1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 // 8 // C++ interface to lower levels of libunwind 9 //===----------------------------------------------------------------------===// 10 11 #ifndef __UNWINDCURSOR_HPP__ 12 #define __UNWINDCURSOR_HPP__ 13 14 #include "cet_unwind.h" 15 #include <stdint.h> 16 #include <stdio.h> 17 #include <stdlib.h> 18 #include <unwind.h> 19 20 #ifdef _WIN32 21 #include <windows.h> 22 #include <ntverp.h> 23 #endif 24 #ifdef __APPLE__ 25 #include <mach-o/dyld.h> 26 #endif 27 #ifdef _AIX 28 #include <dlfcn.h> 29 #include <sys/debug.h> 30 #include <sys/pseg.h> 31 #endif 32 33 #if defined(_LIBUNWIND_TARGET_LINUX) && \ 34 (defined(_LIBUNWIND_TARGET_AARCH64) || defined(_LIBUNWIND_TARGET_S390X)) 35 #include <sys/syscall.h> 36 #include <sys/uio.h> 37 #include <unistd.h> 38 #define _LIBUNWIND_CHECK_LINUX_SIGRETURN 1 39 #endif 40 41 #include "AddressSpace.hpp" 42 #include "CompactUnwinder.hpp" 43 #include "config.h" 44 #include "DwarfInstructions.hpp" 45 #include "EHHeaderParser.hpp" 46 #include "libunwind.h" 47 #include "libunwind_ext.h" 48 #include "Registers.hpp" 49 #include "RWMutex.hpp" 50 #include "Unwind-EHABI.h" 51 52 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 53 // Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and 54 // earlier) SDKs. 55 // MinGW-w64 has always provided this struct. 56 #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \ 57 !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000 58 struct _DISPATCHER_CONTEXT { 59 ULONG64 ControlPc; 60 ULONG64 ImageBase; 61 PRUNTIME_FUNCTION FunctionEntry; 62 ULONG64 EstablisherFrame; 63 ULONG64 TargetIp; 64 PCONTEXT ContextRecord; 65 PEXCEPTION_ROUTINE LanguageHandler; 66 PVOID HandlerData; 67 PUNWIND_HISTORY_TABLE HistoryTable; 68 ULONG ScopeIndex; 69 ULONG Fill0; 70 }; 71 #endif 72 73 struct UNWIND_INFO { 74 uint8_t Version : 3; 75 uint8_t Flags : 5; 76 uint8_t SizeOfProlog; 77 uint8_t CountOfCodes; 78 uint8_t FrameRegister : 4; 79 uint8_t FrameOffset : 4; 80 uint16_t UnwindCodes[2]; 81 }; 82 83 extern "C" _Unwind_Reason_Code __libunwind_seh_personality( 84 int, _Unwind_Action, uint64_t, _Unwind_Exception *, 85 struct _Unwind_Context *); 86 87 #endif 88 89 namespace libunwind { 90 91 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 92 /// Cache of recently found FDEs. 93 template <typename A> 94 class _LIBUNWIND_HIDDEN DwarfFDECache { 95 typedef typename A::pint_t pint_t; 96 public: 97 static constexpr pint_t kSearchAll = static_cast<pint_t>(-1); 98 static pint_t findFDE(pint_t mh, pint_t pc); 99 static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde); 100 static void removeAllIn(pint_t mh); 101 static void iterateCacheEntries(void (*func)(unw_word_t ip_start, 102 unw_word_t ip_end, 103 unw_word_t fde, unw_word_t mh)); 104 105 private: 106 107 struct entry { 108 pint_t mh; 109 pint_t ip_start; 110 pint_t ip_end; 111 pint_t fde; 112 }; 113 114 // These fields are all static to avoid needing an initializer. 115 // There is only one instance of this class per process. 116 static RWMutex _lock; 117 #ifdef __APPLE__ 118 static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide); 119 static bool _registeredForDyldUnloads; 120 #endif 121 static entry *_buffer; 122 static entry *_bufferUsed; 123 static entry *_bufferEnd; 124 static entry _initialBuffer[64]; 125 }; 126 127 template <typename A> 128 typename DwarfFDECache<A>::entry * 129 DwarfFDECache<A>::_buffer = _initialBuffer; 130 131 template <typename A> 132 typename DwarfFDECache<A>::entry * 133 DwarfFDECache<A>::_bufferUsed = _initialBuffer; 134 135 template <typename A> 136 typename DwarfFDECache<A>::entry * 137 DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64]; 138 139 template <typename A> 140 typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64]; 141 142 template <typename A> 143 RWMutex DwarfFDECache<A>::_lock; 144 145 #ifdef __APPLE__ 146 template <typename A> 147 bool DwarfFDECache<A>::_registeredForDyldUnloads = false; 148 #endif 149 150 template <typename A> 151 typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) { 152 pint_t result = 0; 153 _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared()); 154 for (entry *p = _buffer; p < _bufferUsed; ++p) { 155 if ((mh == p->mh) || (mh == kSearchAll)) { 156 if ((p->ip_start <= pc) && (pc < p->ip_end)) { 157 result = p->fde; 158 break; 159 } 160 } 161 } 162 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared()); 163 return result; 164 } 165 166 template <typename A> 167 void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end, 168 pint_t fde) { 169 #if !defined(_LIBUNWIND_NO_HEAP) 170 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 171 if (_bufferUsed >= _bufferEnd) { 172 size_t oldSize = (size_t)(_bufferEnd - _buffer); 173 size_t newSize = oldSize * 4; 174 // Can't use operator new (we are below it). 175 entry *newBuffer = (entry *)malloc(newSize * sizeof(entry)); 176 memcpy(newBuffer, _buffer, oldSize * sizeof(entry)); 177 if (_buffer != _initialBuffer) 178 free(_buffer); 179 _buffer = newBuffer; 180 _bufferUsed = &newBuffer[oldSize]; 181 _bufferEnd = &newBuffer[newSize]; 182 } 183 _bufferUsed->mh = mh; 184 _bufferUsed->ip_start = ip_start; 185 _bufferUsed->ip_end = ip_end; 186 _bufferUsed->fde = fde; 187 ++_bufferUsed; 188 #ifdef __APPLE__ 189 if (!_registeredForDyldUnloads) { 190 _dyld_register_func_for_remove_image(&dyldUnloadHook); 191 _registeredForDyldUnloads = true; 192 } 193 #endif 194 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 195 #endif 196 } 197 198 template <typename A> 199 void DwarfFDECache<A>::removeAllIn(pint_t mh) { 200 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 201 entry *d = _buffer; 202 for (const entry *s = _buffer; s < _bufferUsed; ++s) { 203 if (s->mh != mh) { 204 if (d != s) 205 *d = *s; 206 ++d; 207 } 208 } 209 _bufferUsed = d; 210 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 211 } 212 213 #ifdef __APPLE__ 214 template <typename A> 215 void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) { 216 removeAllIn((pint_t) mh); 217 } 218 #endif 219 220 template <typename A> 221 void DwarfFDECache<A>::iterateCacheEntries(void (*func)( 222 unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) { 223 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 224 for (entry *p = _buffer; p < _bufferUsed; ++p) { 225 (*func)(p->ip_start, p->ip_end, p->fde, p->mh); 226 } 227 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 228 } 229 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 230 231 232 #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field)) 233 234 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 235 template <typename A> class UnwindSectionHeader { 236 public: 237 UnwindSectionHeader(A &addressSpace, typename A::pint_t addr) 238 : _addressSpace(addressSpace), _addr(addr) {} 239 240 uint32_t version() const { 241 return _addressSpace.get32(_addr + 242 offsetof(unwind_info_section_header, version)); 243 } 244 uint32_t commonEncodingsArraySectionOffset() const { 245 return _addressSpace.get32(_addr + 246 offsetof(unwind_info_section_header, 247 commonEncodingsArraySectionOffset)); 248 } 249 uint32_t commonEncodingsArrayCount() const { 250 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, 251 commonEncodingsArrayCount)); 252 } 253 uint32_t personalityArraySectionOffset() const { 254 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, 255 personalityArraySectionOffset)); 256 } 257 uint32_t personalityArrayCount() const { 258 return _addressSpace.get32( 259 _addr + offsetof(unwind_info_section_header, personalityArrayCount)); 260 } 261 uint32_t indexSectionOffset() const { 262 return _addressSpace.get32( 263 _addr + offsetof(unwind_info_section_header, indexSectionOffset)); 264 } 265 uint32_t indexCount() const { 266 return _addressSpace.get32( 267 _addr + offsetof(unwind_info_section_header, indexCount)); 268 } 269 270 private: 271 A &_addressSpace; 272 typename A::pint_t _addr; 273 }; 274 275 template <typename A> class UnwindSectionIndexArray { 276 public: 277 UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr) 278 : _addressSpace(addressSpace), _addr(addr) {} 279 280 uint32_t functionOffset(uint32_t index) const { 281 return _addressSpace.get32( 282 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 283 functionOffset)); 284 } 285 uint32_t secondLevelPagesSectionOffset(uint32_t index) const { 286 return _addressSpace.get32( 287 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 288 secondLevelPagesSectionOffset)); 289 } 290 uint32_t lsdaIndexArraySectionOffset(uint32_t index) const { 291 return _addressSpace.get32( 292 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 293 lsdaIndexArraySectionOffset)); 294 } 295 296 private: 297 A &_addressSpace; 298 typename A::pint_t _addr; 299 }; 300 301 template <typename A> class UnwindSectionRegularPageHeader { 302 public: 303 UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr) 304 : _addressSpace(addressSpace), _addr(addr) {} 305 306 uint32_t kind() const { 307 return _addressSpace.get32( 308 _addr + offsetof(unwind_info_regular_second_level_page_header, kind)); 309 } 310 uint16_t entryPageOffset() const { 311 return _addressSpace.get16( 312 _addr + offsetof(unwind_info_regular_second_level_page_header, 313 entryPageOffset)); 314 } 315 uint16_t entryCount() const { 316 return _addressSpace.get16( 317 _addr + 318 offsetof(unwind_info_regular_second_level_page_header, entryCount)); 319 } 320 321 private: 322 A &_addressSpace; 323 typename A::pint_t _addr; 324 }; 325 326 template <typename A> class UnwindSectionRegularArray { 327 public: 328 UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr) 329 : _addressSpace(addressSpace), _addr(addr) {} 330 331 uint32_t functionOffset(uint32_t index) const { 332 return _addressSpace.get32( 333 _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, 334 functionOffset)); 335 } 336 uint32_t encoding(uint32_t index) const { 337 return _addressSpace.get32( 338 _addr + 339 arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding)); 340 } 341 342 private: 343 A &_addressSpace; 344 typename A::pint_t _addr; 345 }; 346 347 template <typename A> class UnwindSectionCompressedPageHeader { 348 public: 349 UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr) 350 : _addressSpace(addressSpace), _addr(addr) {} 351 352 uint32_t kind() const { 353 return _addressSpace.get32( 354 _addr + 355 offsetof(unwind_info_compressed_second_level_page_header, kind)); 356 } 357 uint16_t entryPageOffset() const { 358 return _addressSpace.get16( 359 _addr + offsetof(unwind_info_compressed_second_level_page_header, 360 entryPageOffset)); 361 } 362 uint16_t entryCount() const { 363 return _addressSpace.get16( 364 _addr + 365 offsetof(unwind_info_compressed_second_level_page_header, entryCount)); 366 } 367 uint16_t encodingsPageOffset() const { 368 return _addressSpace.get16( 369 _addr + offsetof(unwind_info_compressed_second_level_page_header, 370 encodingsPageOffset)); 371 } 372 uint16_t encodingsCount() const { 373 return _addressSpace.get16( 374 _addr + offsetof(unwind_info_compressed_second_level_page_header, 375 encodingsCount)); 376 } 377 378 private: 379 A &_addressSpace; 380 typename A::pint_t _addr; 381 }; 382 383 template <typename A> class UnwindSectionCompressedArray { 384 public: 385 UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr) 386 : _addressSpace(addressSpace), _addr(addr) {} 387 388 uint32_t functionOffset(uint32_t index) const { 389 return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET( 390 _addressSpace.get32(_addr + index * sizeof(uint32_t))); 391 } 392 uint16_t encodingIndex(uint32_t index) const { 393 return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX( 394 _addressSpace.get32(_addr + index * sizeof(uint32_t))); 395 } 396 397 private: 398 A &_addressSpace; 399 typename A::pint_t _addr; 400 }; 401 402 template <typename A> class UnwindSectionLsdaArray { 403 public: 404 UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr) 405 : _addressSpace(addressSpace), _addr(addr) {} 406 407 uint32_t functionOffset(uint32_t index) const { 408 return _addressSpace.get32( 409 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, 410 index, functionOffset)); 411 } 412 uint32_t lsdaOffset(uint32_t index) const { 413 return _addressSpace.get32( 414 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, 415 index, lsdaOffset)); 416 } 417 418 private: 419 A &_addressSpace; 420 typename A::pint_t _addr; 421 }; 422 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 423 424 class _LIBUNWIND_HIDDEN AbstractUnwindCursor { 425 public: 426 // NOTE: provide a class specific placement deallocation function (S5.3.4 p20) 427 // This avoids an unnecessary dependency to libc++abi. 428 void operator delete(void *, size_t) {} 429 430 virtual ~AbstractUnwindCursor() {} 431 virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); } 432 virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); } 433 virtual void setReg(int, unw_word_t) { 434 _LIBUNWIND_ABORT("setReg not implemented"); 435 } 436 virtual bool validFloatReg(int) { 437 _LIBUNWIND_ABORT("validFloatReg not implemented"); 438 } 439 virtual unw_fpreg_t getFloatReg(int) { 440 _LIBUNWIND_ABORT("getFloatReg not implemented"); 441 } 442 virtual void setFloatReg(int, unw_fpreg_t) { 443 _LIBUNWIND_ABORT("setFloatReg not implemented"); 444 } 445 virtual int step(bool = false) { _LIBUNWIND_ABORT("step not implemented"); } 446 virtual void getInfo(unw_proc_info_t *) { 447 _LIBUNWIND_ABORT("getInfo not implemented"); 448 } 449 virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); } 450 virtual bool isSignalFrame() { 451 _LIBUNWIND_ABORT("isSignalFrame not implemented"); 452 } 453 virtual bool getFunctionName(char *, size_t, unw_word_t *) { 454 _LIBUNWIND_ABORT("getFunctionName not implemented"); 455 } 456 virtual void setInfoBasedOnIPRegister(bool = false) { 457 _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented"); 458 } 459 virtual const char *getRegisterName(int) { 460 _LIBUNWIND_ABORT("getRegisterName not implemented"); 461 } 462 #ifdef __arm__ 463 virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); } 464 #endif 465 466 #ifdef _AIX 467 virtual uintptr_t getDataRelBase() { 468 _LIBUNWIND_ABORT("getDataRelBase not implemented"); 469 } 470 #endif 471 472 #if defined(_LIBUNWIND_USE_CET) 473 virtual void *get_registers() { 474 _LIBUNWIND_ABORT("get_registers not implemented"); 475 } 476 #endif 477 }; 478 479 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32) 480 481 /// \c UnwindCursor contains all state (including all register values) during 482 /// an unwind. This is normally stack-allocated inside a unw_cursor_t. 483 template <typename A, typename R> 484 class UnwindCursor : public AbstractUnwindCursor { 485 typedef typename A::pint_t pint_t; 486 public: 487 UnwindCursor(unw_context_t *context, A &as); 488 UnwindCursor(CONTEXT *context, A &as); 489 UnwindCursor(A &as, void *threadArg); 490 virtual ~UnwindCursor() {} 491 virtual bool validReg(int); 492 virtual unw_word_t getReg(int); 493 virtual void setReg(int, unw_word_t); 494 virtual bool validFloatReg(int); 495 virtual unw_fpreg_t getFloatReg(int); 496 virtual void setFloatReg(int, unw_fpreg_t); 497 virtual int step(bool = false); 498 virtual void getInfo(unw_proc_info_t *); 499 virtual void jumpto(); 500 virtual bool isSignalFrame(); 501 virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); 502 virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); 503 virtual const char *getRegisterName(int num); 504 #ifdef __arm__ 505 virtual void saveVFPAsX(); 506 #endif 507 508 DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; } 509 void setDispatcherContext(DISPATCHER_CONTEXT *disp) { _dispContext = *disp; } 510 511 // libunwind does not and should not depend on C++ library which means that we 512 // need our own definition of inline placement new. 513 static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } 514 515 private: 516 517 pint_t getLastPC() const { return _dispContext.ControlPc; } 518 void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; } 519 RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { 520 #ifdef __arm__ 521 // Remove the thumb bit; FunctionEntry ranges don't include the thumb bit. 522 pc &= ~1U; 523 #endif 524 // If pc points exactly at the end of the range, we might resolve the 525 // next function instead. Decrement pc by 1 to fit inside the current 526 // function. 527 pc -= 1; 528 _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc, 529 &_dispContext.ImageBase, 530 _dispContext.HistoryTable); 531 *base = _dispContext.ImageBase; 532 return _dispContext.FunctionEntry; 533 } 534 bool getInfoFromSEH(pint_t pc); 535 int stepWithSEHData() { 536 _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER, 537 _dispContext.ImageBase, 538 _dispContext.ControlPc, 539 _dispContext.FunctionEntry, 540 _dispContext.ContextRecord, 541 &_dispContext.HandlerData, 542 &_dispContext.EstablisherFrame, 543 NULL); 544 // Update some fields of the unwind info now, since we have them. 545 _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); 546 if (_dispContext.LanguageHandler) { 547 _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); 548 } else 549 _info.handler = 0; 550 return UNW_STEP_SUCCESS; 551 } 552 553 A &_addressSpace; 554 unw_proc_info_t _info; 555 DISPATCHER_CONTEXT _dispContext; 556 CONTEXT _msContext; 557 UNWIND_HISTORY_TABLE _histTable; 558 bool _unwindInfoMissing; 559 }; 560 561 562 template <typename A, typename R> 563 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) 564 : _addressSpace(as), _unwindInfoMissing(false) { 565 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 566 "UnwindCursor<> does not fit in unw_cursor_t"); 567 static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)), 568 "UnwindCursor<> requires more alignment than unw_cursor_t"); 569 memset(&_info, 0, sizeof(_info)); 570 memset(&_histTable, 0, sizeof(_histTable)); 571 _dispContext.ContextRecord = &_msContext; 572 _dispContext.HistoryTable = &_histTable; 573 // Initialize MS context from ours. 574 R r(context); 575 _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT; 576 #if defined(_LIBUNWIND_TARGET_X86_64) 577 _msContext.Rax = r.getRegister(UNW_X86_64_RAX); 578 _msContext.Rcx = r.getRegister(UNW_X86_64_RCX); 579 _msContext.Rdx = r.getRegister(UNW_X86_64_RDX); 580 _msContext.Rbx = r.getRegister(UNW_X86_64_RBX); 581 _msContext.Rsp = r.getRegister(UNW_X86_64_RSP); 582 _msContext.Rbp = r.getRegister(UNW_X86_64_RBP); 583 _msContext.Rsi = r.getRegister(UNW_X86_64_RSI); 584 _msContext.Rdi = r.getRegister(UNW_X86_64_RDI); 585 _msContext.R8 = r.getRegister(UNW_X86_64_R8); 586 _msContext.R9 = r.getRegister(UNW_X86_64_R9); 587 _msContext.R10 = r.getRegister(UNW_X86_64_R10); 588 _msContext.R11 = r.getRegister(UNW_X86_64_R11); 589 _msContext.R12 = r.getRegister(UNW_X86_64_R12); 590 _msContext.R13 = r.getRegister(UNW_X86_64_R13); 591 _msContext.R14 = r.getRegister(UNW_X86_64_R14); 592 _msContext.R15 = r.getRegister(UNW_X86_64_R15); 593 _msContext.Rip = r.getRegister(UNW_REG_IP); 594 union { 595 v128 v; 596 M128A m; 597 } t; 598 t.v = r.getVectorRegister(UNW_X86_64_XMM0); 599 _msContext.Xmm0 = t.m; 600 t.v = r.getVectorRegister(UNW_X86_64_XMM1); 601 _msContext.Xmm1 = t.m; 602 t.v = r.getVectorRegister(UNW_X86_64_XMM2); 603 _msContext.Xmm2 = t.m; 604 t.v = r.getVectorRegister(UNW_X86_64_XMM3); 605 _msContext.Xmm3 = t.m; 606 t.v = r.getVectorRegister(UNW_X86_64_XMM4); 607 _msContext.Xmm4 = t.m; 608 t.v = r.getVectorRegister(UNW_X86_64_XMM5); 609 _msContext.Xmm5 = t.m; 610 t.v = r.getVectorRegister(UNW_X86_64_XMM6); 611 _msContext.Xmm6 = t.m; 612 t.v = r.getVectorRegister(UNW_X86_64_XMM7); 613 _msContext.Xmm7 = t.m; 614 t.v = r.getVectorRegister(UNW_X86_64_XMM8); 615 _msContext.Xmm8 = t.m; 616 t.v = r.getVectorRegister(UNW_X86_64_XMM9); 617 _msContext.Xmm9 = t.m; 618 t.v = r.getVectorRegister(UNW_X86_64_XMM10); 619 _msContext.Xmm10 = t.m; 620 t.v = r.getVectorRegister(UNW_X86_64_XMM11); 621 _msContext.Xmm11 = t.m; 622 t.v = r.getVectorRegister(UNW_X86_64_XMM12); 623 _msContext.Xmm12 = t.m; 624 t.v = r.getVectorRegister(UNW_X86_64_XMM13); 625 _msContext.Xmm13 = t.m; 626 t.v = r.getVectorRegister(UNW_X86_64_XMM14); 627 _msContext.Xmm14 = t.m; 628 t.v = r.getVectorRegister(UNW_X86_64_XMM15); 629 _msContext.Xmm15 = t.m; 630 #elif defined(_LIBUNWIND_TARGET_ARM) 631 _msContext.R0 = r.getRegister(UNW_ARM_R0); 632 _msContext.R1 = r.getRegister(UNW_ARM_R1); 633 _msContext.R2 = r.getRegister(UNW_ARM_R2); 634 _msContext.R3 = r.getRegister(UNW_ARM_R3); 635 _msContext.R4 = r.getRegister(UNW_ARM_R4); 636 _msContext.R5 = r.getRegister(UNW_ARM_R5); 637 _msContext.R6 = r.getRegister(UNW_ARM_R6); 638 _msContext.R7 = r.getRegister(UNW_ARM_R7); 639 _msContext.R8 = r.getRegister(UNW_ARM_R8); 640 _msContext.R9 = r.getRegister(UNW_ARM_R9); 641 _msContext.R10 = r.getRegister(UNW_ARM_R10); 642 _msContext.R11 = r.getRegister(UNW_ARM_R11); 643 _msContext.R12 = r.getRegister(UNW_ARM_R12); 644 _msContext.Sp = r.getRegister(UNW_ARM_SP); 645 _msContext.Lr = r.getRegister(UNW_ARM_LR); 646 _msContext.Pc = r.getRegister(UNW_ARM_IP); 647 for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) { 648 union { 649 uint64_t w; 650 double d; 651 } d; 652 d.d = r.getFloatRegister(i); 653 _msContext.D[i - UNW_ARM_D0] = d.w; 654 } 655 #elif defined(_LIBUNWIND_TARGET_AARCH64) 656 for (int i = UNW_AARCH64_X0; i <= UNW_ARM64_X30; ++i) 657 _msContext.X[i - UNW_AARCH64_X0] = r.getRegister(i); 658 _msContext.Sp = r.getRegister(UNW_REG_SP); 659 _msContext.Pc = r.getRegister(UNW_REG_IP); 660 for (int i = UNW_AARCH64_V0; i <= UNW_ARM64_D31; ++i) 661 _msContext.V[i - UNW_AARCH64_V0].D[0] = r.getFloatRegister(i); 662 #endif 663 } 664 665 template <typename A, typename R> 666 UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as) 667 : _addressSpace(as), _unwindInfoMissing(false) { 668 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 669 "UnwindCursor<> does not fit in unw_cursor_t"); 670 memset(&_info, 0, sizeof(_info)); 671 memset(&_histTable, 0, sizeof(_histTable)); 672 _dispContext.ContextRecord = &_msContext; 673 _dispContext.HistoryTable = &_histTable; 674 _msContext = *context; 675 } 676 677 678 template <typename A, typename R> 679 bool UnwindCursor<A, R>::validReg(int regNum) { 680 if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true; 681 #if defined(_LIBUNWIND_TARGET_X86_64) 682 if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_R15) return true; 683 #elif defined(_LIBUNWIND_TARGET_ARM) 684 if ((regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) || 685 regNum == UNW_ARM_RA_AUTH_CODE) 686 return true; 687 #elif defined(_LIBUNWIND_TARGET_AARCH64) 688 if (regNum >= UNW_AARCH64_X0 && regNum <= UNW_ARM64_X30) return true; 689 #endif 690 return false; 691 } 692 693 template <typename A, typename R> 694 unw_word_t UnwindCursor<A, R>::getReg(int regNum) { 695 switch (regNum) { 696 #if defined(_LIBUNWIND_TARGET_X86_64) 697 case UNW_REG_IP: return _msContext.Rip; 698 case UNW_X86_64_RAX: return _msContext.Rax; 699 case UNW_X86_64_RDX: return _msContext.Rdx; 700 case UNW_X86_64_RCX: return _msContext.Rcx; 701 case UNW_X86_64_RBX: return _msContext.Rbx; 702 case UNW_REG_SP: 703 case UNW_X86_64_RSP: return _msContext.Rsp; 704 case UNW_X86_64_RBP: return _msContext.Rbp; 705 case UNW_X86_64_RSI: return _msContext.Rsi; 706 case UNW_X86_64_RDI: return _msContext.Rdi; 707 case UNW_X86_64_R8: return _msContext.R8; 708 case UNW_X86_64_R9: return _msContext.R9; 709 case UNW_X86_64_R10: return _msContext.R10; 710 case UNW_X86_64_R11: return _msContext.R11; 711 case UNW_X86_64_R12: return _msContext.R12; 712 case UNW_X86_64_R13: return _msContext.R13; 713 case UNW_X86_64_R14: return _msContext.R14; 714 case UNW_X86_64_R15: return _msContext.R15; 715 #elif defined(_LIBUNWIND_TARGET_ARM) 716 case UNW_ARM_R0: return _msContext.R0; 717 case UNW_ARM_R1: return _msContext.R1; 718 case UNW_ARM_R2: return _msContext.R2; 719 case UNW_ARM_R3: return _msContext.R3; 720 case UNW_ARM_R4: return _msContext.R4; 721 case UNW_ARM_R5: return _msContext.R5; 722 case UNW_ARM_R6: return _msContext.R6; 723 case UNW_ARM_R7: return _msContext.R7; 724 case UNW_ARM_R8: return _msContext.R8; 725 case UNW_ARM_R9: return _msContext.R9; 726 case UNW_ARM_R10: return _msContext.R10; 727 case UNW_ARM_R11: return _msContext.R11; 728 case UNW_ARM_R12: return _msContext.R12; 729 case UNW_REG_SP: 730 case UNW_ARM_SP: return _msContext.Sp; 731 case UNW_ARM_LR: return _msContext.Lr; 732 case UNW_REG_IP: 733 case UNW_ARM_IP: return _msContext.Pc; 734 #elif defined(_LIBUNWIND_TARGET_AARCH64) 735 case UNW_REG_SP: return _msContext.Sp; 736 case UNW_REG_IP: return _msContext.Pc; 737 default: return _msContext.X[regNum - UNW_AARCH64_X0]; 738 #endif 739 } 740 _LIBUNWIND_ABORT("unsupported register"); 741 } 742 743 template <typename A, typename R> 744 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { 745 switch (regNum) { 746 #if defined(_LIBUNWIND_TARGET_X86_64) 747 case UNW_REG_IP: _msContext.Rip = value; break; 748 case UNW_X86_64_RAX: _msContext.Rax = value; break; 749 case UNW_X86_64_RDX: _msContext.Rdx = value; break; 750 case UNW_X86_64_RCX: _msContext.Rcx = value; break; 751 case UNW_X86_64_RBX: _msContext.Rbx = value; break; 752 case UNW_REG_SP: 753 case UNW_X86_64_RSP: _msContext.Rsp = value; break; 754 case UNW_X86_64_RBP: _msContext.Rbp = value; break; 755 case UNW_X86_64_RSI: _msContext.Rsi = value; break; 756 case UNW_X86_64_RDI: _msContext.Rdi = value; break; 757 case UNW_X86_64_R8: _msContext.R8 = value; break; 758 case UNW_X86_64_R9: _msContext.R9 = value; break; 759 case UNW_X86_64_R10: _msContext.R10 = value; break; 760 case UNW_X86_64_R11: _msContext.R11 = value; break; 761 case UNW_X86_64_R12: _msContext.R12 = value; break; 762 case UNW_X86_64_R13: _msContext.R13 = value; break; 763 case UNW_X86_64_R14: _msContext.R14 = value; break; 764 case UNW_X86_64_R15: _msContext.R15 = value; break; 765 #elif defined(_LIBUNWIND_TARGET_ARM) 766 case UNW_ARM_R0: _msContext.R0 = value; break; 767 case UNW_ARM_R1: _msContext.R1 = value; break; 768 case UNW_ARM_R2: _msContext.R2 = value; break; 769 case UNW_ARM_R3: _msContext.R3 = value; break; 770 case UNW_ARM_R4: _msContext.R4 = value; break; 771 case UNW_ARM_R5: _msContext.R5 = value; break; 772 case UNW_ARM_R6: _msContext.R6 = value; break; 773 case UNW_ARM_R7: _msContext.R7 = value; break; 774 case UNW_ARM_R8: _msContext.R8 = value; break; 775 case UNW_ARM_R9: _msContext.R9 = value; break; 776 case UNW_ARM_R10: _msContext.R10 = value; break; 777 case UNW_ARM_R11: _msContext.R11 = value; break; 778 case UNW_ARM_R12: _msContext.R12 = value; break; 779 case UNW_REG_SP: 780 case UNW_ARM_SP: _msContext.Sp = value; break; 781 case UNW_ARM_LR: _msContext.Lr = value; break; 782 case UNW_REG_IP: 783 case UNW_ARM_IP: _msContext.Pc = value; break; 784 #elif defined(_LIBUNWIND_TARGET_AARCH64) 785 case UNW_REG_SP: _msContext.Sp = value; break; 786 case UNW_REG_IP: _msContext.Pc = value; break; 787 case UNW_AARCH64_X0: 788 case UNW_AARCH64_X1: 789 case UNW_AARCH64_X2: 790 case UNW_AARCH64_X3: 791 case UNW_AARCH64_X4: 792 case UNW_AARCH64_X5: 793 case UNW_AARCH64_X6: 794 case UNW_AARCH64_X7: 795 case UNW_AARCH64_X8: 796 case UNW_AARCH64_X9: 797 case UNW_AARCH64_X10: 798 case UNW_AARCH64_X11: 799 case UNW_AARCH64_X12: 800 case UNW_AARCH64_X13: 801 case UNW_AARCH64_X14: 802 case UNW_AARCH64_X15: 803 case UNW_AARCH64_X16: 804 case UNW_AARCH64_X17: 805 case UNW_AARCH64_X18: 806 case UNW_AARCH64_X19: 807 case UNW_AARCH64_X20: 808 case UNW_AARCH64_X21: 809 case UNW_AARCH64_X22: 810 case UNW_AARCH64_X23: 811 case UNW_AARCH64_X24: 812 case UNW_AARCH64_X25: 813 case UNW_AARCH64_X26: 814 case UNW_AARCH64_X27: 815 case UNW_AARCH64_X28: 816 case UNW_AARCH64_FP: 817 case UNW_AARCH64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break; 818 #endif 819 default: 820 _LIBUNWIND_ABORT("unsupported register"); 821 } 822 } 823 824 template <typename A, typename R> 825 bool UnwindCursor<A, R>::validFloatReg(int regNum) { 826 #if defined(_LIBUNWIND_TARGET_ARM) 827 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true; 828 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true; 829 #elif defined(_LIBUNWIND_TARGET_AARCH64) 830 if (regNum >= UNW_AARCH64_V0 && regNum <= UNW_ARM64_D31) return true; 831 #else 832 (void)regNum; 833 #endif 834 return false; 835 } 836 837 template <typename A, typename R> 838 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { 839 #if defined(_LIBUNWIND_TARGET_ARM) 840 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { 841 union { 842 uint32_t w; 843 float f; 844 } d; 845 d.w = _msContext.S[regNum - UNW_ARM_S0]; 846 return d.f; 847 } 848 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { 849 union { 850 uint64_t w; 851 double d; 852 } d; 853 d.w = _msContext.D[regNum - UNW_ARM_D0]; 854 return d.d; 855 } 856 _LIBUNWIND_ABORT("unsupported float register"); 857 #elif defined(_LIBUNWIND_TARGET_AARCH64) 858 return _msContext.V[regNum - UNW_AARCH64_V0].D[0]; 859 #else 860 (void)regNum; 861 _LIBUNWIND_ABORT("float registers unimplemented"); 862 #endif 863 } 864 865 template <typename A, typename R> 866 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { 867 #if defined(_LIBUNWIND_TARGET_ARM) 868 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { 869 union { 870 uint32_t w; 871 float f; 872 } d; 873 d.f = (float)value; 874 _msContext.S[regNum - UNW_ARM_S0] = d.w; 875 } 876 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { 877 union { 878 uint64_t w; 879 double d; 880 } d; 881 d.d = value; 882 _msContext.D[regNum - UNW_ARM_D0] = d.w; 883 } 884 _LIBUNWIND_ABORT("unsupported float register"); 885 #elif defined(_LIBUNWIND_TARGET_AARCH64) 886 _msContext.V[regNum - UNW_AARCH64_V0].D[0] = value; 887 #else 888 (void)regNum; 889 (void)value; 890 _LIBUNWIND_ABORT("float registers unimplemented"); 891 #endif 892 } 893 894 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { 895 RtlRestoreContext(&_msContext, nullptr); 896 } 897 898 #ifdef __arm__ 899 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {} 900 #endif 901 902 template <typename A, typename R> 903 const char *UnwindCursor<A, R>::getRegisterName(int regNum) { 904 return R::getRegisterName(regNum); 905 } 906 907 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { 908 return false; 909 } 910 911 #else // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32) 912 913 /// UnwindCursor contains all state (including all register values) during 914 /// an unwind. This is normally stack allocated inside a unw_cursor_t. 915 template <typename A, typename R> 916 class UnwindCursor : public AbstractUnwindCursor{ 917 typedef typename A::pint_t pint_t; 918 public: 919 UnwindCursor(unw_context_t *context, A &as); 920 UnwindCursor(A &as, void *threadArg); 921 virtual ~UnwindCursor() {} 922 virtual bool validReg(int); 923 virtual unw_word_t getReg(int); 924 virtual void setReg(int, unw_word_t); 925 virtual bool validFloatReg(int); 926 virtual unw_fpreg_t getFloatReg(int); 927 virtual void setFloatReg(int, unw_fpreg_t); 928 virtual int step(bool stage2 = false); 929 virtual void getInfo(unw_proc_info_t *); 930 virtual void jumpto(); 931 virtual bool isSignalFrame(); 932 virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); 933 virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); 934 virtual const char *getRegisterName(int num); 935 #ifdef __arm__ 936 virtual void saveVFPAsX(); 937 #endif 938 939 #ifdef _AIX 940 virtual uintptr_t getDataRelBase(); 941 #endif 942 943 #if defined(_LIBUNWIND_USE_CET) 944 virtual void *get_registers() { return &_registers; } 945 #endif 946 947 // libunwind does not and should not depend on C++ library which means that we 948 // need our own definition of inline placement new. 949 static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } 950 951 private: 952 953 #if defined(_LIBUNWIND_ARM_EHABI) 954 bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s); 955 956 int stepWithEHABI() { 957 size_t len = 0; 958 size_t off = 0; 959 // FIXME: Calling decode_eht_entry() here is violating the libunwind 960 // abstraction layer. 961 const uint32_t *ehtp = 962 decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info), 963 &off, &len); 964 if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) != 965 _URC_CONTINUE_UNWIND) 966 return UNW_STEP_END; 967 return UNW_STEP_SUCCESS; 968 } 969 #endif 970 971 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) 972 bool setInfoForSigReturn() { 973 R dummy; 974 return setInfoForSigReturn(dummy); 975 } 976 int stepThroughSigReturn() { 977 R dummy; 978 return stepThroughSigReturn(dummy); 979 } 980 #if defined(_LIBUNWIND_TARGET_AARCH64) 981 bool setInfoForSigReturn(Registers_arm64 &); 982 int stepThroughSigReturn(Registers_arm64 &); 983 #endif 984 #if defined(_LIBUNWIND_TARGET_S390X) 985 bool setInfoForSigReturn(Registers_s390x &); 986 int stepThroughSigReturn(Registers_s390x &); 987 #endif 988 template <typename Registers> bool setInfoForSigReturn(Registers &) { 989 return false; 990 } 991 template <typename Registers> int stepThroughSigReturn(Registers &) { 992 return UNW_STEP_END; 993 } 994 #endif 995 996 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 997 bool getInfoFromFdeCie(const typename CFI_Parser<A>::FDE_Info &fdeInfo, 998 const typename CFI_Parser<A>::CIE_Info &cieInfo, 999 pint_t pc, uintptr_t dso_base); 1000 bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, 1001 uint32_t fdeSectionOffsetHint=0); 1002 int stepWithDwarfFDE(bool stage2) { 1003 return DwarfInstructions<A, R>::stepWithDwarf( 1004 _addressSpace, (pint_t)this->getReg(UNW_REG_IP), 1005 (pint_t)_info.unwind_info, _registers, _isSignalFrame, stage2); 1006 } 1007 #endif 1008 1009 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1010 bool getInfoFromCompactEncodingSection(pint_t pc, 1011 const UnwindInfoSections §s); 1012 int stepWithCompactEncoding(bool stage2 = false) { 1013 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1014 if ( compactSaysUseDwarf() ) 1015 return stepWithDwarfFDE(stage2); 1016 #endif 1017 R dummy; 1018 return stepWithCompactEncoding(dummy); 1019 } 1020 1021 #if defined(_LIBUNWIND_TARGET_X86_64) 1022 int stepWithCompactEncoding(Registers_x86_64 &) { 1023 return CompactUnwinder_x86_64<A>::stepWithCompactEncoding( 1024 _info.format, _info.start_ip, _addressSpace, _registers); 1025 } 1026 #endif 1027 1028 #if defined(_LIBUNWIND_TARGET_I386) 1029 int stepWithCompactEncoding(Registers_x86 &) { 1030 return CompactUnwinder_x86<A>::stepWithCompactEncoding( 1031 _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers); 1032 } 1033 #endif 1034 1035 #if defined(_LIBUNWIND_TARGET_PPC) 1036 int stepWithCompactEncoding(Registers_ppc &) { 1037 return UNW_EINVAL; 1038 } 1039 #endif 1040 1041 #if defined(_LIBUNWIND_TARGET_PPC64) 1042 int stepWithCompactEncoding(Registers_ppc64 &) { 1043 return UNW_EINVAL; 1044 } 1045 #endif 1046 1047 1048 #if defined(_LIBUNWIND_TARGET_AARCH64) 1049 int stepWithCompactEncoding(Registers_arm64 &) { 1050 return CompactUnwinder_arm64<A>::stepWithCompactEncoding( 1051 _info.format, _info.start_ip, _addressSpace, _registers); 1052 } 1053 #endif 1054 1055 #if defined(_LIBUNWIND_TARGET_MIPS_O32) 1056 int stepWithCompactEncoding(Registers_mips_o32 &) { 1057 return UNW_EINVAL; 1058 } 1059 #endif 1060 1061 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) 1062 int stepWithCompactEncoding(Registers_mips_newabi &) { 1063 return UNW_EINVAL; 1064 } 1065 #endif 1066 1067 #if defined(_LIBUNWIND_TARGET_LOONGARCH) 1068 int stepWithCompactEncoding(Registers_loongarch &) { return UNW_EINVAL; } 1069 #endif 1070 1071 #if defined(_LIBUNWIND_TARGET_SPARC) 1072 int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; } 1073 #endif 1074 1075 #if defined(_LIBUNWIND_TARGET_SPARC64) 1076 int stepWithCompactEncoding(Registers_sparc64 &) { return UNW_EINVAL; } 1077 #endif 1078 1079 #if defined (_LIBUNWIND_TARGET_RISCV) 1080 int stepWithCompactEncoding(Registers_riscv &) { 1081 return UNW_EINVAL; 1082 } 1083 #endif 1084 1085 bool compactSaysUseDwarf(uint32_t *offset=NULL) const { 1086 R dummy; 1087 return compactSaysUseDwarf(dummy, offset); 1088 } 1089 1090 #if defined(_LIBUNWIND_TARGET_X86_64) 1091 bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const { 1092 if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) { 1093 if (offset) 1094 *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET); 1095 return true; 1096 } 1097 return false; 1098 } 1099 #endif 1100 1101 #if defined(_LIBUNWIND_TARGET_I386) 1102 bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const { 1103 if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) { 1104 if (offset) 1105 *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET); 1106 return true; 1107 } 1108 return false; 1109 } 1110 #endif 1111 1112 #if defined(_LIBUNWIND_TARGET_PPC) 1113 bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const { 1114 return true; 1115 } 1116 #endif 1117 1118 #if defined(_LIBUNWIND_TARGET_PPC64) 1119 bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const { 1120 return true; 1121 } 1122 #endif 1123 1124 #if defined(_LIBUNWIND_TARGET_AARCH64) 1125 bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const { 1126 if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) { 1127 if (offset) 1128 *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET); 1129 return true; 1130 } 1131 return false; 1132 } 1133 #endif 1134 1135 #if defined(_LIBUNWIND_TARGET_MIPS_O32) 1136 bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const { 1137 return true; 1138 } 1139 #endif 1140 1141 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) 1142 bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const { 1143 return true; 1144 } 1145 #endif 1146 1147 #if defined(_LIBUNWIND_TARGET_LOONGARCH) 1148 bool compactSaysUseDwarf(Registers_loongarch &, uint32_t *) const { 1149 return true; 1150 } 1151 #endif 1152 1153 #if defined(_LIBUNWIND_TARGET_SPARC) 1154 bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; } 1155 #endif 1156 1157 #if defined(_LIBUNWIND_TARGET_SPARC64) 1158 bool compactSaysUseDwarf(Registers_sparc64 &, uint32_t *) const { 1159 return true; 1160 } 1161 #endif 1162 1163 #if defined (_LIBUNWIND_TARGET_RISCV) 1164 bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const { 1165 return true; 1166 } 1167 #endif 1168 1169 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1170 1171 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1172 compact_unwind_encoding_t dwarfEncoding() const { 1173 R dummy; 1174 return dwarfEncoding(dummy); 1175 } 1176 1177 #if defined(_LIBUNWIND_TARGET_X86_64) 1178 compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const { 1179 return UNWIND_X86_64_MODE_DWARF; 1180 } 1181 #endif 1182 1183 #if defined(_LIBUNWIND_TARGET_I386) 1184 compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const { 1185 return UNWIND_X86_MODE_DWARF; 1186 } 1187 #endif 1188 1189 #if defined(_LIBUNWIND_TARGET_PPC) 1190 compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const { 1191 return 0; 1192 } 1193 #endif 1194 1195 #if defined(_LIBUNWIND_TARGET_PPC64) 1196 compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const { 1197 return 0; 1198 } 1199 #endif 1200 1201 #if defined(_LIBUNWIND_TARGET_AARCH64) 1202 compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const { 1203 return UNWIND_ARM64_MODE_DWARF; 1204 } 1205 #endif 1206 1207 #if defined(_LIBUNWIND_TARGET_ARM) 1208 compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const { 1209 return 0; 1210 } 1211 #endif 1212 1213 #if defined (_LIBUNWIND_TARGET_OR1K) 1214 compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const { 1215 return 0; 1216 } 1217 #endif 1218 1219 #if defined (_LIBUNWIND_TARGET_HEXAGON) 1220 compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const { 1221 return 0; 1222 } 1223 #endif 1224 1225 #if defined (_LIBUNWIND_TARGET_MIPS_O32) 1226 compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const { 1227 return 0; 1228 } 1229 #endif 1230 1231 #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI) 1232 compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const { 1233 return 0; 1234 } 1235 #endif 1236 1237 #if defined(_LIBUNWIND_TARGET_LOONGARCH) 1238 compact_unwind_encoding_t dwarfEncoding(Registers_loongarch &) const { 1239 return 0; 1240 } 1241 #endif 1242 1243 #if defined(_LIBUNWIND_TARGET_SPARC) 1244 compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; } 1245 #endif 1246 1247 #if defined(_LIBUNWIND_TARGET_SPARC64) 1248 compact_unwind_encoding_t dwarfEncoding(Registers_sparc64 &) const { 1249 return 0; 1250 } 1251 #endif 1252 1253 #if defined (_LIBUNWIND_TARGET_RISCV) 1254 compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const { 1255 return 0; 1256 } 1257 #endif 1258 1259 #if defined (_LIBUNWIND_TARGET_S390X) 1260 compact_unwind_encoding_t dwarfEncoding(Registers_s390x &) const { 1261 return 0; 1262 } 1263 #endif 1264 1265 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1266 1267 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1268 // For runtime environments using SEH unwind data without Windows runtime 1269 // support. 1270 pint_t getLastPC() const { /* FIXME: Implement */ return 0; } 1271 void setLastPC(pint_t pc) { /* FIXME: Implement */ } 1272 RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { 1273 /* FIXME: Implement */ 1274 *base = 0; 1275 return nullptr; 1276 } 1277 bool getInfoFromSEH(pint_t pc); 1278 int stepWithSEHData() { /* FIXME: Implement */ return 0; } 1279 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1280 1281 #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) 1282 bool getInfoFromTBTable(pint_t pc, R ®isters); 1283 int stepWithTBTable(pint_t pc, tbtable *TBTable, R ®isters, 1284 bool &isSignalFrame); 1285 int stepWithTBTableData() { 1286 return stepWithTBTable(reinterpret_cast<pint_t>(this->getReg(UNW_REG_IP)), 1287 reinterpret_cast<tbtable *>(_info.unwind_info), 1288 _registers, _isSignalFrame); 1289 } 1290 #endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) 1291 1292 A &_addressSpace; 1293 R _registers; 1294 unw_proc_info_t _info; 1295 bool _unwindInfoMissing; 1296 bool _isSignalFrame; 1297 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) 1298 bool _isSigReturn = false; 1299 #endif 1300 }; 1301 1302 1303 template <typename A, typename R> 1304 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) 1305 : _addressSpace(as), _registers(context), _unwindInfoMissing(false), 1306 _isSignalFrame(false) { 1307 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 1308 "UnwindCursor<> does not fit in unw_cursor_t"); 1309 static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)), 1310 "UnwindCursor<> requires more alignment than unw_cursor_t"); 1311 memset(&_info, 0, sizeof(_info)); 1312 } 1313 1314 template <typename A, typename R> 1315 UnwindCursor<A, R>::UnwindCursor(A &as, void *) 1316 : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) { 1317 memset(&_info, 0, sizeof(_info)); 1318 // FIXME 1319 // fill in _registers from thread arg 1320 } 1321 1322 1323 template <typename A, typename R> 1324 bool UnwindCursor<A, R>::validReg(int regNum) { 1325 return _registers.validRegister(regNum); 1326 } 1327 1328 template <typename A, typename R> 1329 unw_word_t UnwindCursor<A, R>::getReg(int regNum) { 1330 return _registers.getRegister(regNum); 1331 } 1332 1333 template <typename A, typename R> 1334 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { 1335 _registers.setRegister(regNum, (typename A::pint_t)value); 1336 } 1337 1338 template <typename A, typename R> 1339 bool UnwindCursor<A, R>::validFloatReg(int regNum) { 1340 return _registers.validFloatRegister(regNum); 1341 } 1342 1343 template <typename A, typename R> 1344 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { 1345 return _registers.getFloatRegister(regNum); 1346 } 1347 1348 template <typename A, typename R> 1349 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { 1350 _registers.setFloatRegister(regNum, value); 1351 } 1352 1353 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { 1354 _registers.jumpto(); 1355 } 1356 1357 #ifdef __arm__ 1358 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() { 1359 _registers.saveVFPAsX(); 1360 } 1361 #endif 1362 1363 #ifdef _AIX 1364 template <typename A, typename R> 1365 uintptr_t UnwindCursor<A, R>::getDataRelBase() { 1366 return reinterpret_cast<uintptr_t>(_info.extra); 1367 } 1368 #endif 1369 1370 template <typename A, typename R> 1371 const char *UnwindCursor<A, R>::getRegisterName(int regNum) { 1372 return _registers.getRegisterName(regNum); 1373 } 1374 1375 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { 1376 return _isSignalFrame; 1377 } 1378 1379 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1380 1381 #if defined(_LIBUNWIND_ARM_EHABI) 1382 template<typename A> 1383 struct EHABISectionIterator { 1384 typedef EHABISectionIterator _Self; 1385 1386 typedef typename A::pint_t value_type; 1387 typedef typename A::pint_t* pointer; 1388 typedef typename A::pint_t& reference; 1389 typedef size_t size_type; 1390 typedef size_t difference_type; 1391 1392 static _Self begin(A& addressSpace, const UnwindInfoSections& sects) { 1393 return _Self(addressSpace, sects, 0); 1394 } 1395 static _Self end(A& addressSpace, const UnwindInfoSections& sects) { 1396 return _Self(addressSpace, sects, 1397 sects.arm_section_length / sizeof(EHABIIndexEntry)); 1398 } 1399 1400 EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i) 1401 : _i(i), _addressSpace(&addressSpace), _sects(§s) {} 1402 1403 _Self& operator++() { ++_i; return *this; } 1404 _Self& operator+=(size_t a) { _i += a; return *this; } 1405 _Self& operator--() { assert(_i > 0); --_i; return *this; } 1406 _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; } 1407 1408 _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; } 1409 _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; } 1410 1411 size_t operator-(const _Self& other) const { return _i - other._i; } 1412 1413 bool operator==(const _Self& other) const { 1414 assert(_addressSpace == other._addressSpace); 1415 assert(_sects == other._sects); 1416 return _i == other._i; 1417 } 1418 1419 bool operator!=(const _Self& other) const { 1420 assert(_addressSpace == other._addressSpace); 1421 assert(_sects == other._sects); 1422 return _i != other._i; 1423 } 1424 1425 typename A::pint_t operator*() const { return functionAddress(); } 1426 1427 typename A::pint_t functionAddress() const { 1428 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( 1429 EHABIIndexEntry, _i, functionOffset); 1430 return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr)); 1431 } 1432 1433 typename A::pint_t dataAddress() { 1434 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( 1435 EHABIIndexEntry, _i, data); 1436 return indexAddr; 1437 } 1438 1439 private: 1440 size_t _i; 1441 A* _addressSpace; 1442 const UnwindInfoSections* _sects; 1443 }; 1444 1445 namespace { 1446 1447 template <typename A> 1448 EHABISectionIterator<A> EHABISectionUpperBound( 1449 EHABISectionIterator<A> first, 1450 EHABISectionIterator<A> last, 1451 typename A::pint_t value) { 1452 size_t len = last - first; 1453 while (len > 0) { 1454 size_t l2 = len / 2; 1455 EHABISectionIterator<A> m = first + l2; 1456 if (value < *m) { 1457 len = l2; 1458 } else { 1459 first = ++m; 1460 len -= l2 + 1; 1461 } 1462 } 1463 return first; 1464 } 1465 1466 } 1467 1468 template <typename A, typename R> 1469 bool UnwindCursor<A, R>::getInfoFromEHABISection( 1470 pint_t pc, 1471 const UnwindInfoSections §s) { 1472 EHABISectionIterator<A> begin = 1473 EHABISectionIterator<A>::begin(_addressSpace, sects); 1474 EHABISectionIterator<A> end = 1475 EHABISectionIterator<A>::end(_addressSpace, sects); 1476 if (begin == end) 1477 return false; 1478 1479 EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc); 1480 if (itNextPC == begin) 1481 return false; 1482 EHABISectionIterator<A> itThisPC = itNextPC - 1; 1483 1484 pint_t thisPC = itThisPC.functionAddress(); 1485 // If an exception is thrown from a function, corresponding to the last entry 1486 // in the table, we don't really know the function extent and have to choose a 1487 // value for nextPC. Choosing max() will allow the range check during trace to 1488 // succeed. 1489 pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress(); 1490 pint_t indexDataAddr = itThisPC.dataAddress(); 1491 1492 if (indexDataAddr == 0) 1493 return false; 1494 1495 uint32_t indexData = _addressSpace.get32(indexDataAddr); 1496 if (indexData == UNW_EXIDX_CANTUNWIND) 1497 return false; 1498 1499 // If the high bit is set, the exception handling table entry is inline inside 1500 // the index table entry on the second word (aka |indexDataAddr|). Otherwise, 1501 // the table points at an offset in the exception handling table (section 5 1502 // EHABI). 1503 pint_t exceptionTableAddr; 1504 uint32_t exceptionTableData; 1505 bool isSingleWordEHT; 1506 if (indexData & 0x80000000) { 1507 exceptionTableAddr = indexDataAddr; 1508 // TODO(ajwong): Should this data be 0? 1509 exceptionTableData = indexData; 1510 isSingleWordEHT = true; 1511 } else { 1512 exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData); 1513 exceptionTableData = _addressSpace.get32(exceptionTableAddr); 1514 isSingleWordEHT = false; 1515 } 1516 1517 // Now we know the 3 things: 1518 // exceptionTableAddr -- exception handler table entry. 1519 // exceptionTableData -- the data inside the first word of the eht entry. 1520 // isSingleWordEHT -- whether the entry is in the index. 1521 unw_word_t personalityRoutine = 0xbadf00d; 1522 bool scope32 = false; 1523 uintptr_t lsda; 1524 1525 // If the high bit in the exception handling table entry is set, the entry is 1526 // in compact form (section 6.3 EHABI). 1527 if (exceptionTableData & 0x80000000) { 1528 // Grab the index of the personality routine from the compact form. 1529 uint32_t choice = (exceptionTableData & 0x0f000000) >> 24; 1530 uint32_t extraWords = 0; 1531 switch (choice) { 1532 case 0: 1533 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0; 1534 extraWords = 0; 1535 scope32 = false; 1536 lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4); 1537 break; 1538 case 1: 1539 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1; 1540 extraWords = (exceptionTableData & 0x00ff0000) >> 16; 1541 scope32 = false; 1542 lsda = exceptionTableAddr + (extraWords + 1) * 4; 1543 break; 1544 case 2: 1545 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2; 1546 extraWords = (exceptionTableData & 0x00ff0000) >> 16; 1547 scope32 = true; 1548 lsda = exceptionTableAddr + (extraWords + 1) * 4; 1549 break; 1550 default: 1551 _LIBUNWIND_ABORT("unknown personality routine"); 1552 return false; 1553 } 1554 1555 if (isSingleWordEHT) { 1556 if (extraWords != 0) { 1557 _LIBUNWIND_ABORT("index inlined table detected but pr function " 1558 "requires extra words"); 1559 return false; 1560 } 1561 } 1562 } else { 1563 pint_t personalityAddr = 1564 exceptionTableAddr + signExtendPrel31(exceptionTableData); 1565 personalityRoutine = personalityAddr; 1566 1567 // ARM EHABI # 6.2, # 9.2 1568 // 1569 // +---- ehtp 1570 // v 1571 // +--------------------------------------+ 1572 // | +--------+--------+--------+-------+ | 1573 // | |0| prel31 to personalityRoutine | | 1574 // | +--------+--------+--------+-------+ | 1575 // | | N | unwind opcodes | | <-- UnwindData 1576 // | +--------+--------+--------+-------+ | 1577 // | | Word 2 unwind opcodes | | 1578 // | +--------+--------+--------+-------+ | 1579 // | ... | 1580 // | +--------+--------+--------+-------+ | 1581 // | | Word N unwind opcodes | | 1582 // | +--------+--------+--------+-------+ | 1583 // | | LSDA | | <-- lsda 1584 // | | ... | | 1585 // | +--------+--------+--------+-------+ | 1586 // +--------------------------------------+ 1587 1588 uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1; 1589 uint32_t FirstDataWord = *UnwindData; 1590 size_t N = ((FirstDataWord >> 24) & 0xff); 1591 size_t NDataWords = N + 1; 1592 lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords); 1593 } 1594 1595 _info.start_ip = thisPC; 1596 _info.end_ip = nextPC; 1597 _info.handler = personalityRoutine; 1598 _info.unwind_info = exceptionTableAddr; 1599 _info.lsda = lsda; 1600 // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0. 1601 _info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0); // Use enum? 1602 1603 return true; 1604 } 1605 #endif 1606 1607 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1608 template <typename A, typename R> 1609 bool UnwindCursor<A, R>::getInfoFromFdeCie( 1610 const typename CFI_Parser<A>::FDE_Info &fdeInfo, 1611 const typename CFI_Parser<A>::CIE_Info &cieInfo, pint_t pc, 1612 uintptr_t dso_base) { 1613 typename CFI_Parser<A>::PrologInfo prolog; 1614 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, 1615 R::getArch(), &prolog)) { 1616 // Save off parsed FDE info 1617 _info.start_ip = fdeInfo.pcStart; 1618 _info.end_ip = fdeInfo.pcEnd; 1619 _info.lsda = fdeInfo.lsda; 1620 _info.handler = cieInfo.personality; 1621 // Some frameless functions need SP altered when resuming in function, so 1622 // propagate spExtraArgSize. 1623 _info.gp = prolog.spExtraArgSize; 1624 _info.flags = 0; 1625 _info.format = dwarfEncoding(); 1626 _info.unwind_info = fdeInfo.fdeStart; 1627 _info.unwind_info_size = static_cast<uint32_t>(fdeInfo.fdeLength); 1628 _info.extra = static_cast<unw_word_t>(dso_base); 1629 return true; 1630 } 1631 return false; 1632 } 1633 1634 template <typename A, typename R> 1635 bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc, 1636 const UnwindInfoSections §s, 1637 uint32_t fdeSectionOffsetHint) { 1638 typename CFI_Parser<A>::FDE_Info fdeInfo; 1639 typename CFI_Parser<A>::CIE_Info cieInfo; 1640 bool foundFDE = false; 1641 bool foundInCache = false; 1642 // If compact encoding table gave offset into dwarf section, go directly there 1643 if (fdeSectionOffsetHint != 0) { 1644 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1645 sects.dwarf_section_length, 1646 sects.dwarf_section + fdeSectionOffsetHint, 1647 &fdeInfo, &cieInfo); 1648 } 1649 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) 1650 if (!foundFDE && (sects.dwarf_index_section != 0)) { 1651 foundFDE = EHHeaderParser<A>::findFDE( 1652 _addressSpace, pc, sects.dwarf_index_section, 1653 (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo); 1654 } 1655 #endif 1656 if (!foundFDE) { 1657 // otherwise, search cache of previously found FDEs. 1658 pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc); 1659 if (cachedFDE != 0) { 1660 foundFDE = 1661 CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1662 sects.dwarf_section_length, 1663 cachedFDE, &fdeInfo, &cieInfo); 1664 foundInCache = foundFDE; 1665 } 1666 } 1667 if (!foundFDE) { 1668 // Still not found, do full scan of __eh_frame section. 1669 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1670 sects.dwarf_section_length, 0, 1671 &fdeInfo, &cieInfo); 1672 } 1673 if (foundFDE) { 1674 if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, sects.dso_base)) { 1675 // Add to cache (to make next lookup faster) if we had no hint 1676 // and there was no index. 1677 if (!foundInCache && (fdeSectionOffsetHint == 0)) { 1678 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) 1679 if (sects.dwarf_index_section == 0) 1680 #endif 1681 DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd, 1682 fdeInfo.fdeStart); 1683 } 1684 return true; 1685 } 1686 } 1687 //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc); 1688 return false; 1689 } 1690 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1691 1692 1693 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1694 template <typename A, typename R> 1695 bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc, 1696 const UnwindInfoSections §s) { 1697 const bool log = false; 1698 if (log) 1699 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n", 1700 (uint64_t)pc, (uint64_t)sects.dso_base); 1701 1702 const UnwindSectionHeader<A> sectionHeader(_addressSpace, 1703 sects.compact_unwind_section); 1704 if (sectionHeader.version() != UNWIND_SECTION_VERSION) 1705 return false; 1706 1707 // do a binary search of top level index to find page with unwind info 1708 pint_t targetFunctionOffset = pc - sects.dso_base; 1709 const UnwindSectionIndexArray<A> topIndex(_addressSpace, 1710 sects.compact_unwind_section 1711 + sectionHeader.indexSectionOffset()); 1712 uint32_t low = 0; 1713 uint32_t high = sectionHeader.indexCount(); 1714 uint32_t last = high - 1; 1715 while (low < high) { 1716 uint32_t mid = (low + high) / 2; 1717 //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n", 1718 //mid, low, high, topIndex.functionOffset(mid)); 1719 if (topIndex.functionOffset(mid) <= targetFunctionOffset) { 1720 if ((mid == last) || 1721 (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) { 1722 low = mid; 1723 break; 1724 } else { 1725 low = mid + 1; 1726 } 1727 } else { 1728 high = mid; 1729 } 1730 } 1731 const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low); 1732 const uint32_t firstLevelNextPageFunctionOffset = 1733 topIndex.functionOffset(low + 1); 1734 const pint_t secondLevelAddr = 1735 sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low); 1736 const pint_t lsdaArrayStartAddr = 1737 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low); 1738 const pint_t lsdaArrayEndAddr = 1739 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1); 1740 if (log) 1741 fprintf(stderr, "\tfirst level search for result index=%d " 1742 "to secondLevelAddr=0x%llX\n", 1743 low, (uint64_t) secondLevelAddr); 1744 // do a binary search of second level page index 1745 uint32_t encoding = 0; 1746 pint_t funcStart = 0; 1747 pint_t funcEnd = 0; 1748 pint_t lsda = 0; 1749 pint_t personality = 0; 1750 uint32_t pageKind = _addressSpace.get32(secondLevelAddr); 1751 if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) { 1752 // regular page 1753 UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace, 1754 secondLevelAddr); 1755 UnwindSectionRegularArray<A> pageIndex( 1756 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); 1757 // binary search looks for entry with e where index[e].offset <= pc < 1758 // index[e+1].offset 1759 if (log) 1760 fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in " 1761 "regular page starting at secondLevelAddr=0x%llX\n", 1762 (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr); 1763 low = 0; 1764 high = pageHeader.entryCount(); 1765 while (low < high) { 1766 uint32_t mid = (low + high) / 2; 1767 if (pageIndex.functionOffset(mid) <= targetFunctionOffset) { 1768 if (mid == (uint32_t)(pageHeader.entryCount() - 1)) { 1769 // at end of table 1770 low = mid; 1771 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; 1772 break; 1773 } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) { 1774 // next is too big, so we found it 1775 low = mid; 1776 funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base; 1777 break; 1778 } else { 1779 low = mid + 1; 1780 } 1781 } else { 1782 high = mid; 1783 } 1784 } 1785 encoding = pageIndex.encoding(low); 1786 funcStart = pageIndex.functionOffset(low) + sects.dso_base; 1787 if (pc < funcStart) { 1788 if (log) 1789 fprintf( 1790 stderr, 1791 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", 1792 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); 1793 return false; 1794 } 1795 if (pc > funcEnd) { 1796 if (log) 1797 fprintf( 1798 stderr, 1799 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", 1800 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); 1801 return false; 1802 } 1803 } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) { 1804 // compressed page 1805 UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace, 1806 secondLevelAddr); 1807 UnwindSectionCompressedArray<A> pageIndex( 1808 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); 1809 const uint32_t targetFunctionPageOffset = 1810 (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset); 1811 // binary search looks for entry with e where index[e].offset <= pc < 1812 // index[e+1].offset 1813 if (log) 1814 fprintf(stderr, "\tbinary search of compressed page starting at " 1815 "secondLevelAddr=0x%llX\n", 1816 (uint64_t) secondLevelAddr); 1817 low = 0; 1818 last = pageHeader.entryCount() - 1; 1819 high = pageHeader.entryCount(); 1820 while (low < high) { 1821 uint32_t mid = (low + high) / 2; 1822 if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) { 1823 if ((mid == last) || 1824 (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) { 1825 low = mid; 1826 break; 1827 } else { 1828 low = mid + 1; 1829 } 1830 } else { 1831 high = mid; 1832 } 1833 } 1834 funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset 1835 + sects.dso_base; 1836 if (low < last) 1837 funcEnd = 1838 pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset 1839 + sects.dso_base; 1840 else 1841 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; 1842 if (pc < funcStart) { 1843 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX " 1844 "not in second level compressed unwind table. " 1845 "funcStart=0x%llX", 1846 (uint64_t) pc, (uint64_t) funcStart); 1847 return false; 1848 } 1849 if (pc > funcEnd) { 1850 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX " 1851 "not in second level compressed unwind table. " 1852 "funcEnd=0x%llX", 1853 (uint64_t) pc, (uint64_t) funcEnd); 1854 return false; 1855 } 1856 uint16_t encodingIndex = pageIndex.encodingIndex(low); 1857 if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) { 1858 // encoding is in common table in section header 1859 encoding = _addressSpace.get32( 1860 sects.compact_unwind_section + 1861 sectionHeader.commonEncodingsArraySectionOffset() + 1862 encodingIndex * sizeof(uint32_t)); 1863 } else { 1864 // encoding is in page specific table 1865 uint16_t pageEncodingIndex = 1866 encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount(); 1867 encoding = _addressSpace.get32(secondLevelAddr + 1868 pageHeader.encodingsPageOffset() + 1869 pageEncodingIndex * sizeof(uint32_t)); 1870 } 1871 } else { 1872 _LIBUNWIND_DEBUG_LOG( 1873 "malformed __unwind_info at 0x%0llX bad second level page", 1874 (uint64_t)sects.compact_unwind_section); 1875 return false; 1876 } 1877 1878 // look up LSDA, if encoding says function has one 1879 if (encoding & UNWIND_HAS_LSDA) { 1880 UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr); 1881 uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base); 1882 low = 0; 1883 high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) / 1884 sizeof(unwind_info_section_header_lsda_index_entry); 1885 // binary search looks for entry with exact match for functionOffset 1886 if (log) 1887 fprintf(stderr, 1888 "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n", 1889 funcStartOffset); 1890 while (low < high) { 1891 uint32_t mid = (low + high) / 2; 1892 if (lsdaIndex.functionOffset(mid) == funcStartOffset) { 1893 lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base; 1894 break; 1895 } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) { 1896 low = mid + 1; 1897 } else { 1898 high = mid; 1899 } 1900 } 1901 if (lsda == 0) { 1902 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for " 1903 "pc=0x%0llX, but lsda table has no entry", 1904 encoding, (uint64_t) pc); 1905 return false; 1906 } 1907 } 1908 1909 // extract personality routine, if encoding says function has one 1910 uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >> 1911 (__builtin_ctz(UNWIND_PERSONALITY_MASK)); 1912 if (personalityIndex != 0) { 1913 --personalityIndex; // change 1-based to zero-based index 1914 if (personalityIndex >= sectionHeader.personalityArrayCount()) { 1915 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, " 1916 "but personality table has only %d entries", 1917 encoding, personalityIndex, 1918 sectionHeader.personalityArrayCount()); 1919 return false; 1920 } 1921 int32_t personalityDelta = (int32_t)_addressSpace.get32( 1922 sects.compact_unwind_section + 1923 sectionHeader.personalityArraySectionOffset() + 1924 personalityIndex * sizeof(uint32_t)); 1925 pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta; 1926 personality = _addressSpace.getP(personalityPointer); 1927 if (log) 1928 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " 1929 "personalityDelta=0x%08X, personality=0x%08llX\n", 1930 (uint64_t) pc, personalityDelta, (uint64_t) personality); 1931 } 1932 1933 if (log) 1934 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " 1935 "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n", 1936 (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart); 1937 _info.start_ip = funcStart; 1938 _info.end_ip = funcEnd; 1939 _info.lsda = lsda; 1940 _info.handler = personality; 1941 _info.gp = 0; 1942 _info.flags = 0; 1943 _info.format = encoding; 1944 _info.unwind_info = 0; 1945 _info.unwind_info_size = 0; 1946 _info.extra = sects.dso_base; 1947 return true; 1948 } 1949 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1950 1951 1952 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1953 template <typename A, typename R> 1954 bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) { 1955 pint_t base; 1956 RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base); 1957 if (!unwindEntry) { 1958 _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc); 1959 return false; 1960 } 1961 _info.gp = 0; 1962 _info.flags = 0; 1963 _info.format = 0; 1964 _info.unwind_info_size = sizeof(RUNTIME_FUNCTION); 1965 _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry); 1966 _info.extra = base; 1967 _info.start_ip = base + unwindEntry->BeginAddress; 1968 #ifdef _LIBUNWIND_TARGET_X86_64 1969 _info.end_ip = base + unwindEntry->EndAddress; 1970 // Only fill in the handler and LSDA if they're stale. 1971 if (pc != getLastPC()) { 1972 UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData); 1973 if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) { 1974 // The personality is given in the UNWIND_INFO itself. The LSDA immediately 1975 // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit 1976 // these structures.) 1977 // N.B. UNWIND_INFO structs are DWORD-aligned. 1978 uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1; 1979 const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]); 1980 _info.lsda = reinterpret_cast<unw_word_t>(handler+1); 1981 if (*handler) { 1982 _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); 1983 } else 1984 _info.handler = 0; 1985 } else { 1986 _info.lsda = 0; 1987 _info.handler = 0; 1988 } 1989 } 1990 #endif 1991 setLastPC(pc); 1992 return true; 1993 } 1994 #endif 1995 1996 #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) 1997 // Masks for traceback table field xtbtable. 1998 enum xTBTableMask : uint8_t { 1999 reservedBit = 0x02, // The traceback table was incorrectly generated if set 2000 // (see comments in function getInfoFromTBTable(). 2001 ehInfoBit = 0x08 // Exception handling info is present if set 2002 }; 2003 2004 enum frameType : unw_word_t { 2005 frameWithXLEHStateTable = 0, 2006 frameWithEHInfo = 1 2007 }; 2008 2009 extern "C" { 2010 typedef _Unwind_Reason_Code __xlcxx_personality_v0_t(int, _Unwind_Action, 2011 uint64_t, 2012 _Unwind_Exception *, 2013 struct _Unwind_Context *); 2014 __attribute__((__weak__)) __xlcxx_personality_v0_t __xlcxx_personality_v0; 2015 } 2016 2017 static __xlcxx_personality_v0_t *xlcPersonalityV0; 2018 static RWMutex xlcPersonalityV0InitLock; 2019 2020 template <typename A, typename R> 2021 bool UnwindCursor<A, R>::getInfoFromTBTable(pint_t pc, R ®isters) { 2022 uint32_t *p = reinterpret_cast<uint32_t *>(pc); 2023 2024 // Keep looking forward until a word of 0 is found. The traceback 2025 // table starts at the following word. 2026 while (*p) 2027 ++p; 2028 tbtable *TBTable = reinterpret_cast<tbtable *>(p + 1); 2029 2030 if (_LIBUNWIND_TRACING_UNWINDING) { 2031 char functionBuf[512]; 2032 const char *functionName = functionBuf; 2033 unw_word_t offset; 2034 if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) { 2035 functionName = ".anonymous."; 2036 } 2037 _LIBUNWIND_TRACE_UNWINDING("%s: Look up traceback table of func=%s at %p", 2038 __func__, functionName, 2039 reinterpret_cast<void *>(TBTable)); 2040 } 2041 2042 // If the traceback table does not contain necessary info, bypass this frame. 2043 if (!TBTable->tb.has_tboff) 2044 return false; 2045 2046 // Structure tbtable_ext contains important data we are looking for. 2047 p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext); 2048 2049 // Skip field parminfo if it exists. 2050 if (TBTable->tb.fixedparms || TBTable->tb.floatparms) 2051 ++p; 2052 2053 // p now points to tb_offset, the offset from start of function to TB table. 2054 unw_word_t start_ip = 2055 reinterpret_cast<unw_word_t>(TBTable) - *p - sizeof(uint32_t); 2056 unw_word_t end_ip = reinterpret_cast<unw_word_t>(TBTable); 2057 ++p; 2058 2059 _LIBUNWIND_TRACE_UNWINDING("start_ip=%p, end_ip=%p\n", 2060 reinterpret_cast<void *>(start_ip), 2061 reinterpret_cast<void *>(end_ip)); 2062 2063 // Skip field hand_mask if it exists. 2064 if (TBTable->tb.int_hndl) 2065 ++p; 2066 2067 unw_word_t lsda = 0; 2068 unw_word_t handler = 0; 2069 unw_word_t flags = frameType::frameWithXLEHStateTable; 2070 2071 if (TBTable->tb.lang == TB_CPLUSPLUS && TBTable->tb.has_ctl) { 2072 // State table info is available. The ctl_info field indicates the 2073 // number of CTL anchors. There should be only one entry for the C++ 2074 // state table. 2075 assert(*p == 1 && "libunwind: there must be only one ctl_info entry"); 2076 ++p; 2077 // p points to the offset of the state table into the stack. 2078 pint_t stateTableOffset = *p++; 2079 2080 int framePointerReg; 2081 2082 // Skip fields name_len and name if exist. 2083 if (TBTable->tb.name_present) { 2084 const uint16_t name_len = *(reinterpret_cast<uint16_t *>(p)); 2085 p = reinterpret_cast<uint32_t *>(reinterpret_cast<char *>(p) + name_len + 2086 sizeof(uint16_t)); 2087 } 2088 2089 if (TBTable->tb.uses_alloca) 2090 framePointerReg = *(reinterpret_cast<char *>(p)); 2091 else 2092 framePointerReg = 1; // default frame pointer == SP 2093 2094 _LIBUNWIND_TRACE_UNWINDING( 2095 "framePointerReg=%d, framePointer=%p, " 2096 "stateTableOffset=%#lx\n", 2097 framePointerReg, 2098 reinterpret_cast<void *>(_registers.getRegister(framePointerReg)), 2099 stateTableOffset); 2100 lsda = _registers.getRegister(framePointerReg) + stateTableOffset; 2101 2102 // Since the traceback table generated by the legacy XLC++ does not 2103 // provide the location of the personality for the state table, 2104 // function __xlcxx_personality_v0(), which is the personality for the state 2105 // table and is exported from libc++abi, is directly assigned as the 2106 // handler here. When a legacy XLC++ frame is encountered, the symbol 2107 // is resolved dynamically using dlopen() to avoid hard dependency from 2108 // libunwind on libc++abi. 2109 2110 // Resolve the function pointer to the state table personality if it has 2111 // not already. 2112 if (xlcPersonalityV0 == NULL) { 2113 xlcPersonalityV0InitLock.lock(); 2114 if (xlcPersonalityV0 == NULL) { 2115 // If libc++abi is statically linked in, symbol __xlcxx_personality_v0 2116 // has been resolved at the link time. 2117 xlcPersonalityV0 = &__xlcxx_personality_v0; 2118 if (xlcPersonalityV0 == NULL) { 2119 // libc++abi is dynamically linked. Resolve __xlcxx_personality_v0 2120 // using dlopen(). 2121 const char libcxxabi[] = "libc++abi.a(libc++abi.so.1)"; 2122 void *libHandle; 2123 // The AIX dlopen() sets errno to 0 when it is successful, which 2124 // clobbers the value of errno from the user code. This is an AIX 2125 // bug because according to POSIX it should not set errno to 0. To 2126 // workaround before AIX fixes the bug, errno is saved and restored. 2127 int saveErrno = errno; 2128 libHandle = dlopen(libcxxabi, RTLD_MEMBER | RTLD_NOW); 2129 if (libHandle == NULL) { 2130 _LIBUNWIND_TRACE_UNWINDING("dlopen() failed with errno=%d\n", 2131 errno); 2132 assert(0 && "dlopen() failed"); 2133 } 2134 xlcPersonalityV0 = reinterpret_cast<__xlcxx_personality_v0_t *>( 2135 dlsym(libHandle, "__xlcxx_personality_v0")); 2136 if (xlcPersonalityV0 == NULL) { 2137 _LIBUNWIND_TRACE_UNWINDING("dlsym() failed with errno=%d\n", errno); 2138 assert(0 && "dlsym() failed"); 2139 } 2140 dlclose(libHandle); 2141 errno = saveErrno; 2142 } 2143 } 2144 xlcPersonalityV0InitLock.unlock(); 2145 } 2146 handler = reinterpret_cast<unw_word_t>(xlcPersonalityV0); 2147 _LIBUNWIND_TRACE_UNWINDING("State table: LSDA=%p, Personality=%p\n", 2148 reinterpret_cast<void *>(lsda), 2149 reinterpret_cast<void *>(handler)); 2150 } else if (TBTable->tb.longtbtable) { 2151 // This frame has the traceback table extension. Possible cases are 2152 // 1) a C++ frame that has the 'eh_info' structure; 2) a C++ frame that 2153 // is not EH aware; or, 3) a frame of other languages. We need to figure out 2154 // if the traceback table extension contains the 'eh_info' structure. 2155 // 2156 // We also need to deal with the complexity arising from some XL compiler 2157 // versions use the wrong ordering of 'longtbtable' and 'has_vec' bits 2158 // where the 'longtbtable' bit is meant to be the 'has_vec' bit and vice 2159 // versa. For frames of code generated by those compilers, the 'longtbtable' 2160 // bit may be set but there isn't really a traceback table extension. 2161 // 2162 // In </usr/include/sys/debug.h>, there is the following definition of 2163 // 'struct tbtable_ext'. It is not really a structure but a dummy to 2164 // collect the description of optional parts of the traceback table. 2165 // 2166 // struct tbtable_ext { 2167 // ... 2168 // char alloca_reg; /* Register for alloca automatic storage */ 2169 // struct vec_ext vec_ext; /* Vector extension (if has_vec is set) */ 2170 // unsigned char xtbtable; /* More tbtable fields, if longtbtable is set*/ 2171 // }; 2172 // 2173 // Depending on how the 'has_vec'/'longtbtable' bit is interpreted, the data 2174 // following 'alloca_reg' can be treated either as 'struct vec_ext' or 2175 // 'unsigned char xtbtable'. 'xtbtable' bits are defined in 2176 // </usr/include/sys/debug.h> as flags. The 7th bit '0x02' is currently 2177 // unused and should not be set. 'struct vec_ext' is defined in 2178 // </usr/include/sys/debug.h> as follows: 2179 // 2180 // struct vec_ext { 2181 // unsigned vr_saved:6; /* Number of non-volatile vector regs saved 2182 // */ 2183 // /* first register saved is assumed to be */ 2184 // /* 32 - vr_saved */ 2185 // unsigned saves_vrsave:1; /* Set if vrsave is saved on the stack */ 2186 // unsigned has_varargs:1; 2187 // ... 2188 // }; 2189 // 2190 // Here, the 7th bit is used as 'saves_vrsave'. To determine whether it 2191 // is 'struct vec_ext' or 'xtbtable' that follows 'alloca_reg', 2192 // we checks if the 7th bit is set or not because 'xtbtable' should 2193 // never have the 7th bit set. The 7th bit of 'xtbtable' will be reserved 2194 // in the future to make sure the mitigation works. This mitigation 2195 // is not 100% bullet proof because 'struct vec_ext' may not always have 2196 // 'saves_vrsave' bit set. 2197 // 2198 // 'reservedBit' is defined in enum 'xTBTableMask' above as the mask for 2199 // checking the 7th bit. 2200 2201 // p points to field name len. 2202 uint8_t *charPtr = reinterpret_cast<uint8_t *>(p); 2203 2204 // Skip fields name_len and name if they exist. 2205 if (TBTable->tb.name_present) { 2206 const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr)); 2207 charPtr = charPtr + name_len + sizeof(uint16_t); 2208 } 2209 2210 // Skip field alloc_reg if it exists. 2211 if (TBTable->tb.uses_alloca) 2212 ++charPtr; 2213 2214 // Check traceback table bit has_vec. Skip struct vec_ext if it exists. 2215 if (TBTable->tb.has_vec) 2216 // Note struct vec_ext does exist at this point because whether the 2217 // ordering of longtbtable and has_vec bits is correct or not, both 2218 // are set. 2219 charPtr += sizeof(struct vec_ext); 2220 2221 // charPtr points to field 'xtbtable'. Check if the EH info is available. 2222 // Also check if the reserved bit of the extended traceback table field 2223 // 'xtbtable' is set. If it is, the traceback table was incorrectly 2224 // generated by an XL compiler that uses the wrong ordering of 'longtbtable' 2225 // and 'has_vec' bits and this is in fact 'struct vec_ext'. So skip the 2226 // frame. 2227 if ((*charPtr & xTBTableMask::ehInfoBit) && 2228 !(*charPtr & xTBTableMask::reservedBit)) { 2229 // Mark this frame has the new EH info. 2230 flags = frameType::frameWithEHInfo; 2231 2232 // eh_info is available. 2233 charPtr++; 2234 // The pointer is 4-byte aligned. 2235 if (reinterpret_cast<uintptr_t>(charPtr) % 4) 2236 charPtr += 4 - reinterpret_cast<uintptr_t>(charPtr) % 4; 2237 uintptr_t *ehInfo = 2238 reinterpret_cast<uintptr_t *>(*(reinterpret_cast<uintptr_t *>( 2239 registers.getRegister(2) + 2240 *(reinterpret_cast<uintptr_t *>(charPtr))))); 2241 2242 // ehInfo points to structure en_info. The first member is version. 2243 // Only version 0 is currently supported. 2244 assert(*(reinterpret_cast<uint32_t *>(ehInfo)) == 0 && 2245 "libunwind: ehInfo version other than 0 is not supported"); 2246 2247 // Increment ehInfo to point to member lsda. 2248 ++ehInfo; 2249 lsda = *ehInfo++; 2250 2251 // enInfo now points to member personality. 2252 handler = *ehInfo; 2253 2254 _LIBUNWIND_TRACE_UNWINDING("Range table: LSDA=%#lx, Personality=%#lx\n", 2255 lsda, handler); 2256 } 2257 } 2258 2259 _info.start_ip = start_ip; 2260 _info.end_ip = end_ip; 2261 _info.lsda = lsda; 2262 _info.handler = handler; 2263 _info.gp = 0; 2264 _info.flags = flags; 2265 _info.format = 0; 2266 _info.unwind_info = reinterpret_cast<unw_word_t>(TBTable); 2267 _info.unwind_info_size = 0; 2268 _info.extra = registers.getRegister(2); 2269 2270 return true; 2271 } 2272 2273 // Step back up the stack following the frame back link. 2274 template <typename A, typename R> 2275 int UnwindCursor<A, R>::stepWithTBTable(pint_t pc, tbtable *TBTable, 2276 R ®isters, bool &isSignalFrame) { 2277 if (_LIBUNWIND_TRACING_UNWINDING) { 2278 char functionBuf[512]; 2279 const char *functionName = functionBuf; 2280 unw_word_t offset; 2281 if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) { 2282 functionName = ".anonymous."; 2283 } 2284 _LIBUNWIND_TRACE_UNWINDING("%s: Look up traceback table of func=%s at %p", 2285 __func__, functionName, 2286 reinterpret_cast<void *>(TBTable)); 2287 } 2288 2289 #if defined(__powerpc64__) 2290 // Instruction to reload TOC register "l r2,40(r1)" 2291 const uint32_t loadTOCRegInst = 0xe8410028; 2292 const int32_t unwPPCF0Index = UNW_PPC64_F0; 2293 const int32_t unwPPCV0Index = UNW_PPC64_V0; 2294 #else 2295 // Instruction to reload TOC register "l r2,20(r1)" 2296 const uint32_t loadTOCRegInst = 0x80410014; 2297 const int32_t unwPPCF0Index = UNW_PPC_F0; 2298 const int32_t unwPPCV0Index = UNW_PPC_V0; 2299 #endif 2300 2301 R newRegisters = registers; 2302 2303 // lastStack points to the stack frame of the next routine up. 2304 pint_t lastStack = *(reinterpret_cast<pint_t *>(registers.getSP())); 2305 2306 // Return address is the address after call site instruction. 2307 pint_t returnAddress; 2308 2309 if (isSignalFrame) { 2310 _LIBUNWIND_TRACE_UNWINDING("Possible signal handler frame: lastStack=%p", 2311 reinterpret_cast<void *>(lastStack)); 2312 2313 sigcontext *sigContext = reinterpret_cast<sigcontext *>( 2314 reinterpret_cast<char *>(lastStack) + STKMIN); 2315 returnAddress = sigContext->sc_jmpbuf.jmp_context.iar; 2316 2317 _LIBUNWIND_TRACE_UNWINDING("From sigContext=%p, returnAddress=%p\n", 2318 reinterpret_cast<void *>(sigContext), 2319 reinterpret_cast<void *>(returnAddress)); 2320 2321 if (returnAddress < 0x10000000) { 2322 // Try again using STKMINALIGN 2323 sigContext = reinterpret_cast<sigcontext *>( 2324 reinterpret_cast<char *>(lastStack) + STKMINALIGN); 2325 returnAddress = sigContext->sc_jmpbuf.jmp_context.iar; 2326 if (returnAddress < 0x10000000) { 2327 _LIBUNWIND_TRACE_UNWINDING("Bad returnAddress=%p\n", 2328 reinterpret_cast<void *>(returnAddress)); 2329 return UNW_EBADFRAME; 2330 } else { 2331 _LIBUNWIND_TRACE_UNWINDING("Tried again using STKMINALIGN: " 2332 "sigContext=%p, returnAddress=%p. " 2333 "Seems to be a valid address\n", 2334 reinterpret_cast<void *>(sigContext), 2335 reinterpret_cast<void *>(returnAddress)); 2336 } 2337 } 2338 // Restore the condition register from sigcontext. 2339 newRegisters.setCR(sigContext->sc_jmpbuf.jmp_context.cr); 2340 2341 // Restore GPRs from sigcontext. 2342 for (int i = 0; i < 32; ++i) 2343 newRegisters.setRegister(i, sigContext->sc_jmpbuf.jmp_context.gpr[i]); 2344 2345 // Restore FPRs from sigcontext. 2346 for (int i = 0; i < 32; ++i) 2347 newRegisters.setFloatRegister(i + unwPPCF0Index, 2348 sigContext->sc_jmpbuf.jmp_context.fpr[i]); 2349 2350 // Restore vector registers if there is an associated extended context 2351 // structure. 2352 if (sigContext->sc_jmpbuf.jmp_context.msr & __EXTCTX) { 2353 ucontext_t *uContext = reinterpret_cast<ucontext_t *>(sigContext); 2354 if (uContext->__extctx->__extctx_magic == __EXTCTX_MAGIC) { 2355 for (int i = 0; i < 32; ++i) 2356 newRegisters.setVectorRegister( 2357 i + unwPPCV0Index, *(reinterpret_cast<v128 *>( 2358 &(uContext->__extctx->__vmx.__vr[i])))); 2359 } 2360 } 2361 } else { 2362 // Step up a normal frame. 2363 returnAddress = reinterpret_cast<pint_t *>(lastStack)[2]; 2364 2365 _LIBUNWIND_TRACE_UNWINDING("Extract info from lastStack=%p, " 2366 "returnAddress=%p\n", 2367 reinterpret_cast<void *>(lastStack), 2368 reinterpret_cast<void *>(returnAddress)); 2369 _LIBUNWIND_TRACE_UNWINDING("fpr_regs=%d, gpr_regs=%d, saves_cr=%d\n", 2370 TBTable->tb.fpr_saved, TBTable->tb.gpr_saved, 2371 TBTable->tb.saves_cr); 2372 2373 // Restore FP registers. 2374 char *ptrToRegs = reinterpret_cast<char *>(lastStack); 2375 double *FPRegs = reinterpret_cast<double *>( 2376 ptrToRegs - (TBTable->tb.fpr_saved * sizeof(double))); 2377 for (int i = 0; i < TBTable->tb.fpr_saved; ++i) 2378 newRegisters.setFloatRegister( 2379 32 - TBTable->tb.fpr_saved + i + unwPPCF0Index, FPRegs[i]); 2380 2381 // Restore GP registers. 2382 ptrToRegs = reinterpret_cast<char *>(FPRegs); 2383 uintptr_t *GPRegs = reinterpret_cast<uintptr_t *>( 2384 ptrToRegs - (TBTable->tb.gpr_saved * sizeof(uintptr_t))); 2385 for (int i = 0; i < TBTable->tb.gpr_saved; ++i) 2386 newRegisters.setRegister(32 - TBTable->tb.gpr_saved + i, GPRegs[i]); 2387 2388 // Restore Vector registers. 2389 ptrToRegs = reinterpret_cast<char *>(GPRegs); 2390 2391 // Restore vector registers only if this is a Clang frame. Also 2392 // check if traceback table bit has_vec is set. If it is, structure 2393 // vec_ext is available. 2394 if (_info.flags == frameType::frameWithEHInfo && TBTable->tb.has_vec) { 2395 2396 // Get to the vec_ext structure to check if vector registers are saved. 2397 uint32_t *p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext); 2398 2399 // Skip field parminfo if exists. 2400 if (TBTable->tb.fixedparms || TBTable->tb.floatparms) 2401 ++p; 2402 2403 // Skip field tb_offset if exists. 2404 if (TBTable->tb.has_tboff) 2405 ++p; 2406 2407 // Skip field hand_mask if exists. 2408 if (TBTable->tb.int_hndl) 2409 ++p; 2410 2411 // Skip fields ctl_info and ctl_info_disp if exist. 2412 if (TBTable->tb.has_ctl) { 2413 // Skip field ctl_info. 2414 ++p; 2415 // Skip field ctl_info_disp. 2416 ++p; 2417 } 2418 2419 // Skip fields name_len and name if exist. 2420 // p is supposed to point to field name_len now. 2421 uint8_t *charPtr = reinterpret_cast<uint8_t *>(p); 2422 if (TBTable->tb.name_present) { 2423 const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr)); 2424 charPtr = charPtr + name_len + sizeof(uint16_t); 2425 } 2426 2427 // Skip field alloc_reg if it exists. 2428 if (TBTable->tb.uses_alloca) 2429 ++charPtr; 2430 2431 struct vec_ext *vec_ext = reinterpret_cast<struct vec_ext *>(charPtr); 2432 2433 _LIBUNWIND_TRACE_UNWINDING("vr_saved=%d\n", vec_ext->vr_saved); 2434 2435 // Restore vector register(s) if saved on the stack. 2436 if (vec_ext->vr_saved) { 2437 // Saved vector registers are 16-byte aligned. 2438 if (reinterpret_cast<uintptr_t>(ptrToRegs) % 16) 2439 ptrToRegs -= reinterpret_cast<uintptr_t>(ptrToRegs) % 16; 2440 v128 *VecRegs = reinterpret_cast<v128 *>(ptrToRegs - vec_ext->vr_saved * 2441 sizeof(v128)); 2442 for (int i = 0; i < vec_ext->vr_saved; ++i) { 2443 newRegisters.setVectorRegister( 2444 32 - vec_ext->vr_saved + i + unwPPCV0Index, VecRegs[i]); 2445 } 2446 } 2447 } 2448 if (TBTable->tb.saves_cr) { 2449 // Get the saved condition register. The condition register is only 2450 // a single word. 2451 newRegisters.setCR( 2452 *(reinterpret_cast<uint32_t *>(lastStack + sizeof(uintptr_t)))); 2453 } 2454 2455 // Restore the SP. 2456 newRegisters.setSP(lastStack); 2457 2458 // The first instruction after return. 2459 uint32_t firstInstruction = *(reinterpret_cast<uint32_t *>(returnAddress)); 2460 2461 // Do we need to set the TOC register? 2462 _LIBUNWIND_TRACE_UNWINDING( 2463 "Current gpr2=%p\n", 2464 reinterpret_cast<void *>(newRegisters.getRegister(2))); 2465 if (firstInstruction == loadTOCRegInst) { 2466 _LIBUNWIND_TRACE_UNWINDING( 2467 "Set gpr2=%p from frame\n", 2468 reinterpret_cast<void *>(reinterpret_cast<pint_t *>(lastStack)[5])); 2469 newRegisters.setRegister(2, reinterpret_cast<pint_t *>(lastStack)[5]); 2470 } 2471 } 2472 _LIBUNWIND_TRACE_UNWINDING("lastStack=%p, returnAddress=%p, pc=%p\n", 2473 reinterpret_cast<void *>(lastStack), 2474 reinterpret_cast<void *>(returnAddress), 2475 reinterpret_cast<void *>(pc)); 2476 2477 // The return address is the address after call site instruction, so 2478 // setting IP to that simulates a return. 2479 newRegisters.setIP(reinterpret_cast<uintptr_t>(returnAddress)); 2480 2481 // Simulate the step by replacing the register set with the new ones. 2482 registers = newRegisters; 2483 2484 // Check if the next frame is a signal frame. 2485 pint_t nextStack = *(reinterpret_cast<pint_t *>(registers.getSP())); 2486 2487 // Return address is the address after call site instruction. 2488 pint_t nextReturnAddress = reinterpret_cast<pint_t *>(nextStack)[2]; 2489 2490 if (nextReturnAddress > 0x01 && nextReturnAddress < 0x10000) { 2491 _LIBUNWIND_TRACE_UNWINDING("The next is a signal handler frame: " 2492 "nextStack=%p, next return address=%p\n", 2493 reinterpret_cast<void *>(nextStack), 2494 reinterpret_cast<void *>(nextReturnAddress)); 2495 isSignalFrame = true; 2496 } else { 2497 isSignalFrame = false; 2498 } 2499 2500 return UNW_STEP_SUCCESS; 2501 } 2502 #endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) 2503 2504 template <typename A, typename R> 2505 void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) { 2506 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) 2507 _isSigReturn = false; 2508 #endif 2509 2510 pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); 2511 #if defined(_LIBUNWIND_ARM_EHABI) 2512 // Remove the thumb bit so the IP represents the actual instruction address. 2513 // This matches the behaviour of _Unwind_GetIP on arm. 2514 pc &= (pint_t)~0x1; 2515 #endif 2516 2517 // Exit early if at the top of the stack. 2518 if (pc == 0) { 2519 _unwindInfoMissing = true; 2520 return; 2521 } 2522 2523 // If the last line of a function is a "throw" the compiler sometimes 2524 // emits no instructions after the call to __cxa_throw. This means 2525 // the return address is actually the start of the next function. 2526 // To disambiguate this, back up the pc when we know it is a return 2527 // address. 2528 if (isReturnAddress) 2529 #if defined(_AIX) 2530 // PC needs to be a 4-byte aligned address to be able to look for a 2531 // word of 0 that indicates the start of the traceback table at the end 2532 // of a function on AIX. 2533 pc -= 4; 2534 #else 2535 --pc; 2536 #endif 2537 2538 // Ask address space object to find unwind sections for this pc. 2539 UnwindInfoSections sects; 2540 if (_addressSpace.findUnwindSections(pc, sects)) { 2541 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 2542 // If there is a compact unwind encoding table, look there first. 2543 if (sects.compact_unwind_section != 0) { 2544 if (this->getInfoFromCompactEncodingSection(pc, sects)) { 2545 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 2546 // Found info in table, done unless encoding says to use dwarf. 2547 uint32_t dwarfOffset; 2548 if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) { 2549 if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) { 2550 // found info in dwarf, done 2551 return; 2552 } 2553 } 2554 #endif 2555 // If unwind table has entry, but entry says there is no unwind info, 2556 // record that we have no unwind info. 2557 if (_info.format == 0) 2558 _unwindInfoMissing = true; 2559 return; 2560 } 2561 } 2562 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 2563 2564 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 2565 // If there is SEH unwind info, look there next. 2566 if (this->getInfoFromSEH(pc)) 2567 return; 2568 #endif 2569 2570 #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) 2571 // If there is unwind info in the traceback table, look there next. 2572 if (this->getInfoFromTBTable(pc, _registers)) 2573 return; 2574 #endif 2575 2576 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 2577 // If there is dwarf unwind info, look there next. 2578 if (sects.dwarf_section != 0) { 2579 if (this->getInfoFromDwarfSection(pc, sects)) { 2580 // found info in dwarf, done 2581 return; 2582 } 2583 } 2584 #endif 2585 2586 #if defined(_LIBUNWIND_ARM_EHABI) 2587 // If there is ARM EHABI unwind info, look there next. 2588 if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects)) 2589 return; 2590 #endif 2591 } 2592 2593 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 2594 // There is no static unwind info for this pc. Look to see if an FDE was 2595 // dynamically registered for it. 2596 pint_t cachedFDE = DwarfFDECache<A>::findFDE(DwarfFDECache<A>::kSearchAll, 2597 pc); 2598 if (cachedFDE != 0) { 2599 typename CFI_Parser<A>::FDE_Info fdeInfo; 2600 typename CFI_Parser<A>::CIE_Info cieInfo; 2601 if (!CFI_Parser<A>::decodeFDE(_addressSpace, cachedFDE, &fdeInfo, &cieInfo)) 2602 if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0)) 2603 return; 2604 } 2605 2606 // Lastly, ask AddressSpace object about platform specific ways to locate 2607 // other FDEs. 2608 pint_t fde; 2609 if (_addressSpace.findOtherFDE(pc, fde)) { 2610 typename CFI_Parser<A>::FDE_Info fdeInfo; 2611 typename CFI_Parser<A>::CIE_Info cieInfo; 2612 if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) { 2613 // Double check this FDE is for a function that includes the pc. 2614 if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) 2615 if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0)) 2616 return; 2617 } 2618 } 2619 #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 2620 2621 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) 2622 if (setInfoForSigReturn()) 2623 return; 2624 #endif 2625 2626 // no unwind info, flag that we can't reliably unwind 2627 _unwindInfoMissing = true; 2628 } 2629 2630 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ 2631 defined(_LIBUNWIND_TARGET_AARCH64) 2632 template <typename A, typename R> 2633 bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_arm64 &) { 2634 // Look for the sigreturn trampoline. The trampoline's body is two 2635 // specific instructions (see below). Typically the trampoline comes from the 2636 // vDSO[1] (i.e. the __kernel_rt_sigreturn function). A libc might provide its 2637 // own restorer function, though, or user-mode QEMU might write a trampoline 2638 // onto the stack. 2639 // 2640 // This special code path is a fallback that is only used if the trampoline 2641 // lacks proper (e.g. DWARF) unwind info. On AArch64, a new DWARF register 2642 // constant for the PC needs to be defined before DWARF can handle a signal 2643 // trampoline. This code may segfault if the target PC is unreadable, e.g.: 2644 // - The PC points at a function compiled without unwind info, and which is 2645 // part of an execute-only mapping (e.g. using -Wl,--execute-only). 2646 // - The PC is invalid and happens to point to unreadable or unmapped memory. 2647 // 2648 // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/vdso/sigreturn.S 2649 const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); 2650 // The PC might contain an invalid address if the unwind info is bad, so 2651 // directly accessing it could cause a segfault. Use process_vm_readv to read 2652 // the memory safely instead. process_vm_readv was added in Linux 3.2, and 2653 // AArch64 supported was added in Linux 3.7, so the syscall is guaranteed to 2654 // be present. Unfortunately, there are Linux AArch64 environments where the 2655 // libc wrapper for the syscall might not be present (e.g. Android 5), so call 2656 // the syscall directly instead. 2657 uint32_t instructions[2]; 2658 struct iovec local_iov = {&instructions, sizeof instructions}; 2659 struct iovec remote_iov = {reinterpret_cast<void *>(pc), sizeof instructions}; 2660 long bytesRead = 2661 syscall(SYS_process_vm_readv, getpid(), &local_iov, 1, &remote_iov, 1, 0); 2662 // Look for instructions: mov x8, #0x8b; svc #0x0 2663 if (bytesRead != sizeof instructions || instructions[0] != 0xd2801168 || 2664 instructions[1] != 0xd4000001) 2665 return false; 2666 2667 _info = {}; 2668 _info.start_ip = pc; 2669 _info.end_ip = pc + 4; 2670 _isSigReturn = true; 2671 return true; 2672 } 2673 2674 template <typename A, typename R> 2675 int UnwindCursor<A, R>::stepThroughSigReturn(Registers_arm64 &) { 2676 // In the signal trampoline frame, sp points to an rt_sigframe[1], which is: 2677 // - 128-byte siginfo struct 2678 // - ucontext struct: 2679 // - 8-byte long (uc_flags) 2680 // - 8-byte pointer (uc_link) 2681 // - 24-byte stack_t 2682 // - 128-byte signal set 2683 // - 8 bytes of padding because sigcontext has 16-byte alignment 2684 // - sigcontext/mcontext_t 2685 // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/signal.c 2686 const pint_t kOffsetSpToSigcontext = (128 + 8 + 8 + 24 + 128 + 8); // 304 2687 2688 // Offsets from sigcontext to each register. 2689 const pint_t kOffsetGprs = 8; // offset to "__u64 regs[31]" field 2690 const pint_t kOffsetSp = 256; // offset to "__u64 sp" field 2691 const pint_t kOffsetPc = 264; // offset to "__u64 pc" field 2692 2693 pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext; 2694 2695 for (int i = 0; i <= 30; ++i) { 2696 uint64_t value = _addressSpace.get64(sigctx + kOffsetGprs + 2697 static_cast<pint_t>(i * 8)); 2698 _registers.setRegister(UNW_AARCH64_X0 + i, value); 2699 } 2700 _registers.setSP(_addressSpace.get64(sigctx + kOffsetSp)); 2701 _registers.setIP(_addressSpace.get64(sigctx + kOffsetPc)); 2702 _isSignalFrame = true; 2703 return UNW_STEP_SUCCESS; 2704 } 2705 #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && 2706 // defined(_LIBUNWIND_TARGET_AARCH64) 2707 2708 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ 2709 defined(_LIBUNWIND_TARGET_S390X) 2710 template <typename A, typename R> 2711 bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_s390x &) { 2712 // Look for the sigreturn trampoline. The trampoline's body is a 2713 // specific instruction (see below). Typically the trampoline comes from the 2714 // vDSO (i.e. the __kernel_[rt_]sigreturn function). A libc might provide its 2715 // own restorer function, though, or user-mode QEMU might write a trampoline 2716 // onto the stack. 2717 const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); 2718 // The PC might contain an invalid address if the unwind info is bad, so 2719 // directly accessing it could cause a segfault. Use process_vm_readv to 2720 // read the memory safely instead. 2721 uint16_t inst; 2722 struct iovec local_iov = {&inst, sizeof inst}; 2723 struct iovec remote_iov = {reinterpret_cast<void *>(pc), sizeof inst}; 2724 long bytesRead = process_vm_readv(getpid(), &local_iov, 1, &remote_iov, 1, 0); 2725 if (bytesRead == sizeof inst && (inst == 0x0a77 || inst == 0x0aad)) { 2726 _info = {}; 2727 _info.start_ip = pc; 2728 _info.end_ip = pc + 2; 2729 _isSigReturn = true; 2730 return true; 2731 } 2732 return false; 2733 } 2734 2735 template <typename A, typename R> 2736 int UnwindCursor<A, R>::stepThroughSigReturn(Registers_s390x &) { 2737 // Determine current SP. 2738 const pint_t sp = static_cast<pint_t>(this->getReg(UNW_REG_SP)); 2739 // According to the s390x ABI, the CFA is at (incoming) SP + 160. 2740 const pint_t cfa = sp + 160; 2741 2742 // Determine current PC and instruction there (this must be either 2743 // a "svc __NR_sigreturn" or "svc __NR_rt_sigreturn"). 2744 const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); 2745 const uint16_t inst = _addressSpace.get16(pc); 2746 2747 // Find the addresses of the signo and sigcontext in the frame. 2748 pint_t pSigctx = 0; 2749 pint_t pSigno = 0; 2750 2751 // "svc __NR_sigreturn" uses a non-RT signal trampoline frame. 2752 if (inst == 0x0a77) { 2753 // Layout of a non-RT signal trampoline frame, starting at the CFA: 2754 // - 8-byte signal mask 2755 // - 8-byte pointer to sigcontext, followed by signo 2756 // - 4-byte signo 2757 pSigctx = _addressSpace.get64(cfa + 8); 2758 pSigno = pSigctx + 344; 2759 } 2760 2761 // "svc __NR_rt_sigreturn" uses a RT signal trampoline frame. 2762 if (inst == 0x0aad) { 2763 // Layout of a RT signal trampoline frame, starting at the CFA: 2764 // - 8-byte retcode (+ alignment) 2765 // - 128-byte siginfo struct (starts with signo) 2766 // - ucontext struct: 2767 // - 8-byte long (uc_flags) 2768 // - 8-byte pointer (uc_link) 2769 // - 24-byte stack_t 2770 // - 8 bytes of padding because sigcontext has 16-byte alignment 2771 // - sigcontext/mcontext_t 2772 pSigctx = cfa + 8 + 128 + 8 + 8 + 24 + 8; 2773 pSigno = cfa + 8; 2774 } 2775 2776 assert(pSigctx != 0); 2777 assert(pSigno != 0); 2778 2779 // Offsets from sigcontext to each register. 2780 const pint_t kOffsetPc = 8; 2781 const pint_t kOffsetGprs = 16; 2782 const pint_t kOffsetFprs = 216; 2783 2784 // Restore all registers. 2785 for (int i = 0; i < 16; ++i) { 2786 uint64_t value = _addressSpace.get64(pSigctx + kOffsetGprs + 2787 static_cast<pint_t>(i * 8)); 2788 _registers.setRegister(UNW_S390X_R0 + i, value); 2789 } 2790 for (int i = 0; i < 16; ++i) { 2791 static const int fpr[16] = { 2792 UNW_S390X_F0, UNW_S390X_F1, UNW_S390X_F2, UNW_S390X_F3, 2793 UNW_S390X_F4, UNW_S390X_F5, UNW_S390X_F6, UNW_S390X_F7, 2794 UNW_S390X_F8, UNW_S390X_F9, UNW_S390X_F10, UNW_S390X_F11, 2795 UNW_S390X_F12, UNW_S390X_F13, UNW_S390X_F14, UNW_S390X_F15 2796 }; 2797 double value = _addressSpace.getDouble(pSigctx + kOffsetFprs + 2798 static_cast<pint_t>(i * 8)); 2799 _registers.setFloatRegister(fpr[i], value); 2800 } 2801 _registers.setIP(_addressSpace.get64(pSigctx + kOffsetPc)); 2802 2803 // SIGILL, SIGFPE and SIGTRAP are delivered with psw_addr 2804 // after the faulting instruction rather than before it. 2805 // Do not set _isSignalFrame in that case. 2806 uint32_t signo = _addressSpace.get32(pSigno); 2807 _isSignalFrame = (signo != 4 && signo != 5 && signo != 8); 2808 2809 return UNW_STEP_SUCCESS; 2810 } 2811 #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && 2812 // defined(_LIBUNWIND_TARGET_S390X) 2813 2814 template <typename A, typename R> int UnwindCursor<A, R>::step(bool stage2) { 2815 (void)stage2; 2816 // Bottom of stack is defined is when unwind info cannot be found. 2817 if (_unwindInfoMissing) 2818 return UNW_STEP_END; 2819 2820 // Use unwinding info to modify register set as if function returned. 2821 int result; 2822 #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) 2823 if (_isSigReturn) { 2824 result = this->stepThroughSigReturn(); 2825 } else 2826 #endif 2827 { 2828 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 2829 result = this->stepWithCompactEncoding(stage2); 2830 #elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 2831 result = this->stepWithSEHData(); 2832 #elif defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) 2833 result = this->stepWithTBTableData(); 2834 #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 2835 result = this->stepWithDwarfFDE(stage2); 2836 #elif defined(_LIBUNWIND_ARM_EHABI) 2837 result = this->stepWithEHABI(); 2838 #else 2839 #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \ 2840 _LIBUNWIND_SUPPORT_SEH_UNWIND or \ 2841 _LIBUNWIND_SUPPORT_DWARF_UNWIND or \ 2842 _LIBUNWIND_ARM_EHABI 2843 #endif 2844 } 2845 2846 // update info based on new PC 2847 if (result == UNW_STEP_SUCCESS) { 2848 this->setInfoBasedOnIPRegister(true); 2849 if (_unwindInfoMissing) 2850 return UNW_STEP_END; 2851 } 2852 2853 return result; 2854 } 2855 2856 template <typename A, typename R> 2857 void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) { 2858 if (_unwindInfoMissing) 2859 memset(info, 0, sizeof(*info)); 2860 else 2861 *info = _info; 2862 } 2863 2864 template <typename A, typename R> 2865 bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen, 2866 unw_word_t *offset) { 2867 return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP), 2868 buf, bufLen, offset); 2869 } 2870 2871 #if defined(_LIBUNWIND_USE_CET) 2872 extern "C" void *__libunwind_cet_get_registers(unw_cursor_t *cursor) { 2873 AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor; 2874 return co->get_registers(); 2875 } 2876 #endif 2877 } // namespace libunwind 2878 2879 #endif // __UNWINDCURSOR_HPP__ 2880