277 public:
278   UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr)
279       : _addressSpace(addressSpace), _addr(addr) {}
280 
281   uint32_t functionOffset(uint32_t index) const {
282     return _addressSpace.get32(
283         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
284                               functionOffset));
285   }
286   uint32_t secondLevelPagesSectionOffset(uint32_t index) const {
287     return _addressSpace.get32(
288         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
289                               secondLevelPagesSectionOffset));
290   }
291   uint32_t lsdaIndexArraySectionOffset(uint32_t index) const {
292     return _addressSpace.get32(
293         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
294                               lsdaIndexArraySectionOffset));
295   }
296 
297 private:
298   A                   &_addressSpace;
299   typename A::pint_t   _addr;
300 };
301 
302 template <typename A> class UnwindSectionRegularPageHeader {
303 public:
304   UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr)
305       : _addressSpace(addressSpace), _addr(addr) {}
306 
307   uint32_t kind() const {
308     return _addressSpace.get32(
309         _addr + offsetof(unwind_info_regular_second_level_page_header, kind));
310   }
311   uint16_t entryPageOffset() const {
312     return _addressSpace.get16(
313         _addr + offsetof(unwind_info_regular_second_level_page_header,
314                          entryPageOffset));
315   }
316   uint16_t entryCount() const {
317     return _addressSpace.get16(
318         _addr +
319         offsetof(unwind_info_regular_second_level_page_header, entryCount));
320   }
321 
322 private:
323   A &_addressSpace;
324   typename A::pint_t _addr;
325 };
326 
327 template <typename A> class UnwindSectionRegularArray {
328 public:
329   UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr)
330       : _addressSpace(addressSpace), _addr(addr) {}
331 
332   uint32_t functionOffset(uint32_t index) const {
333     return _addressSpace.get32(
334         _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index,
335                               functionOffset));
336   }
337   uint32_t encoding(uint32_t index) const {
338     return _addressSpace.get32(
339         _addr +
340         arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding));
341   }
342 
343 private:
344   A &_addressSpace;
345   typename A::pint_t _addr;
346 };
347 
348 template <typename A> class UnwindSectionCompressedPageHeader {
349 public:
350   UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr)
351       : _addressSpace(addressSpace), _addr(addr) {}
352 
353   uint32_t kind() const {
354     return _addressSpace.get32(
355         _addr +
356         offsetof(unwind_info_compressed_second_level_page_header, kind));
357   }
358   uint16_t entryPageOffset() const {
359     return _addressSpace.get16(
360         _addr + offsetof(unwind_info_compressed_second_level_page_header,
361                          entryPageOffset));
362   }
363   uint16_t entryCount() const {
364     return _addressSpace.get16(
365         _addr +
366         offsetof(unwind_info_compressed_second_level_page_header, entryCount));
367   }
368   uint16_t encodingsPageOffset() const {
369     return _addressSpace.get16(
370         _addr + offsetof(unwind_info_compressed_second_level_page_header,
371                          encodingsPageOffset));
372   }
373   uint16_t encodingsCount() const {
374     return _addressSpace.get16(
375         _addr + offsetof(unwind_info_compressed_second_level_page_header,
376                          encodingsCount));
377   }
378 
379 private:
380   A &_addressSpace;
381   typename A::pint_t _addr;
382 };
383 
384 template <typename A> class UnwindSectionCompressedArray {
385 public:
386   UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr)
387       : _addressSpace(addressSpace), _addr(addr) {}
388 
389   uint32_t functionOffset(uint32_t index) const {
390     return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(
391         _addressSpace.get32(_addr + index * sizeof(uint32_t)));
392   }
393   uint16_t encodingIndex(uint32_t index) const {
394     return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(
395         _addressSpace.get32(_addr + index * sizeof(uint32_t)));
396   }
397 
398 private:
399   A &_addressSpace;
400   typename A::pint_t _addr;
401 };
402 
403 template <typename A> class UnwindSectionLsdaArray {
404 public:
405   UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr)
406       : _addressSpace(addressSpace), _addr(addr) {}
407 
408   uint32_t functionOffset(uint32_t index) const {
409     return _addressSpace.get32(
410         _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
411                               index, functionOffset));
412   }
413   uint32_t lsdaOffset(uint32_t index) const {
414     return _addressSpace.get32(
415         _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
416                               index, lsdaOffset));
417   }
418 
419 private:
420   A                   &_addressSpace;
421   typename A::pint_t   _addr;
422 };
423 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
424 
425 class _LIBUNWIND_HIDDEN AbstractUnwindCursor {
426 public:
427   // NOTE: provide a class specific placement deallocation function (S5.3.4 p20)
428   // This avoids an unnecessary dependency to libc++abi.
429   void operator delete(void *, size_t) {}
430 
431   virtual ~AbstractUnwindCursor() {}
432   virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); }
433   virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); }
434   virtual void setReg(int, unw_word_t) {
435     _LIBUNWIND_ABORT("setReg not implemented");
436   }
437   virtual bool validFloatReg(int) {
438     _LIBUNWIND_ABORT("validFloatReg not implemented");
439   }
440   virtual unw_fpreg_t getFloatReg(int) {
441     _LIBUNWIND_ABORT("getFloatReg not implemented");
442   }
443   virtual void setFloatReg(int, unw_fpreg_t) {
444     _LIBUNWIND_ABORT("setFloatReg not implemented");
445   }
446   virtual int step(bool = false) { _LIBUNWIND_ABORT("step not implemented"); }
447   virtual void getInfo(unw_proc_info_t *) {
448     _LIBUNWIND_ABORT("getInfo not implemented");
449   }
450   virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); }
451   virtual bool isSignalFrame() {
452     _LIBUNWIND_ABORT("isSignalFrame not implemented");
453   }
454   virtual bool getFunctionName(char *, size_t, unw_word_t *) {
455     _LIBUNWIND_ABORT("getFunctionName not implemented");
456   }
457   virtual void setInfoBasedOnIPRegister(bool = false) {
458     _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented");
459   }
460   virtual const char *getRegisterName(int) {
461     _LIBUNWIND_ABORT("getRegisterName not implemented");
462   }
463 #ifdef __arm__
464   virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); }
465 #endif
466 
467 #ifdef _AIX
468   virtual uintptr_t getDataRelBase() {
469     _LIBUNWIND_ABORT("getDataRelBase not implemented");
470   }
471 #endif
472 
473 #if defined(_LIBUNWIND_USE_CET)
474   virtual void *get_registers() {
475     _LIBUNWIND_ABORT("get_registers not implemented");
476   }
477 #endif
478 };
479 
480 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)
481 
482 /// \c UnwindCursor contains all state (including all register values) during
483 /// an unwind.  This is normally stack-allocated inside a unw_cursor_t.
484 template <typename A, typename R>
485 class UnwindCursor : public AbstractUnwindCursor {
486   typedef typename A::pint_t pint_t;
487 public:
488                       UnwindCursor(unw_context_t *context, A &as);
489                       UnwindCursor(CONTEXT *context, A &as);
490                       UnwindCursor(A &as, void *threadArg);
491   virtual             ~UnwindCursor() {}
492   virtual bool        validReg(int);
493   virtual unw_word_t  getReg(int);
494   virtual void        setReg(int, unw_word_t);
495   virtual bool        validFloatReg(int);
496   virtual unw_fpreg_t getFloatReg(int);
497   virtual void        setFloatReg(int, unw_fpreg_t);
498   virtual int         step(bool = false);
499   virtual void        getInfo(unw_proc_info_t *);
500   virtual void        jumpto();
501   virtual bool        isSignalFrame();
502   virtual bool        getFunctionName(char *buf, size_t len, unw_word_t *off);
503   virtual void        setInfoBasedOnIPRegister(bool isReturnAddress = false);
504   virtual const char *getRegisterName(int num);
505 #ifdef __arm__
506   virtual void        saveVFPAsX();
507 #endif
508 
509   DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; }
510   void setDispatcherContext(DISPATCHER_CONTEXT *disp) {
511     _dispContext = *disp;
512     _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData);
513     if (_dispContext.LanguageHandler) {
514       _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
515     } else
516       _info.handler = 0;
517   }
518 
519   // libunwind does not and should not depend on C++ library which means that we
520   // need our own definition of inline placement new.
521   static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; }
522 
523 private:
524 
525   pint_t getLastPC() const { return _dispContext.ControlPc; }
526   void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; }
527   RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
528 #ifdef __arm__
529     // Remove the thumb bit; FunctionEntry ranges don't include the thumb bit.
530     pc &= ~1U;
531 #endif
532     // If pc points exactly at the end of the range, we might resolve the
533     // next function instead. Decrement pc by 1 to fit inside the current
534     // function.
535     pc -= 1;
536     _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc,
537                                                         &_dispContext.ImageBase,
538                                                         _dispContext.HistoryTable);
539     *base = _dispContext.ImageBase;
540     return _dispContext.FunctionEntry;
541   }
542   bool getInfoFromSEH(pint_t pc);
543   int stepWithSEHData() {
544     _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER,
545                                                     _dispContext.ImageBase,
546                                                     _dispContext.ControlPc,
547                                                     _dispContext.FunctionEntry,
548                                                     _dispContext.ContextRecord,
549                                                     &_dispContext.HandlerData,
550                                                     &_dispContext.EstablisherFrame,
551                                                     NULL);
552     // Update some fields of the unwind info now, since we have them.
553     _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData);
554     if (_dispContext.LanguageHandler) {
555       _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
556     } else
557       _info.handler = 0;
558     return UNW_STEP_SUCCESS;
559   }
560 
561   A                   &_addressSpace;
562   unw_proc_info_t      _info;
563   DISPATCHER_CONTEXT   _dispContext;
564   CONTEXT              _msContext;
565   UNWIND_HISTORY_TABLE _histTable;
566   bool                 _unwindInfoMissing;
567 };
568 
569 
570 template <typename A, typename R>
571 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
572     : _addressSpace(as), _unwindInfoMissing(false) {
573   static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
574                 "UnwindCursor<> does not fit in unw_cursor_t");
575   static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)),
576                 "UnwindCursor<> requires more alignment than unw_cursor_t");
577   memset(&_info, 0, sizeof(_info));
578   memset(&_histTable, 0, sizeof(_histTable));
579   memset(&_dispContext, 0, sizeof(_dispContext));
580   _dispContext.ContextRecord = &_msContext;
581   _dispContext.HistoryTable = &_histTable;
582   // Initialize MS context from ours.
583   R r(context);
584   RtlCaptureContext(&_msContext);
585   _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT;
586 #if defined(_LIBUNWIND_TARGET_X86_64)
587   _msContext.Rax = r.getRegister(UNW_X86_64_RAX);
588   _msContext.Rcx = r.getRegister(UNW_X86_64_RCX);
589   _msContext.Rdx = r.getRegister(UNW_X86_64_RDX);
590   _msContext.Rbx = r.getRegister(UNW_X86_64_RBX);
591   _msContext.Rsp = r.getRegister(UNW_X86_64_RSP);
592   _msContext.Rbp = r.getRegister(UNW_X86_64_RBP);
593   _msContext.Rsi = r.getRegister(UNW_X86_64_RSI);
594   _msContext.Rdi = r.getRegister(UNW_X86_64_RDI);
595   _msContext.R8 = r.getRegister(UNW_X86_64_R8);
596   _msContext.R9 = r.getRegister(UNW_X86_64_R9);
597   _msContext.R10 = r.getRegister(UNW_X86_64_R10);
598   _msContext.R11 = r.getRegister(UNW_X86_64_R11);
599   _msContext.R12 = r.getRegister(UNW_X86_64_R12);
600   _msContext.R13 = r.getRegister(UNW_X86_64_R13);
601   _msContext.R14 = r.getRegister(UNW_X86_64_R14);
602   _msContext.R15 = r.getRegister(UNW_X86_64_R15);
603   _msContext.Rip = r.getRegister(UNW_REG_IP);
604   union {
605     v128 v;
606     M128A m;
607   } t;
608   t.v = r.getVectorRegister(UNW_X86_64_XMM0);
609   _msContext.Xmm0 = t.m;
610   t.v = r.getVectorRegister(UNW_X86_64_XMM1);
611   _msContext.Xmm1 = t.m;
612   t.v = r.getVectorRegister(UNW_X86_64_XMM2);
613   _msContext.Xmm2 = t.m;
614   t.v = r.getVectorRegister(UNW_X86_64_XMM3);
615   _msContext.Xmm3 = t.m;
616   t.v = r.getVectorRegister(UNW_X86_64_XMM4);
617   _msContext.Xmm4 = t.m;
618   t.v = r.getVectorRegister(UNW_X86_64_XMM5);
619   _msContext.Xmm5 = t.m;
620   t.v = r.getVectorRegister(UNW_X86_64_XMM6);
621   _msContext.Xmm6 = t.m;
622   t.v = r.getVectorRegister(UNW_X86_64_XMM7);
623   _msContext.Xmm7 = t.m;
624   t.v = r.getVectorRegister(UNW_X86_64_XMM8);
625   _msContext.Xmm8 = t.m;
626   t.v = r.getVectorRegister(UNW_X86_64_XMM9);
627   _msContext.Xmm9 = t.m;
628   t.v = r.getVectorRegister(UNW_X86_64_XMM10);
629   _msContext.Xmm10 = t.m;
630   t.v = r.getVectorRegister(UNW_X86_64_XMM11);
631   _msContext.Xmm11 = t.m;
632   t.v = r.getVectorRegister(UNW_X86_64_XMM12);
633   _msContext.Xmm12 = t.m;
634   t.v = r.getVectorRegister(UNW_X86_64_XMM13);
635   _msContext.Xmm13 = t.m;
636   t.v = r.getVectorRegister(UNW_X86_64_XMM14);
637   _msContext.Xmm14 = t.m;
638   t.v = r.getVectorRegister(UNW_X86_64_XMM15);
639   _msContext.Xmm15 = t.m;
640 #elif defined(_LIBUNWIND_TARGET_ARM)
641   _msContext.R0 = r.getRegister(UNW_ARM_R0);
642   _msContext.R1 = r.getRegister(UNW_ARM_R1);
643   _msContext.R2 = r.getRegister(UNW_ARM_R2);
644   _msContext.R3 = r.getRegister(UNW_ARM_R3);
645   _msContext.R4 = r.getRegister(UNW_ARM_R4);
646   _msContext.R5 = r.getRegister(UNW_ARM_R5);
647   _msContext.R6 = r.getRegister(UNW_ARM_R6);
648   _msContext.R7 = r.getRegister(UNW_ARM_R7);
649   _msContext.R8 = r.getRegister(UNW_ARM_R8);
650   _msContext.R9 = r.getRegister(UNW_ARM_R9);
651   _msContext.R10 = r.getRegister(UNW_ARM_R10);
652   _msContext.R11 = r.getRegister(UNW_ARM_R11);
653   _msContext.R12 = r.getRegister(UNW_ARM_R12);
654   _msContext.Sp = r.getRegister(UNW_ARM_SP);
655   _msContext.Lr = r.getRegister(UNW_ARM_LR);
656   _msContext.Pc = r.getRegister(UNW_ARM_IP);
657   for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) {
658     union {
659       uint64_t w;
660       double d;
661     } d;
662     d.d = r.getFloatRegister(i);
663     _msContext.D[i - UNW_ARM_D0] = d.w;
664   }
665 #elif defined(_LIBUNWIND_TARGET_AARCH64)
666   for (int i = UNW_AARCH64_X0; i <= UNW_ARM64_X30; ++i)
667     _msContext.X[i - UNW_AARCH64_X0] = r.getRegister(i);
668   _msContext.Sp = r.getRegister(UNW_REG_SP);
669   _msContext.Pc = r.getRegister(UNW_REG_IP);
670   for (int i = UNW_AARCH64_V0; i <= UNW_ARM64_D31; ++i)
671     _msContext.V[i - UNW_AARCH64_V0].D[0] = r.getFloatRegister(i);
672 #endif
673 }
674 
675 template <typename A, typename R>
676 UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as)
677     : _addressSpace(as), _unwindInfoMissing(false) {
678   static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
679                 "UnwindCursor<> does not fit in unw_cursor_t");
680   memset(&_info, 0, sizeof(_info));
681   memset(&_histTable, 0, sizeof(_histTable));
682   memset(&_dispContext, 0, sizeof(_dispContext));
683   _dispContext.ContextRecord = &_msContext;
684   _dispContext.HistoryTable = &_histTable;
685   _msContext = *context;
686 }
687 
688 
689 template <typename A, typename R>
690 bool UnwindCursor<A, R>::validReg(int regNum) {
691   if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true;
692 #if defined(_LIBUNWIND_TARGET_X86_64)
693   if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_RIP) return true;
694 #elif defined(_LIBUNWIND_TARGET_ARM)
695   if ((regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) ||
696       regNum == UNW_ARM_RA_AUTH_CODE)
697     return true;
698 #elif defined(_LIBUNWIND_TARGET_AARCH64)
699   if (regNum >= UNW_AARCH64_X0 && regNum <= UNW_ARM64_X30) return true;
700 #endif
701   return false;
702 }
703 
704 template <typename A, typename R>
705 unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
706   switch (regNum) {
707 #if defined(_LIBUNWIND_TARGET_X86_64)
708   case UNW_X86_64_RIP:
709   case UNW_REG_IP: return _msContext.Rip;
710   case UNW_X86_64_RAX: return _msContext.Rax;
711   case UNW_X86_64_RDX: return _msContext.Rdx;
712   case UNW_X86_64_RCX: return _msContext.Rcx;
713   case UNW_X86_64_RBX: return _msContext.Rbx;
714   case UNW_REG_SP:
715   case UNW_X86_64_RSP: return _msContext.Rsp;
716   case UNW_X86_64_RBP: return _msContext.Rbp;
717   case UNW_X86_64_RSI: return _msContext.Rsi;
718   case UNW_X86_64_RDI: return _msContext.Rdi;
719   case UNW_X86_64_R8: return _msContext.R8;
720   case UNW_X86_64_R9: return _msContext.R9;
721   case UNW_X86_64_R10: return _msContext.R10;
722   case UNW_X86_64_R11: return _msContext.R11;
723   case UNW_X86_64_R12: return _msContext.R12;
724   case UNW_X86_64_R13: return _msContext.R13;
725   case UNW_X86_64_R14: return _msContext.R14;
726   case UNW_X86_64_R15: return _msContext.R15;
727 #elif defined(_LIBUNWIND_TARGET_ARM)
728   case UNW_ARM_R0: return _msContext.R0;
729   case UNW_ARM_R1: return _msContext.R1;
730   case UNW_ARM_R2: return _msContext.R2;
731   case UNW_ARM_R3: return _msContext.R3;
732   case UNW_ARM_R4: return _msContext.R4;
733   case UNW_ARM_R5: return _msContext.R5;
734   case UNW_ARM_R6: return _msContext.R6;
735   case UNW_ARM_R7: return _msContext.R7;
736   case UNW_ARM_R8: return _msContext.R8;
737   case UNW_ARM_R9: return _msContext.R9;
738   case UNW_ARM_R10: return _msContext.R10;
739   case UNW_ARM_R11: return _msContext.R11;
740   case UNW_ARM_R12: return _msContext.R12;
741   case UNW_REG_SP:
742   case UNW_ARM_SP: return _msContext.Sp;
743   case UNW_ARM_LR: return _msContext.Lr;
744   case UNW_REG_IP:
745   case UNW_ARM_IP: return _msContext.Pc;
746 #elif defined(_LIBUNWIND_TARGET_AARCH64)
747   case UNW_REG_SP: return _msContext.Sp;
748   case UNW_REG_IP: return _msContext.Pc;
749   default: return _msContext.X[regNum - UNW_AARCH64_X0];
750 #endif
751   }
752   _LIBUNWIND_ABORT("unsupported register");
753 }
754 
755 template <typename A, typename R>
756 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
757   switch (regNum) {
758 #if defined(_LIBUNWIND_TARGET_X86_64)
759   case UNW_X86_64_RIP:
760   case UNW_REG_IP: _msContext.Rip = value; break;
761   case UNW_X86_64_RAX: _msContext.Rax = value; break;
762   case UNW_X86_64_RDX: _msContext.Rdx = value; break;
763   case UNW_X86_64_RCX: _msContext.Rcx = value; break;
764   case UNW_X86_64_RBX: _msContext.Rbx = value; break;
765   case UNW_REG_SP:
766   case UNW_X86_64_RSP: _msContext.Rsp = value; break;
767   case UNW_X86_64_RBP: _msContext.Rbp = value; break;
768   case UNW_X86_64_RSI: _msContext.Rsi = value; break;
769   case UNW_X86_64_RDI: _msContext.Rdi = value; break;
770   case UNW_X86_64_R8: _msContext.R8 = value; break;
771   case UNW_X86_64_R9: _msContext.R9 = value; break;
772   case UNW_X86_64_R10: _msContext.R10 = value; break;
773   case UNW_X86_64_R11: _msContext.R11 = value; break;
774   case UNW_X86_64_R12: _msContext.R12 = value; break;
775   case UNW_X86_64_R13: _msContext.R13 = value; break;
776   case UNW_X86_64_R14: _msContext.R14 = value; break;
777   case UNW_X86_64_R15: _msContext.R15 = value; break;
778 #elif defined(_LIBUNWIND_TARGET_ARM)
779   case UNW_ARM_R0: _msContext.R0 = value; break;
780   case UNW_ARM_R1: _msContext.R1 = value; break;
781   case UNW_ARM_R2: _msContext.R2 = value; break;
782   case UNW_ARM_R3: _msContext.R3 = value; break;
783   case UNW_ARM_R4: _msContext.R4 = value; break;
784   case UNW_ARM_R5: _msContext.R5 = value; break;
785   case UNW_ARM_R6: _msContext.R6 = value; break;
786   case UNW_ARM_R7: _msContext.R7 = value; break;
787   case UNW_ARM_R8: _msContext.R8 = value; break;
788   case UNW_ARM_R9: _msContext.R9 = value; break;
789   case UNW_ARM_R10: _msContext.R10 = value; break;
790   case UNW_ARM_R11: _msContext.R11 = value; break;
791   case UNW_ARM_R12: _msContext.R12 = value; break;
792   case UNW_REG_SP:
793   case UNW_ARM_SP: _msContext.Sp = value; break;
794   case UNW_ARM_LR: _msContext.Lr = value; break;
795   case UNW_REG_IP:
796   case UNW_ARM_IP: _msContext.Pc = value; break;
797 #elif defined(_LIBUNWIND_TARGET_AARCH64)
798   case UNW_REG_SP: _msContext.Sp = value; break;
799   case UNW_REG_IP: _msContext.Pc = value; break;
800   case UNW_AARCH64_X0:
801   case UNW_AARCH64_X1:
802   case UNW_AARCH64_X2:
803   case UNW_AARCH64_X3:
804   case UNW_AARCH64_X4:
805   case UNW_AARCH64_X5:
806   case UNW_AARCH64_X6:
807   case UNW_AARCH64_X7:
808   case UNW_AARCH64_X8:
809   case UNW_AARCH64_X9:
810   case UNW_AARCH64_X10:
811   case UNW_AARCH64_X11:
812   case UNW_AARCH64_X12:
813   case UNW_AARCH64_X13:
814   case UNW_AARCH64_X14:
815   case UNW_AARCH64_X15:
816   case UNW_AARCH64_X16:
817   case UNW_AARCH64_X17:
818   case UNW_AARCH64_X18:
819   case UNW_AARCH64_X19:
820   case UNW_AARCH64_X20:
821   case UNW_AARCH64_X21:
822   case UNW_AARCH64_X22:
823   case UNW_AARCH64_X23:
824   case UNW_AARCH64_X24:
825   case UNW_AARCH64_X25:
826   case UNW_AARCH64_X26:
827   case UNW_AARCH64_X27:
828   case UNW_AARCH64_X28:
829   case UNW_AARCH64_FP:
830   case UNW_AARCH64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break;
831 #endif
832   default:
833     _LIBUNWIND_ABORT("unsupported register");
834   }
835 }
836 
837 template <typename A, typename R>
838 bool UnwindCursor<A, R>::validFloatReg(int regNum) {
839 #if defined(_LIBUNWIND_TARGET_ARM)
840   if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true;
841   if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true;
842 #elif defined(_LIBUNWIND_TARGET_AARCH64)
843   if (regNum >= UNW_AARCH64_V0 && regNum <= UNW_ARM64_D31) return true;
844 #else
845   (void)regNum;
846 #endif
847   return false;
848 }
849 
850 template <typename A, typename R>
851 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
852 #if defined(_LIBUNWIND_TARGET_ARM)
853   if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
854     union {
855       uint32_t w;
856       float f;
857     } d;
858     d.w = _msContext.S[regNum - UNW_ARM_S0];
859     return d.f;
860   }
861   if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
862     union {
863       uint64_t w;
864       double d;
865     } d;
866     d.w = _msContext.D[regNum - UNW_ARM_D0];
867     return d.d;
868   }
869   _LIBUNWIND_ABORT("unsupported float register");
870 #elif defined(_LIBUNWIND_TARGET_AARCH64)
871   return _msContext.V[regNum - UNW_AARCH64_V0].D[0];
872 #else
873   (void)regNum;
874   _LIBUNWIND_ABORT("float registers unimplemented");
875 #endif
876 }
877 
878 template <typename A, typename R>
879 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
880 #if defined(_LIBUNWIND_TARGET_ARM)
881   if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
882     union {
883       uint32_t w;
884       float f;
885     } d;
886     d.f = (float)value;
887     _msContext.S[regNum - UNW_ARM_S0] = d.w;
888   }
889   if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
890     union {
891       uint64_t w;
892       double d;
893     } d;
894     d.d = value;
895     _msContext.D[regNum - UNW_ARM_D0] = d.w;
896   }
897   _LIBUNWIND_ABORT("unsupported float register");
898 #elif defined(_LIBUNWIND_TARGET_AARCH64)
899   _msContext.V[regNum - UNW_AARCH64_V0].D[0] = value;
900 #else
901   (void)regNum;
902   (void)value;
903   _LIBUNWIND_ABORT("float registers unimplemented");
904 #endif
905 }
906 
907 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
908   RtlRestoreContext(&_msContext, nullptr);
909 }
910 
911 #ifdef __arm__
912 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {}
913 #endif
914 
915 template <typename A, typename R>
916 const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
917   return R::getRegisterName(regNum);
918 }
919 
920 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
921   return false;
922 }
923 
924 #else  // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32)
925 
926 /// UnwindCursor contains all state (including all register values) during
927 /// an unwind.  This is normally stack allocated inside a unw_cursor_t.
928 template <typename A, typename R>
929 class UnwindCursor : public AbstractUnwindCursor{
930   typedef typename A::pint_t pint_t;
931 public:
932                       UnwindCursor(unw_context_t *context, A &as);
933                       UnwindCursor(A &as, void *threadArg);
934   virtual             ~UnwindCursor() {}
935   virtual bool        validReg(int);
936   virtual unw_word_t  getReg(int);
937   virtual void        setReg(int, unw_word_t);
938   virtual bool        validFloatReg(int);
939   virtual unw_fpreg_t getFloatReg(int);
940   virtual void        setFloatReg(int, unw_fpreg_t);
941   virtual int         step(bool stage2 = false);
942   virtual void        getInfo(unw_proc_info_t *);
943   virtual void        jumpto();
944   virtual bool        isSignalFrame();
945   virtual bool        getFunctionName(char *buf, size_t len, unw_word_t *off);
946   virtual void        setInfoBasedOnIPRegister(bool isReturnAddress = false);
947   virtual const char *getRegisterName(int num);
948 #ifdef __arm__
949   virtual void        saveVFPAsX();
950 #endif
951 
952 #ifdef _AIX
953   virtual uintptr_t getDataRelBase();
954 #endif
955 
956 #if defined(_LIBUNWIND_USE_CET)
957   virtual void *get_registers() { return &_registers; }
958 #endif
959 
960   // libunwind does not and should not depend on C++ library which means that we
961   // need our own definition of inline placement new.
962   static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; }
963 
964 private:
965 
966 #if defined(_LIBUNWIND_ARM_EHABI)
967   bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections &sects);
968 
969   int stepWithEHABI() {
970     size_t len = 0;
971     size_t off = 0;
972     // FIXME: Calling decode_eht_entry() here is violating the libunwind
973     // abstraction layer.
974     const uint32_t *ehtp =
975         decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info),
976                          &off, &len);
977     if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) !=
978             _URC_CONTINUE_UNWIND)
979       return UNW_STEP_END;
980     return UNW_STEP_SUCCESS;
981   }
982 #endif
983 
984 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
985   bool setInfoForSigReturn() {
986     R dummy;
987     return setInfoForSigReturn(dummy);
988   }
989   int stepThroughSigReturn() {
990     R dummy;
991     return stepThroughSigReturn(dummy);
992   }
993 #if defined(_LIBUNWIND_TARGET_AARCH64)
994   bool setInfoForSigReturn(Registers_arm64 &);
995   int stepThroughSigReturn(Registers_arm64 &);
996 #endif
997 #if defined(_LIBUNWIND_TARGET_RISCV)
998   bool setInfoForSigReturn(Registers_riscv &);
999   int stepThroughSigReturn(Registers_riscv &);
1000 #endif
1001 #if defined(_LIBUNWIND_TARGET_S390X)
1002   bool setInfoForSigReturn(Registers_s390x &);
1003   int stepThroughSigReturn(Registers_s390x &);
1004 #endif
1005   template <typename Registers> bool setInfoForSigReturn(Registers &) {
1006     return false;
1007   }
1008   template <typename Registers> int stepThroughSigReturn(Registers &) {
1009     return UNW_STEP_END;
1010   }
1011 #endif
1012 
1013 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1014   bool getInfoFromFdeCie(const typename CFI_Parser<A>::FDE_Info &fdeInfo,
1015                          const typename CFI_Parser<A>::CIE_Info &cieInfo,
1016                          pint_t pc, uintptr_t dso_base);
1017   bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections &sects,
1018                                             uint32_t fdeSectionOffsetHint=0);
1019   int stepWithDwarfFDE(bool stage2) {
1020     return DwarfInstructions<A, R>::stepWithDwarf(
1021         _addressSpace, (pint_t)this->getReg(UNW_REG_IP),
1022         (pint_t)_info.unwind_info, _registers, _isSignalFrame, stage2);
1023   }
1024 #endif
1025 
1026 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1027   bool getInfoFromCompactEncodingSection(pint_t pc,
1028                                             const UnwindInfoSections &sects);
1029   int stepWithCompactEncoding(bool stage2 = false) {
1030 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1031     if ( compactSaysUseDwarf() )
1032       return stepWithDwarfFDE(stage2);
1033 #endif
1034     R dummy;
1035     return stepWithCompactEncoding(dummy);
1036   }
1037 
1038 #if defined(_LIBUNWIND_TARGET_X86_64)
1039   int stepWithCompactEncoding(Registers_x86_64 &) {
1040     return CompactUnwinder_x86_64<A>::stepWithCompactEncoding(
1041         _info.format, _info.start_ip, _addressSpace, _registers);
1042   }
1043 #endif
1044 
1045 #if defined(_LIBUNWIND_TARGET_I386)
1046   int stepWithCompactEncoding(Registers_x86 &) {
1047     return CompactUnwinder_x86<A>::stepWithCompactEncoding(
1048         _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers);
1049   }
1050 #endif
1051 
1052 #if defined(_LIBUNWIND_TARGET_PPC)
1053   int stepWithCompactEncoding(Registers_ppc &) {
1054     return UNW_EINVAL;
1055   }
1056 #endif
1057 
1058 #if defined(_LIBUNWIND_TARGET_PPC64)
1059   int stepWithCompactEncoding(Registers_ppc64 &) {
1060     return UNW_EINVAL;
1061   }
1062 #endif
1063 
1064 
1065 #if defined(_LIBUNWIND_TARGET_AARCH64)
1066   int stepWithCompactEncoding(Registers_arm64 &) {
1067     return CompactUnwinder_arm64<A>::stepWithCompactEncoding(
1068         _info.format, _info.start_ip, _addressSpace, _registers);
1069   }
1070 #endif
1071 
1072 #if defined(_LIBUNWIND_TARGET_MIPS_O32)
1073   int stepWithCompactEncoding(Registers_mips_o32 &) {
1074     return UNW_EINVAL;
1075   }
1076 #endif
1077 
1078 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
1079   int stepWithCompactEncoding(Registers_mips_newabi &) {
1080     return UNW_EINVAL;
1081   }
1082 #endif
1083 
1084 #if defined(_LIBUNWIND_TARGET_LOONGARCH)
1085   int stepWithCompactEncoding(Registers_loongarch &) { return UNW_EINVAL; }
1086 #endif
1087 
1088 #if defined(_LIBUNWIND_TARGET_SPARC)
1089   int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; }
1090 #endif
1091 
1092 #if defined(_LIBUNWIND_TARGET_SPARC64)
1093   int stepWithCompactEncoding(Registers_sparc64 &) { return UNW_EINVAL; }
1094 #endif
1095 
1096 #if defined (_LIBUNWIND_TARGET_RISCV)
1097   int stepWithCompactEncoding(Registers_riscv &) {
1098     return UNW_EINVAL;
1099   }
1100 #endif
1101 
1102   bool compactSaysUseDwarf(uint32_t *offset=NULL) const {
1103     R dummy;
1104     return compactSaysUseDwarf(dummy, offset);
1105   }
1106 
1107 #if defined(_LIBUNWIND_TARGET_X86_64)
1108   bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const {
1109     if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) {
1110       if (offset)
1111         *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET);
1112       return true;
1113     }
1114     return false;
1115   }
1116 #endif
1117 
1118 #if defined(_LIBUNWIND_TARGET_I386)
1119   bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const {
1120     if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) {
1121       if (offset)
1122         *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET);
1123       return true;
1124     }
1125     return false;
1126   }
1127 #endif
1128 
1129 #if defined(_LIBUNWIND_TARGET_PPC)
1130   bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const {
1131     return true;
1132   }
1133 #endif
1134 
1135 #if defined(_LIBUNWIND_TARGET_PPC64)
1136   bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const {
1137     return true;
1138   }
1139 #endif
1140 
1141 #if defined(_LIBUNWIND_TARGET_AARCH64)
1142   bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const {
1143     if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) {
1144       if (offset)
1145         *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET);
1146       return true;
1147     }
1148     return false;
1149   }
1150 #endif
1151 
1152 #if defined(_LIBUNWIND_TARGET_MIPS_O32)
1153   bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const {
1154     return true;
1155   }
1156 #endif
1157 
1158 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
1159   bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const {
1160     return true;
1161   }
1162 #endif
1163 
1164 #if defined(_LIBUNWIND_TARGET_LOONGARCH)
1165   bool compactSaysUseDwarf(Registers_loongarch &, uint32_t *) const {
1166     return true;
1167   }
1168 #endif
1169 
1170 #if defined(_LIBUNWIND_TARGET_SPARC)
1171   bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; }
1172 #endif
1173 
1174 #if defined(_LIBUNWIND_TARGET_SPARC64)
1175   bool compactSaysUseDwarf(Registers_sparc64 &, uint32_t *) const {
1176     return true;
1177   }
1178 #endif
1179 
1180 #if defined (_LIBUNWIND_TARGET_RISCV)
1181   bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const {
1182     return true;
1183   }
1184 #endif
1185 
1186 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1187 
1188 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1189   compact_unwind_encoding_t dwarfEncoding() const {
1190     R dummy;
1191     return dwarfEncoding(dummy);
1192   }
1193 
1194 #if defined(_LIBUNWIND_TARGET_X86_64)
1195   compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const {
1196     return UNWIND_X86_64_MODE_DWARF;
1197   }
1198 #endif
1199 
1200 #if defined(_LIBUNWIND_TARGET_I386)
1201   compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const {
1202     return UNWIND_X86_MODE_DWARF;
1203   }
1204 #endif
1205 
1206 #if defined(_LIBUNWIND_TARGET_PPC)
1207   compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const {
1208     return 0;
1209   }
1210 #endif
1211 
1212 #if defined(_LIBUNWIND_TARGET_PPC64)
1213   compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const {
1214     return 0;
1215   }
1216 #endif
1217 
1218 #if defined(_LIBUNWIND_TARGET_AARCH64)
1219   compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const {
1220     return UNWIND_ARM64_MODE_DWARF;
1221   }
1222 #endif
1223 
1224 #if defined(_LIBUNWIND_TARGET_ARM)
1225   compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const {
1226     return 0;
1227   }
1228 #endif
1229 
1230 #if defined (_LIBUNWIND_TARGET_OR1K)
1231   compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const {
1232     return 0;
1233   }
1234 #endif
1235 
1236 #if defined (_LIBUNWIND_TARGET_HEXAGON)
1237   compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const {
1238     return 0;
1239   }
1240 #endif
1241 
1242 #if defined (_LIBUNWIND_TARGET_MIPS_O32)
1243   compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const {
1244     return 0;
1245   }
1246 #endif
1247 
1248 #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI)
1249   compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const {
1250     return 0;
1251   }
1252 #endif
1253 
1254 #if defined(_LIBUNWIND_TARGET_LOONGARCH)
1255   compact_unwind_encoding_t dwarfEncoding(Registers_loongarch &) const {
1256     return 0;
1257   }
1258 #endif
1259 
1260 #if defined(_LIBUNWIND_TARGET_SPARC)
1261   compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; }
1262 #endif
1263 
1264 #if defined(_LIBUNWIND_TARGET_SPARC64)
1265   compact_unwind_encoding_t dwarfEncoding(Registers_sparc64 &) const {
1266     return 0;
1267   }
1268 #endif
1269 
1270 #if defined (_LIBUNWIND_TARGET_RISCV)
1271   compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const {
1272     return 0;
1273   }
1274 #endif
1275 
1276 #if defined (_LIBUNWIND_TARGET_S390X)
1277   compact_unwind_encoding_t dwarfEncoding(Registers_s390x &) const {
1278     return 0;
1279   }
1280 #endif
1281 
1282 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1283 
1284 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1285   // For runtime environments using SEH unwind data without Windows runtime
1286   // support.
1287   pint_t getLastPC() const { /* FIXME: Implement */ return 0; }
1288   void setLastPC(pint_t pc) { /* FIXME: Implement */ }
1289   RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
1290     /* FIXME: Implement */
1291     *base = 0;
1292     return nullptr;
1293   }
1294   bool getInfoFromSEH(pint_t pc);
1295   int stepWithSEHData() { /* FIXME: Implement */ return 0; }
1296 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1297 
1298 #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
1299   bool getInfoFromTBTable(pint_t pc, R &registers);
1300   int stepWithTBTable(pint_t pc, tbtable *TBTable, R &registers,
1301                       bool &isSignalFrame);
1302   int stepWithTBTableData() {
1303     return stepWithTBTable(reinterpret_cast<pint_t>(this->getReg(UNW_REG_IP)),
1304                            reinterpret_cast<tbtable *>(_info.unwind_info),
1305                            _registers, _isSignalFrame);
1306   }
1307 #endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
1308 
1309   A               &_addressSpace;
1310   R                _registers;
1311   unw_proc_info_t  _info;
1312   bool             _unwindInfoMissing;
1313   bool             _isSignalFrame;
1314 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
1315   bool             _isSigReturn = false;
1316 #endif
1317 };
1318 
1319 
1320 template <typename A, typename R>
1321 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
1322     : _addressSpace(as), _registers(context), _unwindInfoMissing(false),
1323       _isSignalFrame(false) {
1324   static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
1325                 "UnwindCursor<> does not fit in unw_cursor_t");
1326   static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)),
1327                 "UnwindCursor<> requires more alignment than unw_cursor_t");
1328   memset(&_info, 0, sizeof(_info));
1329 }
1330 
1331 template <typename A, typename R>
1332 UnwindCursor<A, R>::UnwindCursor(A &as, void *)
1333     : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) {
1334   memset(&_info, 0, sizeof(_info));
1335   // FIXME
1336   // fill in _registers from thread arg
1337 }
1338 
1339 
1340 template <typename A, typename R>
1341 bool UnwindCursor<A, R>::validReg(int regNum) {
1342   return _registers.validRegister(regNum);
1343 }
1344 
1345 template <typename A, typename R>
1346 unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
1347   return _registers.getRegister(regNum);
1348 }
1349 
1350 template <typename A, typename R>
1351 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
1352   _registers.setRegister(regNum, (typename A::pint_t)value);
1353 }
1354 
1355 template <typename A, typename R>
1356 bool UnwindCursor<A, R>::validFloatReg(int regNum) {
1357   return _registers.validFloatRegister(regNum);
1358 }
1359 
1360 template <typename A, typename R>
1361 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
1362   return _registers.getFloatRegister(regNum);
1363 }
1364 
1365 template <typename A, typename R>
1366 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
1367   _registers.setFloatRegister(regNum, value);
1368 }
1369 
1370 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
1371   _registers.jumpto();
1372 }
1373 
1374 #ifdef __arm__
1375 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {
1376   _registers.saveVFPAsX();
1377 }
1378 #endif
1379 
1380 #ifdef _AIX
1381 template <typename A, typename R>
1382 uintptr_t UnwindCursor<A, R>::getDataRelBase() {
1383   return reinterpret_cast<uintptr_t>(_info.extra);
1384 }
1385 #endif
1386 
1387 template <typename A, typename R>
1388 const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
1389   return _registers.getRegisterName(regNum);
1390 }
1391 
1392 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
1393   return _isSignalFrame;
1394 }
1395 
1396 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1397 
1398 #if defined(_LIBUNWIND_ARM_EHABI)
1399 template<typename A>
1400 struct EHABISectionIterator {
1401   typedef EHABISectionIterator _Self;
1402 
1403   typedef typename A::pint_t value_type;
1404   typedef typename A::pint_t* pointer;
1405   typedef typename A::pint_t& reference;
1406   typedef size_t size_type;
1407   typedef size_t difference_type;
1408 
1409   static _Self begin(A& addressSpace, const UnwindInfoSections& sects) {
1410     return _Self(addressSpace, sects, 0);
1411   }
1412   static _Self end(A& addressSpace, const UnwindInfoSections& sects) {
1413     return _Self(addressSpace, sects,
1414                  sects.arm_section_length / sizeof(EHABIIndexEntry));
1415   }
1416 
1417   EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i)
1418       : _i(i), _addressSpace(&addressSpace), _sects(&sects) {}
1419 
1420   _Self& operator++() { ++_i; return *this; }
1421   _Self& operator+=(size_t a) { _i += a; return *this; }
1422   _Self& operator--() { assert(_i > 0); --_i; return *this; }
1423   _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; }
1424 
1425   _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
1426   _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }
1427 
1428   size_t operator-(const _Self& other) const { return _i - other._i; }
1429 
1430   bool operator==(const _Self& other) const {
1431     assert(_addressSpace == other._addressSpace);
1432     assert(_sects == other._sects);
1433     return _i == other._i;
1434   }
1435 
1436   bool operator!=(const _Self& other) const {
1437     assert(_addressSpace == other._addressSpace);
1438     assert(_sects == other._sects);
1439     return _i != other._i;
1440   }
1441 
1442   typename A::pint_t operator*() const { return functionAddress(); }
1443 
1444   typename A::pint_t functionAddress() const {
1445     typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
1446         EHABIIndexEntry, _i, functionOffset);
1447     return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr));
1448   }
1449 
1450   typename A::pint_t dataAddress() {
1451     typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
1452         EHABIIndexEntry, _i, data);
1453     return indexAddr;
1454   }
1455 
1456  private:
1457   size_t _i;
1458   A* _addressSpace;
1459   const UnwindInfoSections* _sects;
1460 };
1461 
1462 namespace {
1463 
1464 template <typename A>
1465 EHABISectionIterator<A> EHABISectionUpperBound(
1466     EHABISectionIterator<A> first,
1467     EHABISectionIterator<A> last,
1468     typename A::pint_t value) {
1469   size_t len = last - first;
1470   while (len > 0) {
1471     size_t l2 = len / 2;
1472     EHABISectionIterator<A> m = first + l2;
1473     if (value < *m) {
1474         len = l2;
1475     } else {
1476         first = ++m;
1477         len -= l2 + 1;
1478     }
1479   }
1480   return first;
1481 }
1482 
1483 }
1484 
1485 template <typename A, typename R>
1486 bool UnwindCursor<A, R>::getInfoFromEHABISection(
1487     pint_t pc,
1488     const UnwindInfoSections &sects) {
1489   EHABISectionIterator<A> begin =
1490       EHABISectionIterator<A>::begin(_addressSpace, sects);
1491   EHABISectionIterator<A> end =
1492       EHABISectionIterator<A>::end(_addressSpace, sects);
1493   if (begin == end)
1494     return false;
1495 
1496   EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc);
1497   if (itNextPC == begin)
1498     return false;
1499   EHABISectionIterator<A> itThisPC = itNextPC - 1;
1500 
1501   pint_t thisPC = itThisPC.functionAddress();
1502   // If an exception is thrown from a function, corresponding to the last entry
1503   // in the table, we don't really know the function extent and have to choose a
1504   // value for nextPC. Choosing max() will allow the range check during trace to
1505   // succeed.
1506   pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress();
1507   pint_t indexDataAddr = itThisPC.dataAddress();
1508 
1509   if (indexDataAddr == 0)
1510     return false;
1511 
1512   uint32_t indexData = _addressSpace.get32(indexDataAddr);
1513   if (indexData == UNW_EXIDX_CANTUNWIND)
1514     return false;
1515 
1516   // If the high bit is set, the exception handling table entry is inline inside
1517   // the index table entry on the second word (aka |indexDataAddr|). Otherwise,
1518   // the table points at an offset in the exception handling table (section 5
1519   // EHABI).
1520   pint_t exceptionTableAddr;
1521   uint32_t exceptionTableData;
1522   bool isSingleWordEHT;
1523   if (indexData & 0x80000000) {
1524     exceptionTableAddr = indexDataAddr;
1525     // TODO(ajwong): Should this data be 0?
1526     exceptionTableData = indexData;
1527     isSingleWordEHT = true;
1528   } else {
1529     exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData);
1530     exceptionTableData = _addressSpace.get32(exceptionTableAddr);
1531     isSingleWordEHT = false;
1532   }
1533 
1534   // Now we know the 3 things:
1535   //   exceptionTableAddr -- exception handler table entry.
1536   //   exceptionTableData -- the data inside the first word of the eht entry.
1537   //   isSingleWordEHT -- whether the entry is in the index.
1538   unw_word_t personalityRoutine = 0xbadf00d;
1539   bool scope32 = false;
1540   uintptr_t lsda;
1541 
1542   // If the high bit in the exception handling table entry is set, the entry is
1543   // in compact form (section 6.3 EHABI).
1544   if (exceptionTableData & 0x80000000) {
1545     // Grab the index of the personality routine from the compact form.
1546     uint32_t choice = (exceptionTableData & 0x0f000000) >> 24;
1547     uint32_t extraWords = 0;
1548     switch (choice) {
1549       case 0:
1550         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0;
1551         extraWords = 0;
1552         scope32 = false;
1553         lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4);
1554         break;
1555       case 1:
1556         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1;
1557         extraWords = (exceptionTableData & 0x00ff0000) >> 16;
1558         scope32 = false;
1559         lsda = exceptionTableAddr + (extraWords + 1) * 4;
1560         break;
1561       case 2:
1562         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2;
1563         extraWords = (exceptionTableData & 0x00ff0000) >> 16;
1564         scope32 = true;
1565         lsda = exceptionTableAddr + (extraWords + 1) * 4;
1566         break;
1567       default:
1568         _LIBUNWIND_ABORT("unknown personality routine");
1569         return false;
1570     }
1571 
1572     if (isSingleWordEHT) {
1573       if (extraWords != 0) {
1574         _LIBUNWIND_ABORT("index inlined table detected but pr function "
1575                          "requires extra words");
1576         return false;
1577       }
1578     }
1579   } else {
1580     pint_t personalityAddr =
1581         exceptionTableAddr + signExtendPrel31(exceptionTableData);
1582     personalityRoutine = personalityAddr;
1583 
1584     // ARM EHABI # 6.2, # 9.2
1585     //
1586     //  +---- ehtp
1587     //  v
1588     // +--------------------------------------+
1589     // | +--------+--------+--------+-------+ |
1590     // | |0| prel31 to personalityRoutine   | |
1591     // | +--------+--------+--------+-------+ |
1592     // | |      N |      unwind opcodes     | |  <-- UnwindData
1593     // | +--------+--------+--------+-------+ |
1594     // | | Word 2        unwind opcodes     | |
1595     // | +--------+--------+--------+-------+ |
1596     // | ...                                  |
1597     // | +--------+--------+--------+-------+ |
1598     // | | Word N        unwind opcodes     | |
1599     // | +--------+--------+--------+-------+ |
1600     // | | LSDA                             | |  <-- lsda
1601     // | | ...                              | |
1602     // | +--------+--------+--------+-------+ |
1603     // +--------------------------------------+
1604 
1605     uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1;
1606     uint32_t FirstDataWord = *UnwindData;
1607     size_t N = ((FirstDataWord >> 24) & 0xff);
1608     size_t NDataWords = N + 1;
1609     lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords);
1610   }
1611 
1612   _info.start_ip = thisPC;
1613   _info.end_ip = nextPC;
1614   _info.handler = personalityRoutine;
1615   _info.unwind_info = exceptionTableAddr;
1616   _info.lsda = lsda;
1617   // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
1618   _info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0);  // Use enum?
1619 
1620   return true;
1621 }
1622 #endif
1623 
1624 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1625 template <typename A, typename R>
1626 bool UnwindCursor<A, R>::getInfoFromFdeCie(
1627     const typename CFI_Parser<A>::FDE_Info &fdeInfo,
1628     const typename CFI_Parser<A>::CIE_Info &cieInfo, pint_t pc,
1629     uintptr_t dso_base) {
1630   typename CFI_Parser<A>::PrologInfo prolog;
1631   if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc,
1632                                           R::getArch(), &prolog)) {
1633     // Save off parsed FDE info
1634     _info.start_ip          = fdeInfo.pcStart;
1635     _info.end_ip            = fdeInfo.pcEnd;
1636     _info.lsda              = fdeInfo.lsda;
1637     _info.handler           = cieInfo.personality;
1638     // Some frameless functions need SP altered when resuming in function, so
1639     // propagate spExtraArgSize.
1640     _info.gp                = prolog.spExtraArgSize;
1641     _info.flags             = 0;
1642     _info.format            = dwarfEncoding();
1643     _info.unwind_info       = fdeInfo.fdeStart;
1644     _info.unwind_info_size  = static_cast<uint32_t>(fdeInfo.fdeLength);
1645     _info.extra             = static_cast<unw_word_t>(dso_base);
1646     return true;
1647   }
1648   return false;
1649 }
1650 
1651 template <typename A, typename R>
1652 bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc,
1653                                                 const UnwindInfoSections &sects,
1654                                                 uint32_t fdeSectionOffsetHint) {
1655   typename CFI_Parser<A>::FDE_Info fdeInfo;
1656   typename CFI_Parser<A>::CIE_Info cieInfo;
1657   bool foundFDE = false;
1658   bool foundInCache = false;
1659   // If compact encoding table gave offset into dwarf section, go directly there
1660   if (fdeSectionOffsetHint != 0) {
1661     foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1662                                     sects.dwarf_section_length,
1663                                     sects.dwarf_section + fdeSectionOffsetHint,
1664                                     &fdeInfo, &cieInfo);
1665   }
1666 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
1667   if (!foundFDE && (sects.dwarf_index_section != 0)) {
1668     foundFDE = EHHeaderParser<A>::findFDE(
1669         _addressSpace, pc, sects.dwarf_index_section,
1670         (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo);
1671   }
1672 #endif
1673   if (!foundFDE) {
1674     // otherwise, search cache of previously found FDEs.
1675     pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc);
1676     if (cachedFDE != 0) {
1677       foundFDE =
1678           CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1679                                  sects.dwarf_section_length,
1680                                  cachedFDE, &fdeInfo, &cieInfo);
1681       foundInCache = foundFDE;
1682     }
1683   }
1684   if (!foundFDE) {
1685     // Still not found, do full scan of __eh_frame section.
1686     foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1687                                       sects.dwarf_section_length, 0,
1688                                       &fdeInfo, &cieInfo);
1689   }
1690   if (foundFDE) {
1691     if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, sects.dso_base)) {
1692       // Add to cache (to make next lookup faster) if we had no hint
1693       // and there was no index.
1694       if (!foundInCache && (fdeSectionOffsetHint == 0)) {
1695   #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
1696         if (sects.dwarf_index_section == 0)
1697   #endif
1698         DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd,
1699                               fdeInfo.fdeStart);
1700       }
1701       return true;
1702     }
1703   }
1704   //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc);
1705   return false;
1706 }
1707 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1708 
1709 
1710 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1711 template <typename A, typename R>
1712 bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc,
1713                                               const UnwindInfoSections &sects) {
1714   const bool log = false;
1715   if (log)
1716     fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n",
1717             (uint64_t)pc, (uint64_t)sects.dso_base);
1718 
1719   const UnwindSectionHeader<A> sectionHeader(_addressSpace,
1720                                                 sects.compact_unwind_section);
1721   if (sectionHeader.version() != UNWIND_SECTION_VERSION)
1722     return false;
1723 
1724   // do a binary search of top level index to find page with unwind info
1725   pint_t targetFunctionOffset = pc - sects.dso_base;
1726   const UnwindSectionIndexArray<A> topIndex(_addressSpace,
1727                                            sects.compact_unwind_section
1728                                          + sectionHeader.indexSectionOffset());
1729   uint32_t low = 0;
1730   uint32_t high = sectionHeader.indexCount();
1731   uint32_t last = high - 1;
1732   while (low < high) {
1733     uint32_t mid = (low + high) / 2;
1734     //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n",
1735     //mid, low, high, topIndex.functionOffset(mid));
1736     if (topIndex.functionOffset(mid) <= targetFunctionOffset) {
1737       if ((mid == last) ||
1738           (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) {
1739         low = mid;
1740         break;
1741       } else {
1742         low = mid + 1;
1743       }
1744     } else {
1745       high = mid;
1746     }
1747   }
1748   const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low);
1749   const uint32_t firstLevelNextPageFunctionOffset =
1750       topIndex.functionOffset(low + 1);
1751   const pint_t secondLevelAddr =
1752       sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low);
1753   const pint_t lsdaArrayStartAddr =
1754       sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low);
1755   const pint_t lsdaArrayEndAddr =
1756       sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1);
1757   if (log)
1758     fprintf(stderr, "\tfirst level search for result index=%d "
1759                     "to secondLevelAddr=0x%llX\n",
1760                     low, (uint64_t) secondLevelAddr);
1761   // do a binary search of second level page index
1762   uint32_t encoding = 0;
1763   pint_t funcStart = 0;
1764   pint_t funcEnd = 0;
1765   pint_t lsda = 0;
1766   pint_t personality = 0;
1767   uint32_t pageKind = _addressSpace.get32(secondLevelAddr);
1768   if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) {
1769     // regular page
1770     UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace,
1771                                                  secondLevelAddr);
1772     UnwindSectionRegularArray<A> pageIndex(
1773         _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
1774     // binary search looks for entry with e where index[e].offset <= pc <
1775     // index[e+1].offset
1776     if (log)
1777       fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in "
1778                       "regular page starting at secondLevelAddr=0x%llX\n",
1779               (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr);
1780     low = 0;
1781     high = pageHeader.entryCount();
1782     while (low < high) {
1783       uint32_t mid = (low + high) / 2;
1784       if (pageIndex.functionOffset(mid) <= targetFunctionOffset) {
1785         if (mid == (uint32_t)(pageHeader.entryCount() - 1)) {
1786           // at end of table
1787           low = mid;
1788           funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
1789           break;
1790         } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) {
1791           // next is too big, so we found it
1792           low = mid;
1793           funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base;
1794           break;
1795         } else {
1796           low = mid + 1;
1797         }
1798       } else {
1799         high = mid;
1800       }
1801     }
1802     encoding = pageIndex.encoding(low);
1803     funcStart = pageIndex.functionOffset(low) + sects.dso_base;
1804     if (pc < funcStart) {
1805       if (log)
1806         fprintf(
1807             stderr,
1808             "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1809             (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1810       return false;
1811     }
1812     if (pc > funcEnd) {
1813       if (log)
1814         fprintf(
1815             stderr,
1816             "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1817             (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1818       return false;
1819     }
1820   } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) {
1821     // compressed page
1822     UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace,
1823                                                     secondLevelAddr);
1824     UnwindSectionCompressedArray<A> pageIndex(
1825         _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
1826     const uint32_t targetFunctionPageOffset =
1827         (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset);
1828     // binary search looks for entry with e where index[e].offset <= pc <
1829     // index[e+1].offset
1830     if (log)
1831       fprintf(stderr, "\tbinary search of compressed page starting at "
1832                       "secondLevelAddr=0x%llX\n",
1833               (uint64_t) secondLevelAddr);
1834     low = 0;
1835     last = pageHeader.entryCount() - 1;
1836     high = pageHeader.entryCount();
1837     while (low < high) {
1838       uint32_t mid = (low + high) / 2;
1839       if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) {
1840         if ((mid == last) ||
1841             (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) {
1842           low = mid;
1843           break;
1844         } else {
1845           low = mid + 1;
1846         }
1847       } else {
1848         high = mid;
1849       }
1850     }
1851     funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset
1852                                                               + sects.dso_base;
1853     if (low < last)
1854       funcEnd =
1855           pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset
1856                                                               + sects.dso_base;
1857     else
1858       funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
1859     if (pc < funcStart) {
1860       _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX "
1861                            "not in second level compressed unwind table. "
1862                            "funcStart=0x%llX",
1863                             (uint64_t) pc, (uint64_t) funcStart);
1864       return false;
1865     }
1866     if (pc > funcEnd) {
1867       _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX "
1868                            "not in second level compressed unwind table. "
1869                            "funcEnd=0x%llX",
1870                            (uint64_t) pc, (uint64_t) funcEnd);
1871       return false;
1872     }
1873     uint16_t encodingIndex = pageIndex.encodingIndex(low);
1874     if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) {
1875       // encoding is in common table in section header
1876       encoding = _addressSpace.get32(
1877           sects.compact_unwind_section +
1878           sectionHeader.commonEncodingsArraySectionOffset() +
1879           encodingIndex * sizeof(uint32_t));
1880     } else {
1881       // encoding is in page specific table
1882       uint16_t pageEncodingIndex =
1883           encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount();
1884       encoding = _addressSpace.get32(secondLevelAddr +
1885                                      pageHeader.encodingsPageOffset() +
1886                                      pageEncodingIndex * sizeof(uint32_t));
1887     }
1888   } else {
1889     _LIBUNWIND_DEBUG_LOG(
1890         "malformed __unwind_info at 0x%0llX bad second level page",
1891         (uint64_t)sects.compact_unwind_section);
1892     return false;
1893   }
1894 
1895   // look up LSDA, if encoding says function has one
1896   if (encoding & UNWIND_HAS_LSDA) {
1897     UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr);
1898     uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base);
1899     low = 0;
1900     high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) /
1901                     sizeof(unwind_info_section_header_lsda_index_entry);
1902     // binary search looks for entry with exact match for functionOffset
1903     if (log)
1904       fprintf(stderr,
1905               "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n",
1906               funcStartOffset);
1907     while (low < high) {
1908       uint32_t mid = (low + high) / 2;
1909       if (lsdaIndex.functionOffset(mid) == funcStartOffset) {
1910         lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base;
1911         break;
1912       } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) {
1913         low = mid + 1;
1914       } else {
1915         high = mid;
1916       }
1917     }
1918     if (lsda == 0) {
1919       _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for "
1920                     "pc=0x%0llX, but lsda table has no entry",
1921                     encoding, (uint64_t) pc);
1922       return false;
1923     }
1924   }
1925 
1926   // extract personality routine, if encoding says function has one
1927   uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >>
1928                               (__builtin_ctz(UNWIND_PERSONALITY_MASK));
1929   if (personalityIndex != 0) {
1930     --personalityIndex; // change 1-based to zero-based index
1931     if (personalityIndex >= sectionHeader.personalityArrayCount()) {
1932       _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d,  "
1933                             "but personality table has only %d entries",
1934                             encoding, personalityIndex,
1935                             sectionHeader.personalityArrayCount());
1936       return false;
1937     }
1938     int32_t personalityDelta = (int32_t)_addressSpace.get32(
1939         sects.compact_unwind_section +
1940         sectionHeader.personalityArraySectionOffset() +
1941         personalityIndex * sizeof(uint32_t));
1942     pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta;
1943     personality = _addressSpace.getP(personalityPointer);
1944     if (log)
1945       fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1946                       "personalityDelta=0x%08X, personality=0x%08llX\n",
1947               (uint64_t) pc, personalityDelta, (uint64_t) personality);
1948   }
1949 
1950   if (log)
1951     fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1952                     "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n",
1953             (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart);
1954   _info.start_ip = funcStart;
1955   _info.end_ip = funcEnd;
1956   _info.lsda = lsda;
1957   _info.handler = personality;
1958   _info.gp = 0;
1959   _info.flags = 0;
1960   _info.format = encoding;
1961   _info.unwind_info = 0;
1962   _info.unwind_info_size = 0;
1963   _info.extra = sects.dso_base;
1964   return true;
1965 }
1966 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1967 
1968 
1969 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1970 template <typename A, typename R>
1971 bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) {
1972   pint_t base;
1973   RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base);
1974   if (!unwindEntry) {
1975     _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc);
1976     return false;
1977   }
1978   _info.gp = 0;
1979   _info.flags = 0;
1980   _info.format = 0;
1981   _info.unwind_info_size = sizeof(RUNTIME_FUNCTION);
1982   _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry);
1983   _info.extra = base;
1984   _info.start_ip = base + unwindEntry->BeginAddress;
1985 #ifdef _LIBUNWIND_TARGET_X86_64
1986   _info.end_ip = base + unwindEntry->EndAddress;
1987   // Only fill in the handler and LSDA if they're stale.
1988   if (pc != getLastPC()) {
1989     UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData);
1990     if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) {
1991       // The personality is given in the UNWIND_INFO itself. The LSDA immediately
1992       // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit
1993       // these structures.)
1994       // N.B. UNWIND_INFO structs are DWORD-aligned.
1995       uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1;
1996       const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]);
1997       _info.lsda = reinterpret_cast<unw_word_t>(handler+1);
1998       _dispContext.HandlerData = reinterpret_cast<void *>(_info.lsda);
1999       _dispContext.LanguageHandler =
2000           reinterpret_cast<EXCEPTION_ROUTINE *>(base + *handler);
2001       if (*handler) {
2002         _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
2003       } else
2004         _info.handler = 0;
2005     } else {
2006       _info.lsda = 0;
2007       _info.handler = 0;
2008     }
2009   }
2010 #endif
2011   setLastPC(pc);
2012   return true;
2013 }
2014 #endif
2015 
2016 #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2017 // Masks for traceback table field xtbtable.
2018 enum xTBTableMask : uint8_t {
2019   reservedBit = 0x02, // The traceback table was incorrectly generated if set
2020                       // (see comments in function getInfoFromTBTable().
2021   ehInfoBit = 0x08    // Exception handling info is present if set
2022 };
2023 
2024 enum frameType : unw_word_t {
2025   frameWithXLEHStateTable = 0,
2026   frameWithEHInfo = 1
2027 };
2028 
2029 extern "C" {
2030 typedef _Unwind_Reason_Code __xlcxx_personality_v0_t(int, _Unwind_Action,
2031                                                      uint64_t,
2032                                                      _Unwind_Exception *,
2033                                                      struct _Unwind_Context *);
2034 __attribute__((__weak__)) __xlcxx_personality_v0_t __xlcxx_personality_v0;
2035 }
2036 
2037 static __xlcxx_personality_v0_t *xlcPersonalityV0;
2038 static RWMutex xlcPersonalityV0InitLock;
2039 
2040 template <typename A, typename R>
2041 bool UnwindCursor<A, R>::getInfoFromTBTable(pint_t pc, R &registers) {
2042   uint32_t *p = reinterpret_cast<uint32_t *>(pc);
2043 
2044   // Keep looking forward until a word of 0 is found. The traceback
2045   // table starts at the following word.
2046   while (*p)
2047     ++p;
2048   tbtable *TBTable = reinterpret_cast<tbtable *>(p + 1);
2049 
2050   if (_LIBUNWIND_TRACING_UNWINDING) {
2051     char functionBuf[512];
2052     const char *functionName = functionBuf;
2053     unw_word_t offset;
2054     if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) {
2055       functionName = ".anonymous.";
2056     }
2057     _LIBUNWIND_TRACE_UNWINDING("%s: Look up traceback table of func=%s at %p",
2058                                __func__, functionName,
2059                                reinterpret_cast<void *>(TBTable));
2060   }
2061 
2062   // If the traceback table does not contain necessary info, bypass this frame.
2063   if (!TBTable->tb.has_tboff)
2064     return false;
2065 
2066   // Structure tbtable_ext contains important data we are looking for.
2067   p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext);
2068 
2069   // Skip field parminfo if it exists.
2070   if (TBTable->tb.fixedparms || TBTable->tb.floatparms)
2071     ++p;
2072 
2073   // p now points to tb_offset, the offset from start of function to TB table.
2074   unw_word_t start_ip =
2075       reinterpret_cast<unw_word_t>(TBTable) - *p - sizeof(uint32_t);
2076   unw_word_t end_ip = reinterpret_cast<unw_word_t>(TBTable);
2077   ++p;
2078 
2079   _LIBUNWIND_TRACE_UNWINDING("start_ip=%p, end_ip=%p\n",
2080                              reinterpret_cast<void *>(start_ip),
2081                              reinterpret_cast<void *>(end_ip));
2082 
2083   // Skip field hand_mask if it exists.
2084   if (TBTable->tb.int_hndl)
2085     ++p;
2086 
2087   unw_word_t lsda = 0;
2088   unw_word_t handler = 0;
2089   unw_word_t flags = frameType::frameWithXLEHStateTable;
2090 
2091   if (TBTable->tb.lang == TB_CPLUSPLUS && TBTable->tb.has_ctl) {
2092     // State table info is available. The ctl_info field indicates the
2093     // number of CTL anchors. There should be only one entry for the C++
2094     // state table.
2095     assert(*p == 1 && "libunwind: there must be only one ctl_info entry");
2096     ++p;
2097     // p points to the offset of the state table into the stack.
2098     pint_t stateTableOffset = *p++;
2099 
2100     int framePointerReg;
2101 
2102     // Skip fields name_len and name if exist.
2103     if (TBTable->tb.name_present) {
2104       const uint16_t name_len = *(reinterpret_cast<uint16_t *>(p));
2105       p = reinterpret_cast<uint32_t *>(reinterpret_cast<char *>(p) + name_len +
2106                                        sizeof(uint16_t));
2107     }
2108 
2109     if (TBTable->tb.uses_alloca)
2110       framePointerReg = *(reinterpret_cast<char *>(p));
2111     else
2112       framePointerReg = 1; // default frame pointer == SP
2113 
2114     _LIBUNWIND_TRACE_UNWINDING(
2115         "framePointerReg=%d, framePointer=%p, "
2116         "stateTableOffset=%#lx\n",
2117         framePointerReg,
2118         reinterpret_cast<void *>(_registers.getRegister(framePointerReg)),
2119         stateTableOffset);
2120     lsda = _registers.getRegister(framePointerReg) + stateTableOffset;
2121 
2122     // Since the traceback table generated by the legacy XLC++ does not
2123     // provide the location of the personality for the state table,
2124     // function __xlcxx_personality_v0(), which is the personality for the state
2125     // table and is exported from libc++abi, is directly assigned as the
2126     // handler here. When a legacy XLC++ frame is encountered, the symbol
2127     // is resolved dynamically using dlopen() to avoid hard dependency from
2128     // libunwind on libc++abi.
2129 
2130     // Resolve the function pointer to the state table personality if it has
2131     // not already.
2132     if (xlcPersonalityV0 == NULL) {
2133       xlcPersonalityV0InitLock.lock();
2134       if (xlcPersonalityV0 == NULL) {
2135         // If libc++abi is statically linked in, symbol __xlcxx_personality_v0
2136         // has been resolved at the link time.
2137         xlcPersonalityV0 = &__xlcxx_personality_v0;
2138         if (xlcPersonalityV0 == NULL) {
2139           // libc++abi is dynamically linked. Resolve __xlcxx_personality_v0
2140           // using dlopen().
2141           const char libcxxabi[] = "libc++abi.a(libc++abi.so.1)";
2142           void *libHandle;
2143           // The AIX dlopen() sets errno to 0 when it is successful, which
2144           // clobbers the value of errno from the user code. This is an AIX
2145           // bug because according to POSIX it should not set errno to 0. To
2146           // workaround before AIX fixes the bug, errno is saved and restored.
2147           int saveErrno = errno;
2148           libHandle = dlopen(libcxxabi, RTLD_MEMBER | RTLD_NOW);
2149           if (libHandle == NULL) {
2150             _LIBUNWIND_TRACE_UNWINDING("dlopen() failed with errno=%d\n",
2151                                        errno);
2152             assert(0 && "dlopen() failed");
2153           }
2154           xlcPersonalityV0 = reinterpret_cast<__xlcxx_personality_v0_t *>(
2155               dlsym(libHandle, "__xlcxx_personality_v0"));
2156           if (xlcPersonalityV0 == NULL) {
2157             _LIBUNWIND_TRACE_UNWINDING("dlsym() failed with errno=%d\n", errno);
2158             assert(0 && "dlsym() failed");
2159           }
2160           dlclose(libHandle);
2161           errno = saveErrno;
2162         }
2163       }
2164       xlcPersonalityV0InitLock.unlock();
2165     }
2166     handler = reinterpret_cast<unw_word_t>(xlcPersonalityV0);
2167     _LIBUNWIND_TRACE_UNWINDING("State table: LSDA=%p, Personality=%p\n",
2168                                reinterpret_cast<void *>(lsda),
2169                                reinterpret_cast<void *>(handler));
2170   } else if (TBTable->tb.longtbtable) {
2171     // This frame has the traceback table extension. Possible cases are
2172     // 1) a C++ frame that has the 'eh_info' structure; 2) a C++ frame that
2173     // is not EH aware; or, 3) a frame of other languages. We need to figure out
2174     // if the traceback table extension contains the 'eh_info' structure.
2175     //
2176     // We also need to deal with the complexity arising from some XL compiler
2177     // versions use the wrong ordering of 'longtbtable' and 'has_vec' bits
2178     // where the 'longtbtable' bit is meant to be the 'has_vec' bit and vice
2179     // versa. For frames of code generated by those compilers, the 'longtbtable'
2180     // bit may be set but there isn't really a traceback table extension.
2181     //
2182     // In </usr/include/sys/debug.h>, there is the following definition of
2183     // 'struct tbtable_ext'. It is not really a structure but a dummy to
2184     // collect the description of optional parts of the traceback table.
2185     //
2186     // struct tbtable_ext {
2187     //   ...
2188     //   char alloca_reg;        /* Register for alloca automatic storage */
2189     //   struct vec_ext vec_ext; /* Vector extension (if has_vec is set) */
2190     //   unsigned char xtbtable; /* More tbtable fields, if longtbtable is set*/
2191     // };
2192     //
2193     // Depending on how the 'has_vec'/'longtbtable' bit is interpreted, the data
2194     // following 'alloca_reg' can be treated either as 'struct vec_ext' or
2195     // 'unsigned char xtbtable'. 'xtbtable' bits are defined in
2196     // </usr/include/sys/debug.h> as flags. The 7th bit '0x02' is currently
2197     // unused and should not be set. 'struct vec_ext' is defined in
2198     // </usr/include/sys/debug.h> as follows:
2199     //
2200     // struct vec_ext {
2201     //   unsigned vr_saved:6;      /* Number of non-volatile vector regs saved
2202     //   */
2203     //                             /* first register saved is assumed to be */
2204     //                             /* 32 - vr_saved                         */
2205     //   unsigned saves_vrsave:1;  /* Set if vrsave is saved on the stack */
2206     //   unsigned has_varargs:1;
2207     //   ...
2208     // };
2209     //
2210     // Here, the 7th bit is used as 'saves_vrsave'. To determine whether it
2211     // is 'struct vec_ext' or 'xtbtable' that follows 'alloca_reg',
2212     // we checks if the 7th bit is set or not because 'xtbtable' should
2213     // never have the 7th bit set. The 7th bit of 'xtbtable' will be reserved
2214     // in the future to make sure the mitigation works. This mitigation
2215     // is not 100% bullet proof because 'struct vec_ext' may not always have
2216     // 'saves_vrsave' bit set.
2217     //
2218     // 'reservedBit' is defined in enum 'xTBTableMask' above as the mask for
2219     // checking the 7th bit.
2220 
2221     // p points to field name len.
2222     uint8_t *charPtr = reinterpret_cast<uint8_t *>(p);
2223 
2224     // Skip fields name_len and name if they exist.
2225     if (TBTable->tb.name_present) {
2226       const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr));
2227       charPtr = charPtr + name_len + sizeof(uint16_t);
2228     }
2229 
2230     // Skip field alloc_reg if it exists.
2231     if (TBTable->tb.uses_alloca)
2232       ++charPtr;
2233 
2234     // Check traceback table bit has_vec. Skip struct vec_ext if it exists.
2235     if (TBTable->tb.has_vec)
2236       // Note struct vec_ext does exist at this point because whether the
2237       // ordering of longtbtable and has_vec bits is correct or not, both
2238       // are set.
2239       charPtr += sizeof(struct vec_ext);
2240 
2241     // charPtr points to field 'xtbtable'. Check if the EH info is available.
2242     // Also check if the reserved bit of the extended traceback table field
2243     // 'xtbtable' is set. If it is, the traceback table was incorrectly
2244     // generated by an XL compiler that uses the wrong ordering of 'longtbtable'
2245     // and 'has_vec' bits and this is in fact 'struct vec_ext'. So skip the
2246     // frame.
2247     if ((*charPtr & xTBTableMask::ehInfoBit) &&
2248         !(*charPtr & xTBTableMask::reservedBit)) {
2249       // Mark this frame has the new EH info.
2250       flags = frameType::frameWithEHInfo;
2251 
2252       // eh_info is available.
2253       charPtr++;
2254       // The pointer is 4-byte aligned.
2255       if (reinterpret_cast<uintptr_t>(charPtr) % 4)
2256         charPtr += 4 - reinterpret_cast<uintptr_t>(charPtr) % 4;
2257       uintptr_t *ehInfo =
2258           reinterpret_cast<uintptr_t *>(*(reinterpret_cast<uintptr_t *>(
2259               registers.getRegister(2) +
2260               *(reinterpret_cast<uintptr_t *>(charPtr)))));
2261 
2262       // ehInfo points to structure en_info. The first member is version.
2263       // Only version 0 is currently supported.
2264       assert(*(reinterpret_cast<uint32_t *>(ehInfo)) == 0 &&
2265              "libunwind: ehInfo version other than 0 is not supported");
2266 
2267       // Increment ehInfo to point to member lsda.
2268       ++ehInfo;
2269       lsda = *ehInfo++;
2270 
2271       // enInfo now points to member personality.
2272       handler = *ehInfo;
2273 
2274       _LIBUNWIND_TRACE_UNWINDING("Range table: LSDA=%#lx, Personality=%#lx\n",
2275                                  lsda, handler);
2276     }
2277   }
2278 
2279   _info.start_ip = start_ip;
2280   _info.end_ip = end_ip;
2281   _info.lsda = lsda;
2282   _info.handler = handler;
2283   _info.gp = 0;
2284   _info.flags = flags;
2285   _info.format = 0;
2286   _info.unwind_info = reinterpret_cast<unw_word_t>(TBTable);
2287   _info.unwind_info_size = 0;
2288   _info.extra = registers.getRegister(2);
2289 
2290   return true;
2291 }
2292 
2293 // Step back up the stack following the frame back link.
2294 template <typename A, typename R>
2295 int UnwindCursor<A, R>::stepWithTBTable(pint_t pc, tbtable *TBTable,
2296                                         R &registers, bool &isSignalFrame) {
2297   if (_LIBUNWIND_TRACING_UNWINDING) {
2298     char functionBuf[512];
2299     const char *functionName = functionBuf;
2300     unw_word_t offset;
2301     if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) {
2302       functionName = ".anonymous.";
2303     }
2304     _LIBUNWIND_TRACE_UNWINDING("%s: Look up traceback table of func=%s at %p",
2305                                __func__, functionName,
2306                                reinterpret_cast<void *>(TBTable));
2307   }
2308 
2309 #if defined(__powerpc64__)
2310   // Instruction to reload TOC register "l r2,40(r1)"
2311   const uint32_t loadTOCRegInst = 0xe8410028;
2312   const int32_t unwPPCF0Index = UNW_PPC64_F0;
2313   const int32_t unwPPCV0Index = UNW_PPC64_V0;
2314 #else
2315   // Instruction to reload TOC register "l r2,20(r1)"
2316   const uint32_t loadTOCRegInst = 0x80410014;
2317   const int32_t unwPPCF0Index = UNW_PPC_F0;
2318   const int32_t unwPPCV0Index = UNW_PPC_V0;
2319 #endif
2320 
2321   R newRegisters = registers;
2322 
2323   // lastStack points to the stack frame of the next routine up.
2324   pint_t lastStack = *(reinterpret_cast<pint_t *>(registers.getSP()));
2325 
2326   // Return address is the address after call site instruction.
2327   pint_t returnAddress;
2328 
2329   if (isSignalFrame) {
2330     _LIBUNWIND_TRACE_UNWINDING("Possible signal handler frame: lastStack=%p",
2331                                reinterpret_cast<void *>(lastStack));
2332 
2333     sigcontext *sigContext = reinterpret_cast<sigcontext *>(
2334         reinterpret_cast<char *>(lastStack) + STKMIN);
2335     returnAddress = sigContext->sc_jmpbuf.jmp_context.iar;
2336 
2337     _LIBUNWIND_TRACE_UNWINDING("From sigContext=%p, returnAddress=%p\n",
2338                                reinterpret_cast<void *>(sigContext),
2339                                reinterpret_cast<void *>(returnAddress));
2340 
2341     if (returnAddress < 0x10000000) {
2342       // Try again using STKMINALIGN
2343       sigContext = reinterpret_cast<sigcontext *>(
2344           reinterpret_cast<char *>(lastStack) + STKMINALIGN);
2345       returnAddress = sigContext->sc_jmpbuf.jmp_context.iar;
2346       if (returnAddress < 0x10000000) {
2347         _LIBUNWIND_TRACE_UNWINDING("Bad returnAddress=%p\n",
2348                                    reinterpret_cast<void *>(returnAddress));
2349         return UNW_EBADFRAME;
2350       } else {
2351         _LIBUNWIND_TRACE_UNWINDING("Tried again using STKMINALIGN: "
2352                                    "sigContext=%p, returnAddress=%p. "
2353                                    "Seems to be a valid address\n",
2354                                    reinterpret_cast<void *>(sigContext),
2355                                    reinterpret_cast<void *>(returnAddress));
2356       }
2357     }
2358     // Restore the condition register from sigcontext.
2359     newRegisters.setCR(sigContext->sc_jmpbuf.jmp_context.cr);
2360 
2361     // Restore GPRs from sigcontext.
2362     for (int i = 0; i < 32; ++i)
2363       newRegisters.setRegister(i, sigContext->sc_jmpbuf.jmp_context.gpr[i]);
2364 
2365     // Restore FPRs from sigcontext.
2366     for (int i = 0; i < 32; ++i)
2367       newRegisters.setFloatRegister(i + unwPPCF0Index,
2368                                     sigContext->sc_jmpbuf.jmp_context.fpr[i]);
2369 
2370     // Restore vector registers if there is an associated extended context
2371     // structure.
2372     if (sigContext->sc_jmpbuf.jmp_context.msr & __EXTCTX) {
2373       ucontext_t *uContext = reinterpret_cast<ucontext_t *>(sigContext);
2374       if (uContext->__extctx->__extctx_magic == __EXTCTX_MAGIC) {
2375         for (int i = 0; i < 32; ++i)
2376           newRegisters.setVectorRegister(
2377               i + unwPPCV0Index, *(reinterpret_cast<v128 *>(
2378                                      &(uContext->__extctx->__vmx.__vr[i]))));
2379       }
2380     }
2381   } else {
2382     // Step up a normal frame.
2383     returnAddress = reinterpret_cast<pint_t *>(lastStack)[2];
2384 
2385     _LIBUNWIND_TRACE_UNWINDING("Extract info from lastStack=%p, "
2386                                "returnAddress=%p\n",
2387                                reinterpret_cast<void *>(lastStack),
2388                                reinterpret_cast<void *>(returnAddress));
2389     _LIBUNWIND_TRACE_UNWINDING("fpr_regs=%d, gpr_regs=%d, saves_cr=%d\n",
2390                                TBTable->tb.fpr_saved, TBTable->tb.gpr_saved,
2391                                TBTable->tb.saves_cr);
2392 
2393     // Restore FP registers.
2394     char *ptrToRegs = reinterpret_cast<char *>(lastStack);
2395     double *FPRegs = reinterpret_cast<double *>(
2396         ptrToRegs - (TBTable->tb.fpr_saved * sizeof(double)));
2397     for (int i = 0; i < TBTable->tb.fpr_saved; ++i)
2398       newRegisters.setFloatRegister(
2399           32 - TBTable->tb.fpr_saved + i + unwPPCF0Index, FPRegs[i]);
2400 
2401     // Restore GP registers.
2402     ptrToRegs = reinterpret_cast<char *>(FPRegs);
2403     uintptr_t *GPRegs = reinterpret_cast<uintptr_t *>(
2404         ptrToRegs - (TBTable->tb.gpr_saved * sizeof(uintptr_t)));
2405     for (int i = 0; i < TBTable->tb.gpr_saved; ++i)
2406       newRegisters.setRegister(32 - TBTable->tb.gpr_saved + i, GPRegs[i]);
2407 
2408     // Restore Vector registers.
2409     ptrToRegs = reinterpret_cast<char *>(GPRegs);
2410 
2411     // Restore vector registers only if this is a Clang frame. Also
2412     // check if traceback table bit has_vec is set. If it is, structure
2413     // vec_ext is available.
2414     if (_info.flags == frameType::frameWithEHInfo && TBTable->tb.has_vec) {
2415 
2416       // Get to the vec_ext structure to check if vector registers are saved.
2417       uint32_t *p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext);
2418 
2419       // Skip field parminfo if exists.
2420       if (TBTable->tb.fixedparms || TBTable->tb.floatparms)
2421         ++p;
2422 
2423       // Skip field tb_offset if exists.
2424       if (TBTable->tb.has_tboff)
2425         ++p;
2426 
2427       // Skip field hand_mask if exists.
2428       if (TBTable->tb.int_hndl)
2429         ++p;
2430 
2431       // Skip fields ctl_info and ctl_info_disp if exist.
2432       if (TBTable->tb.has_ctl) {
2433         // Skip field ctl_info.
2434         ++p;
2435         // Skip field ctl_info_disp.
2436         ++p;
2437       }
2438 
2439       // Skip fields name_len and name if exist.
2440       // p is supposed to point to field name_len now.
2441       uint8_t *charPtr = reinterpret_cast<uint8_t *>(p);
2442       if (TBTable->tb.name_present) {
2443         const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr));
2444         charPtr = charPtr + name_len + sizeof(uint16_t);
2445       }
2446 
2447       // Skip field alloc_reg if it exists.
2448       if (TBTable->tb.uses_alloca)
2449         ++charPtr;
2450 
2451       struct vec_ext *vec_ext = reinterpret_cast<struct vec_ext *>(charPtr);
2452 
2453       _LIBUNWIND_TRACE_UNWINDING("vr_saved=%d\n", vec_ext->vr_saved);
2454 
2455       // Restore vector register(s) if saved on the stack.
2456       if (vec_ext->vr_saved) {
2457         // Saved vector registers are 16-byte aligned.
2458         if (reinterpret_cast<uintptr_t>(ptrToRegs) % 16)
2459           ptrToRegs -= reinterpret_cast<uintptr_t>(ptrToRegs) % 16;
2460         v128 *VecRegs = reinterpret_cast<v128 *>(ptrToRegs - vec_ext->vr_saved *
2461                                                                  sizeof(v128));
2462         for (int i = 0; i < vec_ext->vr_saved; ++i) {
2463           newRegisters.setVectorRegister(
2464               32 - vec_ext->vr_saved + i + unwPPCV0Index, VecRegs[i]);
2465         }
2466       }
2467     }
2468     if (TBTable->tb.saves_cr) {
2469       // Get the saved condition register. The condition register is only
2470       // a single word.
2471       newRegisters.setCR(
2472           *(reinterpret_cast<uint32_t *>(lastStack + sizeof(uintptr_t))));
2473     }
2474 
2475     // Restore the SP.
2476     newRegisters.setSP(lastStack);
2477 
2478     // The first instruction after return.
2479     uint32_t firstInstruction = *(reinterpret_cast<uint32_t *>(returnAddress));
2480 
2481     // Do we need to set the TOC register?
2482     _LIBUNWIND_TRACE_UNWINDING(
2483         "Current gpr2=%p\n",
2484         reinterpret_cast<void *>(newRegisters.getRegister(2)));
2485     if (firstInstruction == loadTOCRegInst) {
2486       _LIBUNWIND_TRACE_UNWINDING(
2487           "Set gpr2=%p from frame\n",
2488           reinterpret_cast<void *>(reinterpret_cast<pint_t *>(lastStack)[5]));
2489       newRegisters.setRegister(2, reinterpret_cast<pint_t *>(lastStack)[5]);
2490     }
2491   }
2492   _LIBUNWIND_TRACE_UNWINDING("lastStack=%p, returnAddress=%p, pc=%p\n",
2493                              reinterpret_cast<void *>(lastStack),
2494                              reinterpret_cast<void *>(returnAddress),
2495                              reinterpret_cast<void *>(pc));
2496 
2497   // The return address is the address after call site instruction, so
2498   // setting IP to that simulates a return.
2499   newRegisters.setIP(reinterpret_cast<uintptr_t>(returnAddress));
2500 
2501   // Simulate the step by replacing the register set with the new ones.
2502   registers = newRegisters;
2503 
2504   // Check if the next frame is a signal frame.
2505   pint_t nextStack = *(reinterpret_cast<pint_t *>(registers.getSP()));
2506 
2507   // Return address is the address after call site instruction.
2508   pint_t nextReturnAddress = reinterpret_cast<pint_t *>(nextStack)[2];
2509 
2510   if (nextReturnAddress > 0x01 && nextReturnAddress < 0x10000) {
2511     _LIBUNWIND_TRACE_UNWINDING("The next is a signal handler frame: "
2512                                "nextStack=%p, next return address=%p\n",
2513                                reinterpret_cast<void *>(nextStack),
2514                                reinterpret_cast<void *>(nextReturnAddress));
2515     isSignalFrame = true;
2516   } else {
2517     isSignalFrame = false;
2518   }
2519 
2520   return UNW_STEP_SUCCESS;
2521 }
2522 #endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2523 
2524 template <typename A, typename R>
2525 void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
2526 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
2527   _isSigReturn = false;
2528 #endif
2529 
2530   pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2531 #if defined(_LIBUNWIND_ARM_EHABI)
2532   // Remove the thumb bit so the IP represents the actual instruction address.
2533   // This matches the behaviour of _Unwind_GetIP on arm.
2534   pc &= (pint_t)~0x1;
2535 #endif
2536 
2537   // Exit early if at the top of the stack.
2538   if (pc == 0) {
2539     _unwindInfoMissing = true;
2540     return;
2541   }
2542 
2543   // If the last line of a function is a "throw" the compiler sometimes
2544   // emits no instructions after the call to __cxa_throw.  This means
2545   // the return address is actually the start of the next function.
2546   // To disambiguate this, back up the pc when we know it is a return
2547   // address.
2548   if (isReturnAddress)
2549 #if defined(_AIX)
2550     // PC needs to be a 4-byte aligned address to be able to look for a
2551     // word of 0 that indicates the start of the traceback table at the end
2552     // of a function on AIX.
2553     pc -= 4;
2554 #else
2555     --pc;
2556 #endif
2557 
2558   // Ask address space object to find unwind sections for this pc.
2559   UnwindInfoSections sects;
2560   if (_addressSpace.findUnwindSections(pc, sects)) {
2561 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
2562     // If there is a compact unwind encoding table, look there first.
2563     if (sects.compact_unwind_section != 0) {
2564       if (this->getInfoFromCompactEncodingSection(pc, sects)) {
2565   #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2566         // Found info in table, done unless encoding says to use dwarf.
2567         uint32_t dwarfOffset;
2568         if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) {
2569           if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) {
2570             // found info in dwarf, done
2571             return;
2572           }
2573         }
2574   #endif
2575         // If unwind table has entry, but entry says there is no unwind info,
2576         // record that we have no unwind info.
2577         if (_info.format == 0)
2578           _unwindInfoMissing = true;
2579         return;
2580       }
2581     }
2582 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
2583 
2584 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
2585     // If there is SEH unwind info, look there next.
2586     if (this->getInfoFromSEH(pc))
2587       return;
2588 #endif
2589 
2590 #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2591     // If there is unwind info in the traceback table, look there next.
2592     if (this->getInfoFromTBTable(pc, _registers))
2593       return;
2594 #endif
2595 
2596 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2597     // If there is dwarf unwind info, look there next.
2598     if (sects.dwarf_section != 0) {
2599       if (this->getInfoFromDwarfSection(pc, sects)) {
2600         // found info in dwarf, done
2601         return;
2602       }
2603     }
2604 #endif
2605 
2606 #if defined(_LIBUNWIND_ARM_EHABI)
2607     // If there is ARM EHABI unwind info, look there next.
2608     if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects))
2609       return;
2610 #endif
2611   }
2612 
2613 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2614   // There is no static unwind info for this pc. Look to see if an FDE was
2615   // dynamically registered for it.
2616   pint_t cachedFDE = DwarfFDECache<A>::findFDE(DwarfFDECache<A>::kSearchAll,
2617                                                pc);
2618   if (cachedFDE != 0) {
2619     typename CFI_Parser<A>::FDE_Info fdeInfo;
2620     typename CFI_Parser<A>::CIE_Info cieInfo;
2621     if (!CFI_Parser<A>::decodeFDE(_addressSpace, cachedFDE, &fdeInfo, &cieInfo))
2622       if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0))
2623         return;
2624   }
2625 
2626   // Lastly, ask AddressSpace object about platform specific ways to locate
2627   // other FDEs.
2628   pint_t fde;
2629   if (_addressSpace.findOtherFDE(pc, fde)) {
2630     typename CFI_Parser<A>::FDE_Info fdeInfo;
2631     typename CFI_Parser<A>::CIE_Info cieInfo;
2632     if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) {
2633       // Double check this FDE is for a function that includes the pc.
2634       if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd))
2635         if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0))
2636           return;
2637     }
2638   }
2639 #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2640 
2641 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
2642   if (setInfoForSigReturn())
2643     return;
2644 #endif
2645 
2646   // no unwind info, flag that we can't reliably unwind
2647   _unwindInfoMissing = true;
2648 }
2649 
2650 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&                               \
2651     defined(_LIBUNWIND_TARGET_AARCH64)
2652 template <typename A, typename R>
2653 bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_arm64 &) {
2654   // Look for the sigreturn trampoline. The trampoline's body is two
2655   // specific instructions (see below). Typically the trampoline comes from the
2656   // vDSO[1] (i.e. the __kernel_rt_sigreturn function). A libc might provide its
2657   // own restorer function, though, or user-mode QEMU might write a trampoline
2658   // onto the stack.
2659   //
2660   // This special code path is a fallback that is only used if the trampoline
2661   // lacks proper (e.g. DWARF) unwind info. On AArch64, a new DWARF register
2662   // constant for the PC needs to be defined before DWARF can handle a signal
2663   // trampoline. This code may segfault if the target PC is unreadable, e.g.:
2664   //  - The PC points at a function compiled without unwind info, and which is
2665   //    part of an execute-only mapping (e.g. using -Wl,--execute-only).
2666   //  - The PC is invalid and happens to point to unreadable or unmapped memory.
2667   //
2668   // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/vdso/sigreturn.S
2669   const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2670   // The PC might contain an invalid address if the unwind info is bad, so
2671   // directly accessing it could cause a segfault. Use process_vm_readv to read
2672   // the memory safely instead. process_vm_readv was added in Linux 3.2, and
2673   // AArch64 supported was added in Linux 3.7, so the syscall is guaranteed to
2674   // be present. Unfortunately, there are Linux AArch64 environments where the
2675   // libc wrapper for the syscall might not be present (e.g. Android 5), so call
2676   // the syscall directly instead.
2677   uint32_t instructions[2];
2678   struct iovec local_iov = {&instructions, sizeof instructions};
2679   struct iovec remote_iov = {reinterpret_cast<void *>(pc), sizeof instructions};
2680   long bytesRead =
2681       syscall(SYS_process_vm_readv, getpid(), &local_iov, 1, &remote_iov, 1, 0);
2682   // Look for instructions: mov x8, #0x8b; svc #0x0
2683   if (bytesRead != sizeof instructions || instructions[0] != 0xd2801168 ||
2684       instructions[1] != 0xd4000001)
2685     return false;
2686 
2687   _info = {};
2688   _info.start_ip = pc;
2689   _info.end_ip = pc + 4;
2690   _isSigReturn = true;
2691   return true;
2692 }
2693 
2694 template <typename A, typename R>
2695 int UnwindCursor<A, R>::stepThroughSigReturn(Registers_arm64 &) {
2696   // In the signal trampoline frame, sp points to an rt_sigframe[1], which is:
2697   //  - 128-byte siginfo struct
2698   //  - ucontext struct:
2699   //     - 8-byte long (uc_flags)
2700   //     - 8-byte pointer (uc_link)
2701   //     - 24-byte stack_t
2702   //     - 128-byte signal set
2703   //     - 8 bytes of padding because sigcontext has 16-byte alignment
2704   //     - sigcontext/mcontext_t
2705   // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/signal.c
2706   const pint_t kOffsetSpToSigcontext = (128 + 8 + 8 + 24 + 128 + 8); // 304
2707 
2708   // Offsets from sigcontext to each register.
2709   const pint_t kOffsetGprs = 8; // offset to "__u64 regs[31]" field
2710   const pint_t kOffsetSp = 256; // offset to "__u64 sp" field
2711   const pint_t kOffsetPc = 264; // offset to "__u64 pc" field
2712 
2713   pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext;
2714 
2715   for (int i = 0; i <= 30; ++i) {
2716     uint64_t value = _addressSpace.get64(sigctx + kOffsetGprs +
2717                                          static_cast<pint_t>(i * 8));
2718     _registers.setRegister(UNW_AARCH64_X0 + i, value);
2719   }
2720   _registers.setSP(_addressSpace.get64(sigctx + kOffsetSp));
2721   _registers.setIP(_addressSpace.get64(sigctx + kOffsetPc));
2722   _isSignalFrame = true;
2723   return UNW_STEP_SUCCESS;
2724 }
2725 #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
2726        // defined(_LIBUNWIND_TARGET_AARCH64)
2727 
2728 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&                               \
2729     defined(_LIBUNWIND_TARGET_RISCV)
2730 template <typename A, typename R>
2731 bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_riscv &) {
2732   const pint_t pc = static_cast<pint_t>(getReg(UNW_REG_IP));
2733   uint32_t instructions[2];
2734   struct iovec local_iov = {&instructions, sizeof instructions};
2735   struct iovec remote_iov = {reinterpret_cast<void *>(pc), sizeof instructions};
2736   long bytesRead =
2737       syscall(SYS_process_vm_readv, getpid(), &local_iov, 1, &remote_iov, 1, 0);
2738   // Look for the two instructions used in the sigreturn trampoline
2739   // __vdso_rt_sigreturn:
2740   //
2741   // 0x08b00893 li a7,0x8b
2742   // 0x00000073 ecall
2743   if (bytesRead != sizeof instructions || instructions[0] != 0x08b00893 ||
2744       instructions[1] != 0x00000073)
2745     return false;
2746 
2747   _info = {};
2748   _info.start_ip = pc;
2749   _info.end_ip = pc + 4;
2750   _isSigReturn = true;
2751   return true;
2752 }
2753 
2754 template <typename A, typename R>
2755 int UnwindCursor<A, R>::stepThroughSigReturn(Registers_riscv &) {
2756   // In the signal trampoline frame, sp points to an rt_sigframe[1], which is:
2757   //  - 128-byte siginfo struct
2758   //  - ucontext_t struct:
2759   //     - 8-byte long (__uc_flags)
2760   //     - 8-byte pointer (*uc_link)
2761   //     - 24-byte uc_stack
2762   //     - 8-byte uc_sigmask
2763   //     - 120-byte of padding to allow sigset_t to be expanded in the future
2764   //     - 8 bytes of padding because sigcontext has 16-byte alignment
2765   //     - struct sigcontext uc_mcontext
2766   // [1]
2767   // https://github.com/torvalds/linux/blob/master/arch/riscv/kernel/signal.c
2768   const pint_t kOffsetSpToSigcontext = 128 + 8 + 8 + 24 + 8 + 128;
2769 
2770   const pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext;
2771   _registers.setIP(_addressSpace.get64(sigctx));
2772   for (int i = UNW_RISCV_X1; i <= UNW_RISCV_X31; ++i) {
2773     uint64_t value = _addressSpace.get64(sigctx + static_cast<pint_t>(i * 8));
2774     _registers.setRegister(i, value);
2775   }
2776   _isSignalFrame = true;
2777   return UNW_STEP_SUCCESS;
2778 }
2779 #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
2780        // defined(_LIBUNWIND_TARGET_RISCV)
2781 
2782 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&                               \
2783     defined(_LIBUNWIND_TARGET_S390X)
2784 template <typename A, typename R>
2785 bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_s390x &) {
2786   // Look for the sigreturn trampoline. The trampoline's body is a
2787   // specific instruction (see below). Typically the trampoline comes from the
2788   // vDSO (i.e. the __kernel_[rt_]sigreturn function). A libc might provide its
2789   // own restorer function, though, or user-mode QEMU might write a trampoline
2790   // onto the stack.
2791   const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2792   // The PC might contain an invalid address if the unwind info is bad, so
2793   // directly accessing it could cause a segfault. Use process_vm_readv to
2794   // read the memory safely instead.
2795   uint16_t inst;
2796   struct iovec local_iov = {&inst, sizeof inst};
2797   struct iovec remote_iov = {reinterpret_cast<void *>(pc), sizeof inst};
2798   long bytesRead = process_vm_readv(getpid(), &local_iov, 1, &remote_iov, 1, 0);
2799   if (bytesRead == sizeof inst && (inst == 0x0a77 || inst == 0x0aad)) {
2800     _info = {};
2801     _info.start_ip = pc;
2802     _info.end_ip = pc + 2;
2803     _isSigReturn = true;
2804     return true;
2805   }
2806   return false;
2807 }
2808 
2809 template <typename A, typename R>
2810 int UnwindCursor<A, R>::stepThroughSigReturn(Registers_s390x &) {
2811   // Determine current SP.
2812   const pint_t sp = static_cast<pint_t>(this->getReg(UNW_REG_SP));
2813   // According to the s390x ABI, the CFA is at (incoming) SP + 160.
2814   const pint_t cfa = sp + 160;
2815 
2816   // Determine current PC and instruction there (this must be either
2817   // a "svc __NR_sigreturn" or "svc __NR_rt_sigreturn").
2818   const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2819   const uint16_t inst = _addressSpace.get16(pc);
2820 
2821   // Find the addresses of the signo and sigcontext in the frame.
2822   pint_t pSigctx = 0;
2823   pint_t pSigno = 0;
2824 
2825   // "svc __NR_sigreturn" uses a non-RT signal trampoline frame.
2826   if (inst == 0x0a77) {
2827     // Layout of a non-RT signal trampoline frame, starting at the CFA:
2828     //  - 8-byte signal mask
2829     //  - 8-byte pointer to sigcontext, followed by signo
2830     //  - 4-byte signo
2831     pSigctx = _addressSpace.get64(cfa + 8);
2832     pSigno = pSigctx + 344;
2833   }
2834 
2835   // "svc __NR_rt_sigreturn" uses a RT signal trampoline frame.
2836   if (inst == 0x0aad) {
2837     // Layout of a RT signal trampoline frame, starting at the CFA:
2838     //  - 8-byte retcode (+ alignment)
2839     //  - 128-byte siginfo struct (starts with signo)
2840     //  - ucontext struct:
2841     //     - 8-byte long (uc_flags)
2842     //     - 8-byte pointer (uc_link)
2843     //     - 24-byte stack_t
2844     //     - 8 bytes of padding because sigcontext has 16-byte alignment
2845     //     - sigcontext/mcontext_t
2846     pSigctx = cfa + 8 + 128 + 8 + 8 + 24 + 8;
2847     pSigno = cfa + 8;
2848   }
2849 
2850   assert(pSigctx != 0);
2851   assert(pSigno != 0);
2852 
2853   // Offsets from sigcontext to each register.
2854   const pint_t kOffsetPc = 8;
2855   const pint_t kOffsetGprs = 16;
2856   const pint_t kOffsetFprs = 216;
2857 
2858   // Restore all registers.
2859   for (int i = 0; i < 16; ++i) {
2860     uint64_t value = _addressSpace.get64(pSigctx + kOffsetGprs +
2861                                          static_cast<pint_t>(i * 8));
2862     _registers.setRegister(UNW_S390X_R0 + i, value);
2863   }
2864   for (int i = 0; i < 16; ++i) {
2865     static const int fpr[16] = {
2866       UNW_S390X_F0, UNW_S390X_F1, UNW_S390X_F2, UNW_S390X_F3,
2867       UNW_S390X_F4, UNW_S390X_F5, UNW_S390X_F6, UNW_S390X_F7,
2868       UNW_S390X_F8, UNW_S390X_F9, UNW_S390X_F10, UNW_S390X_F11,
2869       UNW_S390X_F12, UNW_S390X_F13, UNW_S390X_F14, UNW_S390X_F15
2870     };
2871     double value = _addressSpace.getDouble(pSigctx + kOffsetFprs +
2872                                            static_cast<pint_t>(i * 8));
2873     _registers.setFloatRegister(fpr[i], value);
2874   }
2875   _registers.setIP(_addressSpace.get64(pSigctx + kOffsetPc));
2876 
2877   // SIGILL, SIGFPE and SIGTRAP are delivered with psw_addr
2878   // after the faulting instruction rather than before it.
2879   // Do not set _isSignalFrame in that case.
2880   uint32_t signo = _addressSpace.get32(pSigno);
2881   _isSignalFrame = (signo != 4 && signo != 5 && signo != 8);
2882 
2883   return UNW_STEP_SUCCESS;
2884 }
2885 #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
2886        // defined(_LIBUNWIND_TARGET_S390X)
2887 
2888 template <typename A, typename R> int UnwindCursor<A, R>::step(bool stage2) {
2889   (void)stage2;
2890   // Bottom of stack is defined is when unwind info cannot be found.
2891   if (_unwindInfoMissing)
2892     return UNW_STEP_END;
2893 
2894   // Use unwinding info to modify register set as if function returned.
2895   int result;
2896 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
2897   if (_isSigReturn) {
2898     result = this->stepThroughSigReturn();
2899   } else
2900 #endif
2901   {
2902 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
2903     result = this->stepWithCompactEncoding(stage2);
2904 #elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
2905     result = this->stepWithSEHData();
2906 #elif defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2907     result = this->stepWithTBTableData();
2908 #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2909     result = this->stepWithDwarfFDE(stage2);
2910 #elif defined(_LIBUNWIND_ARM_EHABI)
2911     result = this->stepWithEHABI();
2912 #else
2913   #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \
2914               _LIBUNWIND_SUPPORT_SEH_UNWIND or \
2915               _LIBUNWIND_SUPPORT_DWARF_UNWIND or \
2916               _LIBUNWIND_ARM_EHABI
2917 #endif
2918   }
2919 
2920   // update info based on new PC
2921   if (result == UNW_STEP_SUCCESS) {
2922     this->setInfoBasedOnIPRegister(true);
2923     if (_unwindInfoMissing)
2924       return UNW_STEP_END;
2925   }
2926 
2927   return result;
2928 }
2929 
2930 template <typename A, typename R>
2931 void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) {
2932   if (_unwindInfoMissing)
2933     memset(info, 0, sizeof(*info));
2934   else
2935     *info = _info;
2936 }
2937 
2938 template <typename A, typename R>
2939 bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen,
2940                                                            unw_word_t *offset) {
2941   return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP),
2942                                          buf, bufLen, offset);
2943 }
2944 
2945 #if defined(_LIBUNWIND_USE_CET)
2946 extern "C" void *__libunwind_cet_get_registers(unw_cursor_t *cursor) {
2947   AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor;
2948   return co->get_registers();
2949 }
2950 #endif
2951 } // namespace libunwind
2952 
2953 #endif // __UNWINDCURSOR_HPP__
2954