1 //===------------------------- UnwindCursor.hpp ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 // 8 // C++ interface to lower levels of libunwind 9 //===----------------------------------------------------------------------===// 10 11 #ifndef __UNWINDCURSOR_HPP__ 12 #define __UNWINDCURSOR_HPP__ 13 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <unwind.h> 18 19 #ifdef _WIN32 20 #include <windows.h> 21 #include <ntverp.h> 22 #endif 23 #ifdef __APPLE__ 24 #include <mach-o/dyld.h> 25 #endif 26 27 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 28 // Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and 29 // earlier) SDKs. 30 // MinGW-w64 has always provided this struct. 31 #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \ 32 !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000 33 struct _DISPATCHER_CONTEXT { 34 ULONG64 ControlPc; 35 ULONG64 ImageBase; 36 PRUNTIME_FUNCTION FunctionEntry; 37 ULONG64 EstablisherFrame; 38 ULONG64 TargetIp; 39 PCONTEXT ContextRecord; 40 PEXCEPTION_ROUTINE LanguageHandler; 41 PVOID HandlerData; 42 PUNWIND_HISTORY_TABLE HistoryTable; 43 ULONG ScopeIndex; 44 ULONG Fill0; 45 }; 46 #endif 47 48 struct UNWIND_INFO { 49 uint8_t Version : 3; 50 uint8_t Flags : 5; 51 uint8_t SizeOfProlog; 52 uint8_t CountOfCodes; 53 uint8_t FrameRegister : 4; 54 uint8_t FrameOffset : 4; 55 uint16_t UnwindCodes[2]; 56 }; 57 58 extern "C" _Unwind_Reason_Code __libunwind_seh_personality( 59 int, _Unwind_Action, uint64_t, _Unwind_Exception *, 60 struct _Unwind_Context *); 61 62 #endif 63 64 #include "config.h" 65 66 #include "AddressSpace.hpp" 67 #include "CompactUnwinder.hpp" 68 #include "config.h" 69 #include "DwarfInstructions.hpp" 70 #include "EHHeaderParser.hpp" 71 #include "libunwind.h" 72 #include "Registers.hpp" 73 #include "RWMutex.hpp" 74 #include "Unwind-EHABI.h" 75 76 namespace libunwind { 77 78 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 79 /// Cache of recently found FDEs. 80 template <typename A> 81 class _LIBUNWIND_HIDDEN DwarfFDECache { 82 typedef typename A::pint_t pint_t; 83 public: 84 static pint_t findFDE(pint_t mh, pint_t pc); 85 static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde); 86 static void removeAllIn(pint_t mh); 87 static void iterateCacheEntries(void (*func)(unw_word_t ip_start, 88 unw_word_t ip_end, 89 unw_word_t fde, unw_word_t mh)); 90 91 private: 92 93 struct entry { 94 pint_t mh; 95 pint_t ip_start; 96 pint_t ip_end; 97 pint_t fde; 98 }; 99 100 // These fields are all static to avoid needing an initializer. 101 // There is only one instance of this class per process. 102 static RWMutex _lock; 103 #ifdef __APPLE__ 104 static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide); 105 static bool _registeredForDyldUnloads; 106 #endif 107 static entry *_buffer; 108 static entry *_bufferUsed; 109 static entry *_bufferEnd; 110 static entry _initialBuffer[64]; 111 }; 112 113 template <typename A> 114 typename DwarfFDECache<A>::entry * 115 DwarfFDECache<A>::_buffer = _initialBuffer; 116 117 template <typename A> 118 typename DwarfFDECache<A>::entry * 119 DwarfFDECache<A>::_bufferUsed = _initialBuffer; 120 121 template <typename A> 122 typename DwarfFDECache<A>::entry * 123 DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64]; 124 125 template <typename A> 126 typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64]; 127 128 template <typename A> 129 RWMutex DwarfFDECache<A>::_lock; 130 131 #ifdef __APPLE__ 132 template <typename A> 133 bool DwarfFDECache<A>::_registeredForDyldUnloads = false; 134 #endif 135 136 template <typename A> 137 typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) { 138 pint_t result = 0; 139 _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared()); 140 for (entry *p = _buffer; p < _bufferUsed; ++p) { 141 if ((mh == p->mh) || (mh == 0)) { 142 if ((p->ip_start <= pc) && (pc < p->ip_end)) { 143 result = p->fde; 144 break; 145 } 146 } 147 } 148 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared()); 149 return result; 150 } 151 152 template <typename A> 153 void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end, 154 pint_t fde) { 155 #if !defined(_LIBUNWIND_NO_HEAP) 156 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 157 if (_bufferUsed >= _bufferEnd) { 158 size_t oldSize = (size_t)(_bufferEnd - _buffer); 159 size_t newSize = oldSize * 4; 160 // Can't use operator new (we are below it). 161 entry *newBuffer = (entry *)malloc(newSize * sizeof(entry)); 162 memcpy(newBuffer, _buffer, oldSize * sizeof(entry)); 163 if (_buffer != _initialBuffer) 164 free(_buffer); 165 _buffer = newBuffer; 166 _bufferUsed = &newBuffer[oldSize]; 167 _bufferEnd = &newBuffer[newSize]; 168 } 169 _bufferUsed->mh = mh; 170 _bufferUsed->ip_start = ip_start; 171 _bufferUsed->ip_end = ip_end; 172 _bufferUsed->fde = fde; 173 ++_bufferUsed; 174 #ifdef __APPLE__ 175 if (!_registeredForDyldUnloads) { 176 _dyld_register_func_for_remove_image(&dyldUnloadHook); 177 _registeredForDyldUnloads = true; 178 } 179 #endif 180 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 181 #endif 182 } 183 184 template <typename A> 185 void DwarfFDECache<A>::removeAllIn(pint_t mh) { 186 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 187 entry *d = _buffer; 188 for (const entry *s = _buffer; s < _bufferUsed; ++s) { 189 if (s->mh != mh) { 190 if (d != s) 191 *d = *s; 192 ++d; 193 } 194 } 195 _bufferUsed = d; 196 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 197 } 198 199 #ifdef __APPLE__ 200 template <typename A> 201 void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) { 202 removeAllIn((pint_t) mh); 203 } 204 #endif 205 206 template <typename A> 207 void DwarfFDECache<A>::iterateCacheEntries(void (*func)( 208 unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) { 209 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 210 for (entry *p = _buffer; p < _bufferUsed; ++p) { 211 (*func)(p->ip_start, p->ip_end, p->fde, p->mh); 212 } 213 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 214 } 215 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 216 217 218 #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field)) 219 220 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 221 template <typename A> class UnwindSectionHeader { 222 public: 223 UnwindSectionHeader(A &addressSpace, typename A::pint_t addr) 224 : _addressSpace(addressSpace), _addr(addr) {} 225 226 uint32_t version() const { 227 return _addressSpace.get32(_addr + 228 offsetof(unwind_info_section_header, version)); 229 } 230 uint32_t commonEncodingsArraySectionOffset() const { 231 return _addressSpace.get32(_addr + 232 offsetof(unwind_info_section_header, 233 commonEncodingsArraySectionOffset)); 234 } 235 uint32_t commonEncodingsArrayCount() const { 236 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, 237 commonEncodingsArrayCount)); 238 } 239 uint32_t personalityArraySectionOffset() const { 240 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, 241 personalityArraySectionOffset)); 242 } 243 uint32_t personalityArrayCount() const { 244 return _addressSpace.get32( 245 _addr + offsetof(unwind_info_section_header, personalityArrayCount)); 246 } 247 uint32_t indexSectionOffset() const { 248 return _addressSpace.get32( 249 _addr + offsetof(unwind_info_section_header, indexSectionOffset)); 250 } 251 uint32_t indexCount() const { 252 return _addressSpace.get32( 253 _addr + offsetof(unwind_info_section_header, indexCount)); 254 } 255 256 private: 257 A &_addressSpace; 258 typename A::pint_t _addr; 259 }; 260 261 template <typename A> class UnwindSectionIndexArray { 262 public: 263 UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr) 264 : _addressSpace(addressSpace), _addr(addr) {} 265 266 uint32_t functionOffset(uint32_t index) const { 267 return _addressSpace.get32( 268 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 269 functionOffset)); 270 } 271 uint32_t secondLevelPagesSectionOffset(uint32_t index) const { 272 return _addressSpace.get32( 273 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 274 secondLevelPagesSectionOffset)); 275 } 276 uint32_t lsdaIndexArraySectionOffset(uint32_t index) const { 277 return _addressSpace.get32( 278 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 279 lsdaIndexArraySectionOffset)); 280 } 281 282 private: 283 A &_addressSpace; 284 typename A::pint_t _addr; 285 }; 286 287 template <typename A> class UnwindSectionRegularPageHeader { 288 public: 289 UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr) 290 : _addressSpace(addressSpace), _addr(addr) {} 291 292 uint32_t kind() const { 293 return _addressSpace.get32( 294 _addr + offsetof(unwind_info_regular_second_level_page_header, kind)); 295 } 296 uint16_t entryPageOffset() const { 297 return _addressSpace.get16( 298 _addr + offsetof(unwind_info_regular_second_level_page_header, 299 entryPageOffset)); 300 } 301 uint16_t entryCount() const { 302 return _addressSpace.get16( 303 _addr + 304 offsetof(unwind_info_regular_second_level_page_header, entryCount)); 305 } 306 307 private: 308 A &_addressSpace; 309 typename A::pint_t _addr; 310 }; 311 312 template <typename A> class UnwindSectionRegularArray { 313 public: 314 UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr) 315 : _addressSpace(addressSpace), _addr(addr) {} 316 317 uint32_t functionOffset(uint32_t index) const { 318 return _addressSpace.get32( 319 _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, 320 functionOffset)); 321 } 322 uint32_t encoding(uint32_t index) const { 323 return _addressSpace.get32( 324 _addr + 325 arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding)); 326 } 327 328 private: 329 A &_addressSpace; 330 typename A::pint_t _addr; 331 }; 332 333 template <typename A> class UnwindSectionCompressedPageHeader { 334 public: 335 UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr) 336 : _addressSpace(addressSpace), _addr(addr) {} 337 338 uint32_t kind() const { 339 return _addressSpace.get32( 340 _addr + 341 offsetof(unwind_info_compressed_second_level_page_header, kind)); 342 } 343 uint16_t entryPageOffset() const { 344 return _addressSpace.get16( 345 _addr + offsetof(unwind_info_compressed_second_level_page_header, 346 entryPageOffset)); 347 } 348 uint16_t entryCount() const { 349 return _addressSpace.get16( 350 _addr + 351 offsetof(unwind_info_compressed_second_level_page_header, entryCount)); 352 } 353 uint16_t encodingsPageOffset() const { 354 return _addressSpace.get16( 355 _addr + offsetof(unwind_info_compressed_second_level_page_header, 356 encodingsPageOffset)); 357 } 358 uint16_t encodingsCount() const { 359 return _addressSpace.get16( 360 _addr + offsetof(unwind_info_compressed_second_level_page_header, 361 encodingsCount)); 362 } 363 364 private: 365 A &_addressSpace; 366 typename A::pint_t _addr; 367 }; 368 369 template <typename A> class UnwindSectionCompressedArray { 370 public: 371 UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr) 372 : _addressSpace(addressSpace), _addr(addr) {} 373 374 uint32_t functionOffset(uint32_t index) const { 375 return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET( 376 _addressSpace.get32(_addr + index * sizeof(uint32_t))); 377 } 378 uint16_t encodingIndex(uint32_t index) const { 379 return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX( 380 _addressSpace.get32(_addr + index * sizeof(uint32_t))); 381 } 382 383 private: 384 A &_addressSpace; 385 typename A::pint_t _addr; 386 }; 387 388 template <typename A> class UnwindSectionLsdaArray { 389 public: 390 UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr) 391 : _addressSpace(addressSpace), _addr(addr) {} 392 393 uint32_t functionOffset(uint32_t index) const { 394 return _addressSpace.get32( 395 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, 396 index, functionOffset)); 397 } 398 uint32_t lsdaOffset(uint32_t index) const { 399 return _addressSpace.get32( 400 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, 401 index, lsdaOffset)); 402 } 403 404 private: 405 A &_addressSpace; 406 typename A::pint_t _addr; 407 }; 408 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 409 410 class _LIBUNWIND_HIDDEN AbstractUnwindCursor { 411 public: 412 // NOTE: provide a class specific placement deallocation function (S5.3.4 p20) 413 // This avoids an unnecessary dependency to libc++abi. 414 void operator delete(void *, size_t) {} 415 416 virtual ~AbstractUnwindCursor() {} 417 virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); } 418 virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); } 419 virtual void setReg(int, unw_word_t) { 420 _LIBUNWIND_ABORT("setReg not implemented"); 421 } 422 virtual bool validFloatReg(int) { 423 _LIBUNWIND_ABORT("validFloatReg not implemented"); 424 } 425 virtual unw_fpreg_t getFloatReg(int) { 426 _LIBUNWIND_ABORT("getFloatReg not implemented"); 427 } 428 virtual void setFloatReg(int, unw_fpreg_t) { 429 _LIBUNWIND_ABORT("setFloatReg not implemented"); 430 } 431 virtual int step() { _LIBUNWIND_ABORT("step not implemented"); } 432 virtual void getInfo(unw_proc_info_t *) { 433 _LIBUNWIND_ABORT("getInfo not implemented"); 434 } 435 virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); } 436 virtual bool isSignalFrame() { 437 _LIBUNWIND_ABORT("isSignalFrame not implemented"); 438 } 439 virtual bool getFunctionName(char *, size_t, unw_word_t *) { 440 _LIBUNWIND_ABORT("getFunctionName not implemented"); 441 } 442 virtual void setInfoBasedOnIPRegister(bool = false) { 443 _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented"); 444 } 445 virtual const char *getRegisterName(int) { 446 _LIBUNWIND_ABORT("getRegisterName not implemented"); 447 } 448 #ifdef __arm__ 449 virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); } 450 #endif 451 }; 452 453 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32) 454 455 /// \c UnwindCursor contains all state (including all register values) during 456 /// an unwind. This is normally stack-allocated inside a unw_cursor_t. 457 template <typename A, typename R> 458 class UnwindCursor : public AbstractUnwindCursor { 459 typedef typename A::pint_t pint_t; 460 public: 461 UnwindCursor(unw_context_t *context, A &as); 462 UnwindCursor(CONTEXT *context, A &as); 463 UnwindCursor(A &as, void *threadArg); 464 virtual ~UnwindCursor() {} 465 virtual bool validReg(int); 466 virtual unw_word_t getReg(int); 467 virtual void setReg(int, unw_word_t); 468 virtual bool validFloatReg(int); 469 virtual unw_fpreg_t getFloatReg(int); 470 virtual void setFloatReg(int, unw_fpreg_t); 471 virtual int step(); 472 virtual void getInfo(unw_proc_info_t *); 473 virtual void jumpto(); 474 virtual bool isSignalFrame(); 475 virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); 476 virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); 477 virtual const char *getRegisterName(int num); 478 #ifdef __arm__ 479 virtual void saveVFPAsX(); 480 #endif 481 482 DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; } 483 void setDispatcherContext(DISPATCHER_CONTEXT *disp) { _dispContext = *disp; } 484 485 // libunwind does not and should not depend on C++ library which means that we 486 // need our own defition of inline placement new. 487 static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } 488 489 private: 490 491 pint_t getLastPC() const { return _dispContext.ControlPc; } 492 void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; } 493 RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { 494 _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc, 495 &_dispContext.ImageBase, 496 _dispContext.HistoryTable); 497 *base = _dispContext.ImageBase; 498 return _dispContext.FunctionEntry; 499 } 500 bool getInfoFromSEH(pint_t pc); 501 int stepWithSEHData() { 502 _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER, 503 _dispContext.ImageBase, 504 _dispContext.ControlPc, 505 _dispContext.FunctionEntry, 506 _dispContext.ContextRecord, 507 &_dispContext.HandlerData, 508 &_dispContext.EstablisherFrame, 509 NULL); 510 // Update some fields of the unwind info now, since we have them. 511 _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); 512 if (_dispContext.LanguageHandler) { 513 _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); 514 } else 515 _info.handler = 0; 516 return UNW_STEP_SUCCESS; 517 } 518 519 A &_addressSpace; 520 unw_proc_info_t _info; 521 DISPATCHER_CONTEXT _dispContext; 522 CONTEXT _msContext; 523 UNWIND_HISTORY_TABLE _histTable; 524 bool _unwindInfoMissing; 525 }; 526 527 528 template <typename A, typename R> 529 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) 530 : _addressSpace(as), _unwindInfoMissing(false) { 531 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 532 "UnwindCursor<> does not fit in unw_cursor_t"); 533 memset(&_info, 0, sizeof(_info)); 534 memset(&_histTable, 0, sizeof(_histTable)); 535 _dispContext.ContextRecord = &_msContext; 536 _dispContext.HistoryTable = &_histTable; 537 // Initialize MS context from ours. 538 R r(context); 539 _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT; 540 #if defined(_LIBUNWIND_TARGET_X86_64) 541 _msContext.Rax = r.getRegister(UNW_X86_64_RAX); 542 _msContext.Rcx = r.getRegister(UNW_X86_64_RCX); 543 _msContext.Rdx = r.getRegister(UNW_X86_64_RDX); 544 _msContext.Rbx = r.getRegister(UNW_X86_64_RBX); 545 _msContext.Rsp = r.getRegister(UNW_X86_64_RSP); 546 _msContext.Rbp = r.getRegister(UNW_X86_64_RBP); 547 _msContext.Rsi = r.getRegister(UNW_X86_64_RSI); 548 _msContext.Rdi = r.getRegister(UNW_X86_64_RDI); 549 _msContext.R8 = r.getRegister(UNW_X86_64_R8); 550 _msContext.R9 = r.getRegister(UNW_X86_64_R9); 551 _msContext.R10 = r.getRegister(UNW_X86_64_R10); 552 _msContext.R11 = r.getRegister(UNW_X86_64_R11); 553 _msContext.R12 = r.getRegister(UNW_X86_64_R12); 554 _msContext.R13 = r.getRegister(UNW_X86_64_R13); 555 _msContext.R14 = r.getRegister(UNW_X86_64_R14); 556 _msContext.R15 = r.getRegister(UNW_X86_64_R15); 557 _msContext.Rip = r.getRegister(UNW_REG_IP); 558 union { 559 v128 v; 560 M128A m; 561 } t; 562 t.v = r.getVectorRegister(UNW_X86_64_XMM0); 563 _msContext.Xmm0 = t.m; 564 t.v = r.getVectorRegister(UNW_X86_64_XMM1); 565 _msContext.Xmm1 = t.m; 566 t.v = r.getVectorRegister(UNW_X86_64_XMM2); 567 _msContext.Xmm2 = t.m; 568 t.v = r.getVectorRegister(UNW_X86_64_XMM3); 569 _msContext.Xmm3 = t.m; 570 t.v = r.getVectorRegister(UNW_X86_64_XMM4); 571 _msContext.Xmm4 = t.m; 572 t.v = r.getVectorRegister(UNW_X86_64_XMM5); 573 _msContext.Xmm5 = t.m; 574 t.v = r.getVectorRegister(UNW_X86_64_XMM6); 575 _msContext.Xmm6 = t.m; 576 t.v = r.getVectorRegister(UNW_X86_64_XMM7); 577 _msContext.Xmm7 = t.m; 578 t.v = r.getVectorRegister(UNW_X86_64_XMM8); 579 _msContext.Xmm8 = t.m; 580 t.v = r.getVectorRegister(UNW_X86_64_XMM9); 581 _msContext.Xmm9 = t.m; 582 t.v = r.getVectorRegister(UNW_X86_64_XMM10); 583 _msContext.Xmm10 = t.m; 584 t.v = r.getVectorRegister(UNW_X86_64_XMM11); 585 _msContext.Xmm11 = t.m; 586 t.v = r.getVectorRegister(UNW_X86_64_XMM12); 587 _msContext.Xmm12 = t.m; 588 t.v = r.getVectorRegister(UNW_X86_64_XMM13); 589 _msContext.Xmm13 = t.m; 590 t.v = r.getVectorRegister(UNW_X86_64_XMM14); 591 _msContext.Xmm14 = t.m; 592 t.v = r.getVectorRegister(UNW_X86_64_XMM15); 593 _msContext.Xmm15 = t.m; 594 #elif defined(_LIBUNWIND_TARGET_ARM) 595 _msContext.R0 = r.getRegister(UNW_ARM_R0); 596 _msContext.R1 = r.getRegister(UNW_ARM_R1); 597 _msContext.R2 = r.getRegister(UNW_ARM_R2); 598 _msContext.R3 = r.getRegister(UNW_ARM_R3); 599 _msContext.R4 = r.getRegister(UNW_ARM_R4); 600 _msContext.R5 = r.getRegister(UNW_ARM_R5); 601 _msContext.R6 = r.getRegister(UNW_ARM_R6); 602 _msContext.R7 = r.getRegister(UNW_ARM_R7); 603 _msContext.R8 = r.getRegister(UNW_ARM_R8); 604 _msContext.R9 = r.getRegister(UNW_ARM_R9); 605 _msContext.R10 = r.getRegister(UNW_ARM_R10); 606 _msContext.R11 = r.getRegister(UNW_ARM_R11); 607 _msContext.R12 = r.getRegister(UNW_ARM_R12); 608 _msContext.Sp = r.getRegister(UNW_ARM_SP); 609 _msContext.Lr = r.getRegister(UNW_ARM_LR); 610 _msContext.Pc = r.getRegister(UNW_ARM_IP); 611 for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) { 612 union { 613 uint64_t w; 614 double d; 615 } d; 616 d.d = r.getFloatRegister(i); 617 _msContext.D[i - UNW_ARM_D0] = d.w; 618 } 619 #elif defined(_LIBUNWIND_TARGET_AARCH64) 620 for (int i = UNW_ARM64_X0; i <= UNW_ARM64_X30; ++i) 621 _msContext.X[i - UNW_ARM64_X0] = r.getRegister(i); 622 _msContext.Sp = r.getRegister(UNW_REG_SP); 623 _msContext.Pc = r.getRegister(UNW_REG_IP); 624 for (int i = UNW_ARM64_D0; i <= UNW_ARM64_D31; ++i) 625 _msContext.V[i - UNW_ARM64_D0].D[0] = r.getFloatRegister(i); 626 #endif 627 } 628 629 template <typename A, typename R> 630 UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as) 631 : _addressSpace(as), _unwindInfoMissing(false) { 632 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 633 "UnwindCursor<> does not fit in unw_cursor_t"); 634 memset(&_info, 0, sizeof(_info)); 635 memset(&_histTable, 0, sizeof(_histTable)); 636 _dispContext.ContextRecord = &_msContext; 637 _dispContext.HistoryTable = &_histTable; 638 _msContext = *context; 639 } 640 641 642 template <typename A, typename R> 643 bool UnwindCursor<A, R>::validReg(int regNum) { 644 if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true; 645 #if defined(_LIBUNWIND_TARGET_X86_64) 646 if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_R15) return true; 647 #elif defined(_LIBUNWIND_TARGET_ARM) 648 if (regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) return true; 649 #elif defined(_LIBUNWIND_TARGET_AARCH64) 650 if (regNum >= UNW_ARM64_X0 && regNum <= UNW_ARM64_X30) return true; 651 #endif 652 return false; 653 } 654 655 template <typename A, typename R> 656 unw_word_t UnwindCursor<A, R>::getReg(int regNum) { 657 switch (regNum) { 658 #if defined(_LIBUNWIND_TARGET_X86_64) 659 case UNW_REG_IP: return _msContext.Rip; 660 case UNW_X86_64_RAX: return _msContext.Rax; 661 case UNW_X86_64_RDX: return _msContext.Rdx; 662 case UNW_X86_64_RCX: return _msContext.Rcx; 663 case UNW_X86_64_RBX: return _msContext.Rbx; 664 case UNW_REG_SP: 665 case UNW_X86_64_RSP: return _msContext.Rsp; 666 case UNW_X86_64_RBP: return _msContext.Rbp; 667 case UNW_X86_64_RSI: return _msContext.Rsi; 668 case UNW_X86_64_RDI: return _msContext.Rdi; 669 case UNW_X86_64_R8: return _msContext.R8; 670 case UNW_X86_64_R9: return _msContext.R9; 671 case UNW_X86_64_R10: return _msContext.R10; 672 case UNW_X86_64_R11: return _msContext.R11; 673 case UNW_X86_64_R12: return _msContext.R12; 674 case UNW_X86_64_R13: return _msContext.R13; 675 case UNW_X86_64_R14: return _msContext.R14; 676 case UNW_X86_64_R15: return _msContext.R15; 677 #elif defined(_LIBUNWIND_TARGET_ARM) 678 case UNW_ARM_R0: return _msContext.R0; 679 case UNW_ARM_R1: return _msContext.R1; 680 case UNW_ARM_R2: return _msContext.R2; 681 case UNW_ARM_R3: return _msContext.R3; 682 case UNW_ARM_R4: return _msContext.R4; 683 case UNW_ARM_R5: return _msContext.R5; 684 case UNW_ARM_R6: return _msContext.R6; 685 case UNW_ARM_R7: return _msContext.R7; 686 case UNW_ARM_R8: return _msContext.R8; 687 case UNW_ARM_R9: return _msContext.R9; 688 case UNW_ARM_R10: return _msContext.R10; 689 case UNW_ARM_R11: return _msContext.R11; 690 case UNW_ARM_R12: return _msContext.R12; 691 case UNW_REG_SP: 692 case UNW_ARM_SP: return _msContext.Sp; 693 case UNW_ARM_LR: return _msContext.Lr; 694 case UNW_REG_IP: 695 case UNW_ARM_IP: return _msContext.Pc; 696 #elif defined(_LIBUNWIND_TARGET_AARCH64) 697 case UNW_REG_SP: return _msContext.Sp; 698 case UNW_REG_IP: return _msContext.Pc; 699 default: return _msContext.X[regNum - UNW_ARM64_X0]; 700 #endif 701 } 702 _LIBUNWIND_ABORT("unsupported register"); 703 } 704 705 template <typename A, typename R> 706 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { 707 switch (regNum) { 708 #if defined(_LIBUNWIND_TARGET_X86_64) 709 case UNW_REG_IP: _msContext.Rip = value; break; 710 case UNW_X86_64_RAX: _msContext.Rax = value; break; 711 case UNW_X86_64_RDX: _msContext.Rdx = value; break; 712 case UNW_X86_64_RCX: _msContext.Rcx = value; break; 713 case UNW_X86_64_RBX: _msContext.Rbx = value; break; 714 case UNW_REG_SP: 715 case UNW_X86_64_RSP: _msContext.Rsp = value; break; 716 case UNW_X86_64_RBP: _msContext.Rbp = value; break; 717 case UNW_X86_64_RSI: _msContext.Rsi = value; break; 718 case UNW_X86_64_RDI: _msContext.Rdi = value; break; 719 case UNW_X86_64_R8: _msContext.R8 = value; break; 720 case UNW_X86_64_R9: _msContext.R9 = value; break; 721 case UNW_X86_64_R10: _msContext.R10 = value; break; 722 case UNW_X86_64_R11: _msContext.R11 = value; break; 723 case UNW_X86_64_R12: _msContext.R12 = value; break; 724 case UNW_X86_64_R13: _msContext.R13 = value; break; 725 case UNW_X86_64_R14: _msContext.R14 = value; break; 726 case UNW_X86_64_R15: _msContext.R15 = value; break; 727 #elif defined(_LIBUNWIND_TARGET_ARM) 728 case UNW_ARM_R0: _msContext.R0 = value; break; 729 case UNW_ARM_R1: _msContext.R1 = value; break; 730 case UNW_ARM_R2: _msContext.R2 = value; break; 731 case UNW_ARM_R3: _msContext.R3 = value; break; 732 case UNW_ARM_R4: _msContext.R4 = value; break; 733 case UNW_ARM_R5: _msContext.R5 = value; break; 734 case UNW_ARM_R6: _msContext.R6 = value; break; 735 case UNW_ARM_R7: _msContext.R7 = value; break; 736 case UNW_ARM_R8: _msContext.R8 = value; break; 737 case UNW_ARM_R9: _msContext.R9 = value; break; 738 case UNW_ARM_R10: _msContext.R10 = value; break; 739 case UNW_ARM_R11: _msContext.R11 = value; break; 740 case UNW_ARM_R12: _msContext.R12 = value; break; 741 case UNW_REG_SP: 742 case UNW_ARM_SP: _msContext.Sp = value; break; 743 case UNW_ARM_LR: _msContext.Lr = value; break; 744 case UNW_REG_IP: 745 case UNW_ARM_IP: _msContext.Pc = value; break; 746 #elif defined(_LIBUNWIND_TARGET_AARCH64) 747 case UNW_REG_SP: _msContext.Sp = value; break; 748 case UNW_REG_IP: _msContext.Pc = value; break; 749 case UNW_ARM64_X0: 750 case UNW_ARM64_X1: 751 case UNW_ARM64_X2: 752 case UNW_ARM64_X3: 753 case UNW_ARM64_X4: 754 case UNW_ARM64_X5: 755 case UNW_ARM64_X6: 756 case UNW_ARM64_X7: 757 case UNW_ARM64_X8: 758 case UNW_ARM64_X9: 759 case UNW_ARM64_X10: 760 case UNW_ARM64_X11: 761 case UNW_ARM64_X12: 762 case UNW_ARM64_X13: 763 case UNW_ARM64_X14: 764 case UNW_ARM64_X15: 765 case UNW_ARM64_X16: 766 case UNW_ARM64_X17: 767 case UNW_ARM64_X18: 768 case UNW_ARM64_X19: 769 case UNW_ARM64_X20: 770 case UNW_ARM64_X21: 771 case UNW_ARM64_X22: 772 case UNW_ARM64_X23: 773 case UNW_ARM64_X24: 774 case UNW_ARM64_X25: 775 case UNW_ARM64_X26: 776 case UNW_ARM64_X27: 777 case UNW_ARM64_X28: 778 case UNW_ARM64_FP: 779 case UNW_ARM64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break; 780 #endif 781 default: 782 _LIBUNWIND_ABORT("unsupported register"); 783 } 784 } 785 786 template <typename A, typename R> 787 bool UnwindCursor<A, R>::validFloatReg(int regNum) { 788 #if defined(_LIBUNWIND_TARGET_ARM) 789 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true; 790 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true; 791 #elif defined(_LIBUNWIND_TARGET_AARCH64) 792 if (regNum >= UNW_ARM64_D0 && regNum <= UNW_ARM64_D31) return true; 793 #else 794 (void)regNum; 795 #endif 796 return false; 797 } 798 799 template <typename A, typename R> 800 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { 801 #if defined(_LIBUNWIND_TARGET_ARM) 802 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { 803 union { 804 uint32_t w; 805 float f; 806 } d; 807 d.w = _msContext.S[regNum - UNW_ARM_S0]; 808 return d.f; 809 } 810 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { 811 union { 812 uint64_t w; 813 double d; 814 } d; 815 d.w = _msContext.D[regNum - UNW_ARM_D0]; 816 return d.d; 817 } 818 _LIBUNWIND_ABORT("unsupported float register"); 819 #elif defined(_LIBUNWIND_TARGET_AARCH64) 820 return _msContext.V[regNum - UNW_ARM64_D0].D[0]; 821 #else 822 (void)regNum; 823 _LIBUNWIND_ABORT("float registers unimplemented"); 824 #endif 825 } 826 827 template <typename A, typename R> 828 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { 829 #if defined(_LIBUNWIND_TARGET_ARM) 830 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { 831 union { 832 uint32_t w; 833 float f; 834 } d; 835 d.f = value; 836 _msContext.S[regNum - UNW_ARM_S0] = d.w; 837 } 838 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { 839 union { 840 uint64_t w; 841 double d; 842 } d; 843 d.d = value; 844 _msContext.D[regNum - UNW_ARM_D0] = d.w; 845 } 846 _LIBUNWIND_ABORT("unsupported float register"); 847 #elif defined(_LIBUNWIND_TARGET_AARCH64) 848 _msContext.V[regNum - UNW_ARM64_D0].D[0] = value; 849 #else 850 (void)regNum; 851 (void)value; 852 _LIBUNWIND_ABORT("float registers unimplemented"); 853 #endif 854 } 855 856 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { 857 RtlRestoreContext(&_msContext, nullptr); 858 } 859 860 #ifdef __arm__ 861 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {} 862 #endif 863 864 template <typename A, typename R> 865 const char *UnwindCursor<A, R>::getRegisterName(int regNum) { 866 return R::getRegisterName(regNum); 867 } 868 869 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { 870 return false; 871 } 872 873 #else // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32) 874 875 /// UnwindCursor contains all state (including all register values) during 876 /// an unwind. This is normally stack allocated inside a unw_cursor_t. 877 template <typename A, typename R> 878 class UnwindCursor : public AbstractUnwindCursor{ 879 typedef typename A::pint_t pint_t; 880 public: 881 UnwindCursor(unw_context_t *context, A &as); 882 UnwindCursor(A &as, void *threadArg); 883 virtual ~UnwindCursor() {} 884 virtual bool validReg(int); 885 virtual unw_word_t getReg(int); 886 virtual void setReg(int, unw_word_t); 887 virtual bool validFloatReg(int); 888 virtual unw_fpreg_t getFloatReg(int); 889 virtual void setFloatReg(int, unw_fpreg_t); 890 virtual int step(); 891 virtual void getInfo(unw_proc_info_t *); 892 virtual void jumpto(); 893 virtual bool isSignalFrame(); 894 virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); 895 virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); 896 virtual const char *getRegisterName(int num); 897 #ifdef __arm__ 898 virtual void saveVFPAsX(); 899 #endif 900 901 // libunwind does not and should not depend on C++ library which means that we 902 // need our own defition of inline placement new. 903 static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } 904 905 private: 906 907 #if defined(_LIBUNWIND_ARM_EHABI) 908 bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s); 909 910 int stepWithEHABI() { 911 size_t len = 0; 912 size_t off = 0; 913 // FIXME: Calling decode_eht_entry() here is violating the libunwind 914 // abstraction layer. 915 const uint32_t *ehtp = 916 decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info), 917 &off, &len); 918 if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) != 919 _URC_CONTINUE_UNWIND) 920 return UNW_STEP_END; 921 return UNW_STEP_SUCCESS; 922 } 923 #endif 924 925 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 926 bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, 927 uint32_t fdeSectionOffsetHint=0); 928 int stepWithDwarfFDE() { 929 return DwarfInstructions<A, R>::stepWithDwarf(_addressSpace, 930 (pint_t)this->getReg(UNW_REG_IP), 931 (pint_t)_info.unwind_info, 932 _registers); 933 } 934 #endif 935 936 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 937 bool getInfoFromCompactEncodingSection(pint_t pc, 938 const UnwindInfoSections §s); 939 int stepWithCompactEncoding() { 940 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 941 if ( compactSaysUseDwarf() ) 942 return stepWithDwarfFDE(); 943 #endif 944 R dummy; 945 return stepWithCompactEncoding(dummy); 946 } 947 948 #if defined(_LIBUNWIND_TARGET_X86_64) 949 int stepWithCompactEncoding(Registers_x86_64 &) { 950 return CompactUnwinder_x86_64<A>::stepWithCompactEncoding( 951 _info.format, _info.start_ip, _addressSpace, _registers); 952 } 953 #endif 954 955 #if defined(_LIBUNWIND_TARGET_I386) 956 int stepWithCompactEncoding(Registers_x86 &) { 957 return CompactUnwinder_x86<A>::stepWithCompactEncoding( 958 _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers); 959 } 960 #endif 961 962 #if defined(_LIBUNWIND_TARGET_PPC) 963 int stepWithCompactEncoding(Registers_ppc &) { 964 return UNW_EINVAL; 965 } 966 #endif 967 968 #if defined(_LIBUNWIND_TARGET_PPC64) 969 int stepWithCompactEncoding(Registers_ppc64 &) { 970 return UNW_EINVAL; 971 } 972 #endif 973 974 975 #if defined(_LIBUNWIND_TARGET_AARCH64) 976 int stepWithCompactEncoding(Registers_arm64 &) { 977 return CompactUnwinder_arm64<A>::stepWithCompactEncoding( 978 _info.format, _info.start_ip, _addressSpace, _registers); 979 } 980 #endif 981 982 #if defined(_LIBUNWIND_TARGET_MIPS_O32) 983 int stepWithCompactEncoding(Registers_mips_o32 &) { 984 return UNW_EINVAL; 985 } 986 #endif 987 988 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) 989 int stepWithCompactEncoding(Registers_mips_newabi &) { 990 return UNW_EINVAL; 991 } 992 #endif 993 994 #if defined(_LIBUNWIND_TARGET_SPARC) 995 int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; } 996 #endif 997 998 bool compactSaysUseDwarf(uint32_t *offset=NULL) const { 999 R dummy; 1000 return compactSaysUseDwarf(dummy, offset); 1001 } 1002 1003 #if defined(_LIBUNWIND_TARGET_X86_64) 1004 bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const { 1005 if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) { 1006 if (offset) 1007 *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET); 1008 return true; 1009 } 1010 return false; 1011 } 1012 #endif 1013 1014 #if defined(_LIBUNWIND_TARGET_I386) 1015 bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const { 1016 if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) { 1017 if (offset) 1018 *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET); 1019 return true; 1020 } 1021 return false; 1022 } 1023 #endif 1024 1025 #if defined(_LIBUNWIND_TARGET_PPC) 1026 bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const { 1027 return true; 1028 } 1029 #endif 1030 1031 #if defined(_LIBUNWIND_TARGET_PPC64) 1032 bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const { 1033 return true; 1034 } 1035 #endif 1036 1037 #if defined(_LIBUNWIND_TARGET_AARCH64) 1038 bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const { 1039 if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) { 1040 if (offset) 1041 *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET); 1042 return true; 1043 } 1044 return false; 1045 } 1046 #endif 1047 1048 #if defined(_LIBUNWIND_TARGET_MIPS_O32) 1049 bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const { 1050 return true; 1051 } 1052 #endif 1053 1054 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) 1055 bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const { 1056 return true; 1057 } 1058 #endif 1059 1060 #if defined(_LIBUNWIND_TARGET_SPARC) 1061 bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; } 1062 #endif 1063 1064 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1065 1066 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1067 compact_unwind_encoding_t dwarfEncoding() const { 1068 R dummy; 1069 return dwarfEncoding(dummy); 1070 } 1071 1072 #if defined(_LIBUNWIND_TARGET_X86_64) 1073 compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const { 1074 return UNWIND_X86_64_MODE_DWARF; 1075 } 1076 #endif 1077 1078 #if defined(_LIBUNWIND_TARGET_I386) 1079 compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const { 1080 return UNWIND_X86_MODE_DWARF; 1081 } 1082 #endif 1083 1084 #if defined(_LIBUNWIND_TARGET_PPC) 1085 compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const { 1086 return 0; 1087 } 1088 #endif 1089 1090 #if defined(_LIBUNWIND_TARGET_PPC64) 1091 compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const { 1092 return 0; 1093 } 1094 #endif 1095 1096 #if defined(_LIBUNWIND_TARGET_AARCH64) 1097 compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const { 1098 return UNWIND_ARM64_MODE_DWARF; 1099 } 1100 #endif 1101 1102 #if defined(_LIBUNWIND_TARGET_ARM) 1103 compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const { 1104 return 0; 1105 } 1106 #endif 1107 1108 #if defined (_LIBUNWIND_TARGET_OR1K) 1109 compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const { 1110 return 0; 1111 } 1112 #endif 1113 1114 #if defined (_LIBUNWIND_TARGET_RISCV) 1115 compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const { 1116 return 0; 1117 } 1118 #endif 1119 1120 #if defined (_LIBUNWIND_TARGET_MIPS_O32) 1121 compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const { 1122 return 0; 1123 } 1124 #endif 1125 1126 #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI) 1127 compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const { 1128 return 0; 1129 } 1130 #endif 1131 1132 #if defined(_LIBUNWIND_TARGET_SPARC) 1133 compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; } 1134 #endif 1135 1136 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1137 1138 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1139 // For runtime environments using SEH unwind data without Windows runtime 1140 // support. 1141 pint_t getLastPC() const { /* FIXME: Implement */ return 0; } 1142 void setLastPC(pint_t pc) { /* FIXME: Implement */ } 1143 RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { 1144 /* FIXME: Implement */ 1145 *base = 0; 1146 return nullptr; 1147 } 1148 bool getInfoFromSEH(pint_t pc); 1149 int stepWithSEHData() { /* FIXME: Implement */ return 0; } 1150 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1151 1152 1153 A &_addressSpace; 1154 R _registers; 1155 unw_proc_info_t _info; 1156 bool _unwindInfoMissing; 1157 bool _isSignalFrame; 1158 }; 1159 1160 1161 template <typename A, typename R> 1162 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) 1163 : _addressSpace(as), _registers(context), _unwindInfoMissing(false), 1164 _isSignalFrame(false) { 1165 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 1166 "UnwindCursor<> does not fit in unw_cursor_t"); 1167 memset(&_info, 0, sizeof(_info)); 1168 } 1169 1170 template <typename A, typename R> 1171 UnwindCursor<A, R>::UnwindCursor(A &as, void *) 1172 : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) { 1173 memset(&_info, 0, sizeof(_info)); 1174 // FIXME 1175 // fill in _registers from thread arg 1176 } 1177 1178 1179 template <typename A, typename R> 1180 bool UnwindCursor<A, R>::validReg(int regNum) { 1181 return _registers.validRegister(regNum); 1182 } 1183 1184 template <typename A, typename R> 1185 unw_word_t UnwindCursor<A, R>::getReg(int regNum) { 1186 return _registers.getRegister(regNum); 1187 } 1188 1189 template <typename A, typename R> 1190 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { 1191 _registers.setRegister(regNum, (typename A::pint_t)value); 1192 } 1193 1194 template <typename A, typename R> 1195 bool UnwindCursor<A, R>::validFloatReg(int regNum) { 1196 return _registers.validFloatRegister(regNum); 1197 } 1198 1199 template <typename A, typename R> 1200 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { 1201 return _registers.getFloatRegister(regNum); 1202 } 1203 1204 template <typename A, typename R> 1205 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { 1206 _registers.setFloatRegister(regNum, value); 1207 } 1208 1209 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { 1210 _registers.jumpto(); 1211 } 1212 1213 #ifdef __arm__ 1214 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() { 1215 _registers.saveVFPAsX(); 1216 } 1217 #endif 1218 1219 template <typename A, typename R> 1220 const char *UnwindCursor<A, R>::getRegisterName(int regNum) { 1221 return _registers.getRegisterName(regNum); 1222 } 1223 1224 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { 1225 return _isSignalFrame; 1226 } 1227 1228 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1229 1230 #if defined(_LIBUNWIND_ARM_EHABI) 1231 struct EHABIIndexEntry { 1232 uint32_t functionOffset; 1233 uint32_t data; 1234 }; 1235 1236 template<typename A> 1237 struct EHABISectionIterator { 1238 typedef EHABISectionIterator _Self; 1239 1240 typedef typename A::pint_t value_type; 1241 typedef typename A::pint_t* pointer; 1242 typedef typename A::pint_t& reference; 1243 typedef size_t size_type; 1244 typedef size_t difference_type; 1245 1246 static _Self begin(A& addressSpace, const UnwindInfoSections& sects) { 1247 return _Self(addressSpace, sects, 0); 1248 } 1249 static _Self end(A& addressSpace, const UnwindInfoSections& sects) { 1250 return _Self(addressSpace, sects, 1251 sects.arm_section_length / sizeof(EHABIIndexEntry)); 1252 } 1253 1254 EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i) 1255 : _i(i), _addressSpace(&addressSpace), _sects(§s) {} 1256 1257 _Self& operator++() { ++_i; return *this; } 1258 _Self& operator+=(size_t a) { _i += a; return *this; } 1259 _Self& operator--() { assert(_i > 0); --_i; return *this; } 1260 _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; } 1261 1262 _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; } 1263 _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; } 1264 1265 size_t operator-(const _Self& other) { return _i - other._i; } 1266 1267 bool operator==(const _Self& other) const { 1268 assert(_addressSpace == other._addressSpace); 1269 assert(_sects == other._sects); 1270 return _i == other._i; 1271 } 1272 1273 typename A::pint_t operator*() const { return functionAddress(); } 1274 1275 typename A::pint_t functionAddress() const { 1276 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( 1277 EHABIIndexEntry, _i, functionOffset); 1278 return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr)); 1279 } 1280 1281 typename A::pint_t dataAddress() { 1282 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( 1283 EHABIIndexEntry, _i, data); 1284 return indexAddr; 1285 } 1286 1287 private: 1288 size_t _i; 1289 A* _addressSpace; 1290 const UnwindInfoSections* _sects; 1291 }; 1292 1293 namespace { 1294 1295 template <typename A> 1296 EHABISectionIterator<A> EHABISectionUpperBound( 1297 EHABISectionIterator<A> first, 1298 EHABISectionIterator<A> last, 1299 typename A::pint_t value) { 1300 size_t len = last - first; 1301 while (len > 0) { 1302 size_t l2 = len / 2; 1303 EHABISectionIterator<A> m = first + l2; 1304 if (value < *m) { 1305 len = l2; 1306 } else { 1307 first = ++m; 1308 len -= l2 + 1; 1309 } 1310 } 1311 return first; 1312 } 1313 1314 } 1315 1316 template <typename A, typename R> 1317 bool UnwindCursor<A, R>::getInfoFromEHABISection( 1318 pint_t pc, 1319 const UnwindInfoSections §s) { 1320 EHABISectionIterator<A> begin = 1321 EHABISectionIterator<A>::begin(_addressSpace, sects); 1322 EHABISectionIterator<A> end = 1323 EHABISectionIterator<A>::end(_addressSpace, sects); 1324 if (begin == end) 1325 return false; 1326 1327 EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc); 1328 if (itNextPC == begin) 1329 return false; 1330 EHABISectionIterator<A> itThisPC = itNextPC - 1; 1331 1332 pint_t thisPC = itThisPC.functionAddress(); 1333 // If an exception is thrown from a function, corresponding to the last entry 1334 // in the table, we don't really know the function extent and have to choose a 1335 // value for nextPC. Choosing max() will allow the range check during trace to 1336 // succeed. 1337 pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress(); 1338 pint_t indexDataAddr = itThisPC.dataAddress(); 1339 1340 if (indexDataAddr == 0) 1341 return false; 1342 1343 uint32_t indexData = _addressSpace.get32(indexDataAddr); 1344 if (indexData == UNW_EXIDX_CANTUNWIND) 1345 return false; 1346 1347 // If the high bit is set, the exception handling table entry is inline inside 1348 // the index table entry on the second word (aka |indexDataAddr|). Otherwise, 1349 // the table points at an offset in the exception handling table (section 5 EHABI). 1350 pint_t exceptionTableAddr; 1351 uint32_t exceptionTableData; 1352 bool isSingleWordEHT; 1353 if (indexData & 0x80000000) { 1354 exceptionTableAddr = indexDataAddr; 1355 // TODO(ajwong): Should this data be 0? 1356 exceptionTableData = indexData; 1357 isSingleWordEHT = true; 1358 } else { 1359 exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData); 1360 exceptionTableData = _addressSpace.get32(exceptionTableAddr); 1361 isSingleWordEHT = false; 1362 } 1363 1364 // Now we know the 3 things: 1365 // exceptionTableAddr -- exception handler table entry. 1366 // exceptionTableData -- the data inside the first word of the eht entry. 1367 // isSingleWordEHT -- whether the entry is in the index. 1368 unw_word_t personalityRoutine = 0xbadf00d; 1369 bool scope32 = false; 1370 uintptr_t lsda; 1371 1372 // If the high bit in the exception handling table entry is set, the entry is 1373 // in compact form (section 6.3 EHABI). 1374 if (exceptionTableData & 0x80000000) { 1375 // Grab the index of the personality routine from the compact form. 1376 uint32_t choice = (exceptionTableData & 0x0f000000) >> 24; 1377 uint32_t extraWords = 0; 1378 switch (choice) { 1379 case 0: 1380 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0; 1381 extraWords = 0; 1382 scope32 = false; 1383 lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4); 1384 break; 1385 case 1: 1386 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1; 1387 extraWords = (exceptionTableData & 0x00ff0000) >> 16; 1388 scope32 = false; 1389 lsda = exceptionTableAddr + (extraWords + 1) * 4; 1390 break; 1391 case 2: 1392 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2; 1393 extraWords = (exceptionTableData & 0x00ff0000) >> 16; 1394 scope32 = true; 1395 lsda = exceptionTableAddr + (extraWords + 1) * 4; 1396 break; 1397 default: 1398 _LIBUNWIND_ABORT("unknown personality routine"); 1399 return false; 1400 } 1401 1402 if (isSingleWordEHT) { 1403 if (extraWords != 0) { 1404 _LIBUNWIND_ABORT("index inlined table detected but pr function " 1405 "requires extra words"); 1406 return false; 1407 } 1408 } 1409 } else { 1410 pint_t personalityAddr = 1411 exceptionTableAddr + signExtendPrel31(exceptionTableData); 1412 personalityRoutine = personalityAddr; 1413 1414 // ARM EHABI # 6.2, # 9.2 1415 // 1416 // +---- ehtp 1417 // v 1418 // +--------------------------------------+ 1419 // | +--------+--------+--------+-------+ | 1420 // | |0| prel31 to personalityRoutine | | 1421 // | +--------+--------+--------+-------+ | 1422 // | | N | unwind opcodes | | <-- UnwindData 1423 // | +--------+--------+--------+-------+ | 1424 // | | Word 2 unwind opcodes | | 1425 // | +--------+--------+--------+-------+ | 1426 // | ... | 1427 // | +--------+--------+--------+-------+ | 1428 // | | Word N unwind opcodes | | 1429 // | +--------+--------+--------+-------+ | 1430 // | | LSDA | | <-- lsda 1431 // | | ... | | 1432 // | +--------+--------+--------+-------+ | 1433 // +--------------------------------------+ 1434 1435 uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1; 1436 uint32_t FirstDataWord = *UnwindData; 1437 size_t N = ((FirstDataWord >> 24) & 0xff); 1438 size_t NDataWords = N + 1; 1439 lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords); 1440 } 1441 1442 _info.start_ip = thisPC; 1443 _info.end_ip = nextPC; 1444 _info.handler = personalityRoutine; 1445 _info.unwind_info = exceptionTableAddr; 1446 _info.lsda = lsda; 1447 // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0. 1448 _info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0; // Use enum? 1449 1450 return true; 1451 } 1452 #endif 1453 1454 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1455 template <typename A, typename R> 1456 bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc, 1457 const UnwindInfoSections §s, 1458 uint32_t fdeSectionOffsetHint) { 1459 typename CFI_Parser<A>::FDE_Info fdeInfo; 1460 typename CFI_Parser<A>::CIE_Info cieInfo; 1461 bool foundFDE = false; 1462 bool foundInCache = false; 1463 // If compact encoding table gave offset into dwarf section, go directly there 1464 if (fdeSectionOffsetHint != 0) { 1465 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1466 (uint32_t)sects.dwarf_section_length, 1467 sects.dwarf_section + fdeSectionOffsetHint, 1468 &fdeInfo, &cieInfo); 1469 } 1470 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) 1471 if (!foundFDE && (sects.dwarf_index_section != 0)) { 1472 foundFDE = EHHeaderParser<A>::findFDE( 1473 _addressSpace, pc, sects.dwarf_index_section, 1474 (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo); 1475 } 1476 #endif 1477 if (!foundFDE) { 1478 // otherwise, search cache of previously found FDEs. 1479 pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc); 1480 if (cachedFDE != 0) { 1481 foundFDE = 1482 CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1483 (uint32_t)sects.dwarf_section_length, 1484 cachedFDE, &fdeInfo, &cieInfo); 1485 foundInCache = foundFDE; 1486 } 1487 } 1488 if (!foundFDE) { 1489 // Still not found, do full scan of __eh_frame section. 1490 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1491 (uint32_t)sects.dwarf_section_length, 0, 1492 &fdeInfo, &cieInfo); 1493 } 1494 if (foundFDE) { 1495 typename CFI_Parser<A>::PrologInfo prolog; 1496 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, 1497 R::getArch(), &prolog)) { 1498 // Save off parsed FDE info 1499 _info.start_ip = fdeInfo.pcStart; 1500 _info.end_ip = fdeInfo.pcEnd; 1501 _info.lsda = fdeInfo.lsda; 1502 _info.handler = cieInfo.personality; 1503 _info.gp = prolog.spExtraArgSize; 1504 _info.flags = 0; 1505 _info.format = dwarfEncoding(); 1506 _info.unwind_info = fdeInfo.fdeStart; 1507 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; 1508 _info.extra = (unw_word_t) sects.dso_base; 1509 1510 // Add to cache (to make next lookup faster) if we had no hint 1511 // and there was no index. 1512 if (!foundInCache && (fdeSectionOffsetHint == 0)) { 1513 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) 1514 if (sects.dwarf_index_section == 0) 1515 #endif 1516 DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd, 1517 fdeInfo.fdeStart); 1518 } 1519 return true; 1520 } 1521 } 1522 //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc); 1523 return false; 1524 } 1525 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1526 1527 1528 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1529 template <typename A, typename R> 1530 bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc, 1531 const UnwindInfoSections §s) { 1532 const bool log = false; 1533 if (log) 1534 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n", 1535 (uint64_t)pc, (uint64_t)sects.dso_base); 1536 1537 const UnwindSectionHeader<A> sectionHeader(_addressSpace, 1538 sects.compact_unwind_section); 1539 if (sectionHeader.version() != UNWIND_SECTION_VERSION) 1540 return false; 1541 1542 // do a binary search of top level index to find page with unwind info 1543 pint_t targetFunctionOffset = pc - sects.dso_base; 1544 const UnwindSectionIndexArray<A> topIndex(_addressSpace, 1545 sects.compact_unwind_section 1546 + sectionHeader.indexSectionOffset()); 1547 uint32_t low = 0; 1548 uint32_t high = sectionHeader.indexCount(); 1549 uint32_t last = high - 1; 1550 while (low < high) { 1551 uint32_t mid = (low + high) / 2; 1552 //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n", 1553 //mid, low, high, topIndex.functionOffset(mid)); 1554 if (topIndex.functionOffset(mid) <= targetFunctionOffset) { 1555 if ((mid == last) || 1556 (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) { 1557 low = mid; 1558 break; 1559 } else { 1560 low = mid + 1; 1561 } 1562 } else { 1563 high = mid; 1564 } 1565 } 1566 const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low); 1567 const uint32_t firstLevelNextPageFunctionOffset = 1568 topIndex.functionOffset(low + 1); 1569 const pint_t secondLevelAddr = 1570 sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low); 1571 const pint_t lsdaArrayStartAddr = 1572 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low); 1573 const pint_t lsdaArrayEndAddr = 1574 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1); 1575 if (log) 1576 fprintf(stderr, "\tfirst level search for result index=%d " 1577 "to secondLevelAddr=0x%llX\n", 1578 low, (uint64_t) secondLevelAddr); 1579 // do a binary search of second level page index 1580 uint32_t encoding = 0; 1581 pint_t funcStart = 0; 1582 pint_t funcEnd = 0; 1583 pint_t lsda = 0; 1584 pint_t personality = 0; 1585 uint32_t pageKind = _addressSpace.get32(secondLevelAddr); 1586 if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) { 1587 // regular page 1588 UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace, 1589 secondLevelAddr); 1590 UnwindSectionRegularArray<A> pageIndex( 1591 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); 1592 // binary search looks for entry with e where index[e].offset <= pc < 1593 // index[e+1].offset 1594 if (log) 1595 fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in " 1596 "regular page starting at secondLevelAddr=0x%llX\n", 1597 (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr); 1598 low = 0; 1599 high = pageHeader.entryCount(); 1600 while (low < high) { 1601 uint32_t mid = (low + high) / 2; 1602 if (pageIndex.functionOffset(mid) <= targetFunctionOffset) { 1603 if (mid == (uint32_t)(pageHeader.entryCount() - 1)) { 1604 // at end of table 1605 low = mid; 1606 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; 1607 break; 1608 } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) { 1609 // next is too big, so we found it 1610 low = mid; 1611 funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base; 1612 break; 1613 } else { 1614 low = mid + 1; 1615 } 1616 } else { 1617 high = mid; 1618 } 1619 } 1620 encoding = pageIndex.encoding(low); 1621 funcStart = pageIndex.functionOffset(low) + sects.dso_base; 1622 if (pc < funcStart) { 1623 if (log) 1624 fprintf( 1625 stderr, 1626 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", 1627 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); 1628 return false; 1629 } 1630 if (pc > funcEnd) { 1631 if (log) 1632 fprintf( 1633 stderr, 1634 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", 1635 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); 1636 return false; 1637 } 1638 } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) { 1639 // compressed page 1640 UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace, 1641 secondLevelAddr); 1642 UnwindSectionCompressedArray<A> pageIndex( 1643 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); 1644 const uint32_t targetFunctionPageOffset = 1645 (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset); 1646 // binary search looks for entry with e where index[e].offset <= pc < 1647 // index[e+1].offset 1648 if (log) 1649 fprintf(stderr, "\tbinary search of compressed page starting at " 1650 "secondLevelAddr=0x%llX\n", 1651 (uint64_t) secondLevelAddr); 1652 low = 0; 1653 last = pageHeader.entryCount() - 1; 1654 high = pageHeader.entryCount(); 1655 while (low < high) { 1656 uint32_t mid = (low + high) / 2; 1657 if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) { 1658 if ((mid == last) || 1659 (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) { 1660 low = mid; 1661 break; 1662 } else { 1663 low = mid + 1; 1664 } 1665 } else { 1666 high = mid; 1667 } 1668 } 1669 funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset 1670 + sects.dso_base; 1671 if (low < last) 1672 funcEnd = 1673 pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset 1674 + sects.dso_base; 1675 else 1676 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; 1677 if (pc < funcStart) { 1678 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " 1679 "level compressed unwind table. funcStart=0x%llX", 1680 (uint64_t) pc, (uint64_t) funcStart); 1681 return false; 1682 } 1683 if (pc > funcEnd) { 1684 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " 1685 "level compressed unwind table. funcEnd=0x%llX", 1686 (uint64_t) pc, (uint64_t) funcEnd); 1687 return false; 1688 } 1689 uint16_t encodingIndex = pageIndex.encodingIndex(low); 1690 if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) { 1691 // encoding is in common table in section header 1692 encoding = _addressSpace.get32( 1693 sects.compact_unwind_section + 1694 sectionHeader.commonEncodingsArraySectionOffset() + 1695 encodingIndex * sizeof(uint32_t)); 1696 } else { 1697 // encoding is in page specific table 1698 uint16_t pageEncodingIndex = 1699 encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount(); 1700 encoding = _addressSpace.get32(secondLevelAddr + 1701 pageHeader.encodingsPageOffset() + 1702 pageEncodingIndex * sizeof(uint32_t)); 1703 } 1704 } else { 1705 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info at 0x%0llX bad second " 1706 "level page", 1707 (uint64_t) sects.compact_unwind_section); 1708 return false; 1709 } 1710 1711 // look up LSDA, if encoding says function has one 1712 if (encoding & UNWIND_HAS_LSDA) { 1713 UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr); 1714 uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base); 1715 low = 0; 1716 high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) / 1717 sizeof(unwind_info_section_header_lsda_index_entry); 1718 // binary search looks for entry with exact match for functionOffset 1719 if (log) 1720 fprintf(stderr, 1721 "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n", 1722 funcStartOffset); 1723 while (low < high) { 1724 uint32_t mid = (low + high) / 2; 1725 if (lsdaIndex.functionOffset(mid) == funcStartOffset) { 1726 lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base; 1727 break; 1728 } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) { 1729 low = mid + 1; 1730 } else { 1731 high = mid; 1732 } 1733 } 1734 if (lsda == 0) { 1735 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for " 1736 "pc=0x%0llX, but lsda table has no entry", 1737 encoding, (uint64_t) pc); 1738 return false; 1739 } 1740 } 1741 1742 // extact personality routine, if encoding says function has one 1743 uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >> 1744 (__builtin_ctz(UNWIND_PERSONALITY_MASK)); 1745 if (personalityIndex != 0) { 1746 --personalityIndex; // change 1-based to zero-based index 1747 if (personalityIndex > sectionHeader.personalityArrayCount()) { 1748 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, " 1749 "but personality table has only %d entries", 1750 encoding, personalityIndex, 1751 sectionHeader.personalityArrayCount()); 1752 return false; 1753 } 1754 int32_t personalityDelta = (int32_t)_addressSpace.get32( 1755 sects.compact_unwind_section + 1756 sectionHeader.personalityArraySectionOffset() + 1757 personalityIndex * sizeof(uint32_t)); 1758 pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta; 1759 personality = _addressSpace.getP(personalityPointer); 1760 if (log) 1761 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " 1762 "personalityDelta=0x%08X, personality=0x%08llX\n", 1763 (uint64_t) pc, personalityDelta, (uint64_t) personality); 1764 } 1765 1766 if (log) 1767 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " 1768 "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n", 1769 (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart); 1770 _info.start_ip = funcStart; 1771 _info.end_ip = funcEnd; 1772 _info.lsda = lsda; 1773 _info.handler = personality; 1774 _info.gp = 0; 1775 _info.flags = 0; 1776 _info.format = encoding; 1777 _info.unwind_info = 0; 1778 _info.unwind_info_size = 0; 1779 _info.extra = sects.dso_base; 1780 return true; 1781 } 1782 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1783 1784 1785 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1786 template <typename A, typename R> 1787 bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) { 1788 pint_t base; 1789 RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base); 1790 if (!unwindEntry) { 1791 _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc); 1792 return false; 1793 } 1794 _info.gp = 0; 1795 _info.flags = 0; 1796 _info.format = 0; 1797 _info.unwind_info_size = sizeof(RUNTIME_FUNCTION); 1798 _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry); 1799 _info.extra = base; 1800 _info.start_ip = base + unwindEntry->BeginAddress; 1801 #ifdef _LIBUNWIND_TARGET_X86_64 1802 _info.end_ip = base + unwindEntry->EndAddress; 1803 // Only fill in the handler and LSDA if they're stale. 1804 if (pc != getLastPC()) { 1805 UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData); 1806 if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) { 1807 // The personality is given in the UNWIND_INFO itself. The LSDA immediately 1808 // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit 1809 // these structures.) 1810 // N.B. UNWIND_INFO structs are DWORD-aligned. 1811 uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1; 1812 const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]); 1813 _info.lsda = reinterpret_cast<unw_word_t>(handler+1); 1814 if (*handler) { 1815 _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); 1816 } else 1817 _info.handler = 0; 1818 } else { 1819 _info.lsda = 0; 1820 _info.handler = 0; 1821 } 1822 } 1823 #elif defined(_LIBUNWIND_TARGET_ARM) 1824 _info.end_ip = _info.start_ip + unwindEntry->FunctionLength; 1825 _info.lsda = 0; // FIXME 1826 _info.handler = 0; // FIXME 1827 #endif 1828 setLastPC(pc); 1829 return true; 1830 } 1831 #endif 1832 1833 1834 template <typename A, typename R> 1835 void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) { 1836 pint_t pc = (pint_t)this->getReg(UNW_REG_IP); 1837 #if defined(_LIBUNWIND_ARM_EHABI) 1838 // Remove the thumb bit so the IP represents the actual instruction address. 1839 // This matches the behaviour of _Unwind_GetIP on arm. 1840 pc &= (pint_t)~0x1; 1841 #endif 1842 1843 // If the last line of a function is a "throw" the compiler sometimes 1844 // emits no instructions after the call to __cxa_throw. This means 1845 // the return address is actually the start of the next function. 1846 // To disambiguate this, back up the pc when we know it is a return 1847 // address. 1848 if (isReturnAddress) 1849 --pc; 1850 1851 // Ask address space object to find unwind sections for this pc. 1852 UnwindInfoSections sects; 1853 if (_addressSpace.findUnwindSections(pc, sects)) { 1854 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1855 // If there is a compact unwind encoding table, look there first. 1856 if (sects.compact_unwind_section != 0) { 1857 if (this->getInfoFromCompactEncodingSection(pc, sects)) { 1858 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1859 // Found info in table, done unless encoding says to use dwarf. 1860 uint32_t dwarfOffset; 1861 if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) { 1862 if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) { 1863 // found info in dwarf, done 1864 return; 1865 } 1866 } 1867 #endif 1868 // If unwind table has entry, but entry says there is no unwind info, 1869 // record that we have no unwind info. 1870 if (_info.format == 0) 1871 _unwindInfoMissing = true; 1872 return; 1873 } 1874 } 1875 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1876 1877 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1878 // If there is SEH unwind info, look there next. 1879 if (this->getInfoFromSEH(pc)) 1880 return; 1881 #endif 1882 1883 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1884 // If there is dwarf unwind info, look there next. 1885 if (sects.dwarf_section != 0) { 1886 if (this->getInfoFromDwarfSection(pc, sects)) { 1887 // found info in dwarf, done 1888 return; 1889 } 1890 } 1891 #endif 1892 1893 #if defined(_LIBUNWIND_ARM_EHABI) 1894 // If there is ARM EHABI unwind info, look there next. 1895 if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects)) 1896 return; 1897 #endif 1898 } 1899 1900 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1901 // There is no static unwind info for this pc. Look to see if an FDE was 1902 // dynamically registered for it. 1903 pint_t cachedFDE = DwarfFDECache<A>::findFDE(0, pc); 1904 if (cachedFDE != 0) { 1905 CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo; 1906 CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo; 1907 const char *msg = CFI_Parser<A>::decodeFDE(_addressSpace, 1908 cachedFDE, &fdeInfo, &cieInfo); 1909 if (msg == NULL) { 1910 typename CFI_Parser<A>::PrologInfo prolog; 1911 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, 1912 pc, R::getArch(), &prolog)) { 1913 // save off parsed FDE info 1914 _info.start_ip = fdeInfo.pcStart; 1915 _info.end_ip = fdeInfo.pcEnd; 1916 _info.lsda = fdeInfo.lsda; 1917 _info.handler = cieInfo.personality; 1918 _info.gp = prolog.spExtraArgSize; 1919 // Some frameless functions need SP 1920 // altered when resuming in function. 1921 _info.flags = 0; 1922 _info.format = dwarfEncoding(); 1923 _info.unwind_info = fdeInfo.fdeStart; 1924 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; 1925 _info.extra = 0; 1926 return; 1927 } 1928 } 1929 } 1930 1931 // Lastly, ask AddressSpace object about platform specific ways to locate 1932 // other FDEs. 1933 pint_t fde; 1934 if (_addressSpace.findOtherFDE(pc, fde)) { 1935 CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo; 1936 CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo; 1937 if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) { 1938 // Double check this FDE is for a function that includes the pc. 1939 if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) { 1940 typename CFI_Parser<A>::PrologInfo prolog; 1941 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, 1942 pc, R::getArch(), &prolog)) { 1943 // save off parsed FDE info 1944 _info.start_ip = fdeInfo.pcStart; 1945 _info.end_ip = fdeInfo.pcEnd; 1946 _info.lsda = fdeInfo.lsda; 1947 _info.handler = cieInfo.personality; 1948 _info.gp = prolog.spExtraArgSize; 1949 _info.flags = 0; 1950 _info.format = dwarfEncoding(); 1951 _info.unwind_info = fdeInfo.fdeStart; 1952 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; 1953 _info.extra = 0; 1954 return; 1955 } 1956 } 1957 } 1958 } 1959 #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1960 1961 // no unwind info, flag that we can't reliably unwind 1962 _unwindInfoMissing = true; 1963 } 1964 1965 template <typename A, typename R> 1966 int UnwindCursor<A, R>::step() { 1967 // Bottom of stack is defined is when unwind info cannot be found. 1968 if (_unwindInfoMissing) 1969 return UNW_STEP_END; 1970 1971 // Use unwinding info to modify register set as if function returned. 1972 int result; 1973 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1974 result = this->stepWithCompactEncoding(); 1975 #elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1976 result = this->stepWithSEHData(); 1977 #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1978 result = this->stepWithDwarfFDE(); 1979 #elif defined(_LIBUNWIND_ARM_EHABI) 1980 result = this->stepWithEHABI(); 1981 #else 1982 #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \ 1983 _LIBUNWIND_SUPPORT_SEH_UNWIND or \ 1984 _LIBUNWIND_SUPPORT_DWARF_UNWIND or \ 1985 _LIBUNWIND_ARM_EHABI 1986 #endif 1987 1988 // update info based on new PC 1989 if (result == UNW_STEP_SUCCESS) { 1990 this->setInfoBasedOnIPRegister(true); 1991 if (_unwindInfoMissing) 1992 return UNW_STEP_END; 1993 } 1994 1995 return result; 1996 } 1997 1998 template <typename A, typename R> 1999 void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) { 2000 *info = _info; 2001 } 2002 2003 template <typename A, typename R> 2004 bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen, 2005 unw_word_t *offset) { 2006 return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP), 2007 buf, bufLen, offset); 2008 } 2009 2010 } // namespace libunwind 2011 2012 #endif // __UNWINDCURSOR_HPP__ 2013