1 //===------------------------- UnwindCursor.hpp ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 // 8 // C++ interface to lower levels of libunwind 9 //===----------------------------------------------------------------------===// 10 11 #ifndef __UNWINDCURSOR_HPP__ 12 #define __UNWINDCURSOR_HPP__ 13 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <unwind.h> 18 19 #ifdef _WIN32 20 #include <windows.h> 21 #include <ntverp.h> 22 #endif 23 #ifdef __APPLE__ 24 #include <mach-o/dyld.h> 25 #endif 26 27 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 28 // Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and 29 // earlier) SDKs. 30 // MinGW-w64 has always provided this struct. 31 #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \ 32 !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000 33 struct _DISPATCHER_CONTEXT { 34 ULONG64 ControlPc; 35 ULONG64 ImageBase; 36 PRUNTIME_FUNCTION FunctionEntry; 37 ULONG64 EstablisherFrame; 38 ULONG64 TargetIp; 39 PCONTEXT ContextRecord; 40 PEXCEPTION_ROUTINE LanguageHandler; 41 PVOID HandlerData; 42 PUNWIND_HISTORY_TABLE HistoryTable; 43 ULONG ScopeIndex; 44 ULONG Fill0; 45 }; 46 #endif 47 48 struct UNWIND_INFO { 49 uint8_t Version : 3; 50 uint8_t Flags : 5; 51 uint8_t SizeOfProlog; 52 uint8_t CountOfCodes; 53 uint8_t FrameRegister : 4; 54 uint8_t FrameOffset : 4; 55 uint16_t UnwindCodes[2]; 56 }; 57 58 extern "C" _Unwind_Reason_Code __libunwind_seh_personality( 59 int, _Unwind_Action, uint64_t, _Unwind_Exception *, 60 struct _Unwind_Context *); 61 62 #endif 63 64 #include "config.h" 65 66 #include "AddressSpace.hpp" 67 #include "CompactUnwinder.hpp" 68 #include "config.h" 69 #include "DwarfInstructions.hpp" 70 #include "EHHeaderParser.hpp" 71 #include "libunwind.h" 72 #include "Registers.hpp" 73 #include "RWMutex.hpp" 74 #include "Unwind-EHABI.h" 75 76 namespace libunwind { 77 78 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 79 /// Cache of recently found FDEs. 80 template <typename A> 81 class _LIBUNWIND_HIDDEN DwarfFDECache { 82 typedef typename A::pint_t pint_t; 83 public: 84 static pint_t findFDE(pint_t mh, pint_t pc); 85 static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde); 86 static void removeAllIn(pint_t mh); 87 static void iterateCacheEntries(void (*func)(unw_word_t ip_start, 88 unw_word_t ip_end, 89 unw_word_t fde, unw_word_t mh)); 90 91 private: 92 93 struct entry { 94 pint_t mh; 95 pint_t ip_start; 96 pint_t ip_end; 97 pint_t fde; 98 }; 99 100 // These fields are all static to avoid needing an initializer. 101 // There is only one instance of this class per process. 102 static RWMutex _lock; 103 #ifdef __APPLE__ 104 static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide); 105 static bool _registeredForDyldUnloads; 106 #endif 107 static entry *_buffer; 108 static entry *_bufferUsed; 109 static entry *_bufferEnd; 110 static entry _initialBuffer[64]; 111 }; 112 113 template <typename A> 114 typename DwarfFDECache<A>::entry * 115 DwarfFDECache<A>::_buffer = _initialBuffer; 116 117 template <typename A> 118 typename DwarfFDECache<A>::entry * 119 DwarfFDECache<A>::_bufferUsed = _initialBuffer; 120 121 template <typename A> 122 typename DwarfFDECache<A>::entry * 123 DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64]; 124 125 template <typename A> 126 typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64]; 127 128 template <typename A> 129 RWMutex DwarfFDECache<A>::_lock; 130 131 #ifdef __APPLE__ 132 template <typename A> 133 bool DwarfFDECache<A>::_registeredForDyldUnloads = false; 134 #endif 135 136 template <typename A> 137 typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) { 138 pint_t result = 0; 139 _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared()); 140 for (entry *p = _buffer; p < _bufferUsed; ++p) { 141 if ((mh == p->mh) || (mh == 0)) { 142 if ((p->ip_start <= pc) && (pc < p->ip_end)) { 143 result = p->fde; 144 break; 145 } 146 } 147 } 148 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared()); 149 return result; 150 } 151 152 template <typename A> 153 void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end, 154 pint_t fde) { 155 #if !defined(_LIBUNWIND_NO_HEAP) 156 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 157 if (_bufferUsed >= _bufferEnd) { 158 size_t oldSize = (size_t)(_bufferEnd - _buffer); 159 size_t newSize = oldSize * 4; 160 // Can't use operator new (we are below it). 161 entry *newBuffer = (entry *)malloc(newSize * sizeof(entry)); 162 memcpy(newBuffer, _buffer, oldSize * sizeof(entry)); 163 if (_buffer != _initialBuffer) 164 free(_buffer); 165 _buffer = newBuffer; 166 _bufferUsed = &newBuffer[oldSize]; 167 _bufferEnd = &newBuffer[newSize]; 168 } 169 _bufferUsed->mh = mh; 170 _bufferUsed->ip_start = ip_start; 171 _bufferUsed->ip_end = ip_end; 172 _bufferUsed->fde = fde; 173 ++_bufferUsed; 174 #ifdef __APPLE__ 175 if (!_registeredForDyldUnloads) { 176 _dyld_register_func_for_remove_image(&dyldUnloadHook); 177 _registeredForDyldUnloads = true; 178 } 179 #endif 180 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 181 #endif 182 } 183 184 template <typename A> 185 void DwarfFDECache<A>::removeAllIn(pint_t mh) { 186 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 187 entry *d = _buffer; 188 for (const entry *s = _buffer; s < _bufferUsed; ++s) { 189 if (s->mh != mh) { 190 if (d != s) 191 *d = *s; 192 ++d; 193 } 194 } 195 _bufferUsed = d; 196 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 197 } 198 199 #ifdef __APPLE__ 200 template <typename A> 201 void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) { 202 removeAllIn((pint_t) mh); 203 } 204 #endif 205 206 template <typename A> 207 void DwarfFDECache<A>::iterateCacheEntries(void (*func)( 208 unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) { 209 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 210 for (entry *p = _buffer; p < _bufferUsed; ++p) { 211 (*func)(p->ip_start, p->ip_end, p->fde, p->mh); 212 } 213 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 214 } 215 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 216 217 218 #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field)) 219 220 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 221 template <typename A> class UnwindSectionHeader { 222 public: 223 UnwindSectionHeader(A &addressSpace, typename A::pint_t addr) 224 : _addressSpace(addressSpace), _addr(addr) {} 225 226 uint32_t version() const { 227 return _addressSpace.get32(_addr + 228 offsetof(unwind_info_section_header, version)); 229 } 230 uint32_t commonEncodingsArraySectionOffset() const { 231 return _addressSpace.get32(_addr + 232 offsetof(unwind_info_section_header, 233 commonEncodingsArraySectionOffset)); 234 } 235 uint32_t commonEncodingsArrayCount() const { 236 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, 237 commonEncodingsArrayCount)); 238 } 239 uint32_t personalityArraySectionOffset() const { 240 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, 241 personalityArraySectionOffset)); 242 } 243 uint32_t personalityArrayCount() const { 244 return _addressSpace.get32( 245 _addr + offsetof(unwind_info_section_header, personalityArrayCount)); 246 } 247 uint32_t indexSectionOffset() const { 248 return _addressSpace.get32( 249 _addr + offsetof(unwind_info_section_header, indexSectionOffset)); 250 } 251 uint32_t indexCount() const { 252 return _addressSpace.get32( 253 _addr + offsetof(unwind_info_section_header, indexCount)); 254 } 255 256 private: 257 A &_addressSpace; 258 typename A::pint_t _addr; 259 }; 260 261 template <typename A> class UnwindSectionIndexArray { 262 public: 263 UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr) 264 : _addressSpace(addressSpace), _addr(addr) {} 265 266 uint32_t functionOffset(uint32_t index) const { 267 return _addressSpace.get32( 268 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 269 functionOffset)); 270 } 271 uint32_t secondLevelPagesSectionOffset(uint32_t index) const { 272 return _addressSpace.get32( 273 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 274 secondLevelPagesSectionOffset)); 275 } 276 uint32_t lsdaIndexArraySectionOffset(uint32_t index) const { 277 return _addressSpace.get32( 278 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 279 lsdaIndexArraySectionOffset)); 280 } 281 282 private: 283 A &_addressSpace; 284 typename A::pint_t _addr; 285 }; 286 287 template <typename A> class UnwindSectionRegularPageHeader { 288 public: 289 UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr) 290 : _addressSpace(addressSpace), _addr(addr) {} 291 292 uint32_t kind() const { 293 return _addressSpace.get32( 294 _addr + offsetof(unwind_info_regular_second_level_page_header, kind)); 295 } 296 uint16_t entryPageOffset() const { 297 return _addressSpace.get16( 298 _addr + offsetof(unwind_info_regular_second_level_page_header, 299 entryPageOffset)); 300 } 301 uint16_t entryCount() const { 302 return _addressSpace.get16( 303 _addr + 304 offsetof(unwind_info_regular_second_level_page_header, entryCount)); 305 } 306 307 private: 308 A &_addressSpace; 309 typename A::pint_t _addr; 310 }; 311 312 template <typename A> class UnwindSectionRegularArray { 313 public: 314 UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr) 315 : _addressSpace(addressSpace), _addr(addr) {} 316 317 uint32_t functionOffset(uint32_t index) const { 318 return _addressSpace.get32( 319 _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, 320 functionOffset)); 321 } 322 uint32_t encoding(uint32_t index) const { 323 return _addressSpace.get32( 324 _addr + 325 arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding)); 326 } 327 328 private: 329 A &_addressSpace; 330 typename A::pint_t _addr; 331 }; 332 333 template <typename A> class UnwindSectionCompressedPageHeader { 334 public: 335 UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr) 336 : _addressSpace(addressSpace), _addr(addr) {} 337 338 uint32_t kind() const { 339 return _addressSpace.get32( 340 _addr + 341 offsetof(unwind_info_compressed_second_level_page_header, kind)); 342 } 343 uint16_t entryPageOffset() const { 344 return _addressSpace.get16( 345 _addr + offsetof(unwind_info_compressed_second_level_page_header, 346 entryPageOffset)); 347 } 348 uint16_t entryCount() const { 349 return _addressSpace.get16( 350 _addr + 351 offsetof(unwind_info_compressed_second_level_page_header, entryCount)); 352 } 353 uint16_t encodingsPageOffset() const { 354 return _addressSpace.get16( 355 _addr + offsetof(unwind_info_compressed_second_level_page_header, 356 encodingsPageOffset)); 357 } 358 uint16_t encodingsCount() const { 359 return _addressSpace.get16( 360 _addr + offsetof(unwind_info_compressed_second_level_page_header, 361 encodingsCount)); 362 } 363 364 private: 365 A &_addressSpace; 366 typename A::pint_t _addr; 367 }; 368 369 template <typename A> class UnwindSectionCompressedArray { 370 public: 371 UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr) 372 : _addressSpace(addressSpace), _addr(addr) {} 373 374 uint32_t functionOffset(uint32_t index) const { 375 return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET( 376 _addressSpace.get32(_addr + index * sizeof(uint32_t))); 377 } 378 uint16_t encodingIndex(uint32_t index) const { 379 return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX( 380 _addressSpace.get32(_addr + index * sizeof(uint32_t))); 381 } 382 383 private: 384 A &_addressSpace; 385 typename A::pint_t _addr; 386 }; 387 388 template <typename A> class UnwindSectionLsdaArray { 389 public: 390 UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr) 391 : _addressSpace(addressSpace), _addr(addr) {} 392 393 uint32_t functionOffset(uint32_t index) const { 394 return _addressSpace.get32( 395 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, 396 index, functionOffset)); 397 } 398 uint32_t lsdaOffset(uint32_t index) const { 399 return _addressSpace.get32( 400 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, 401 index, lsdaOffset)); 402 } 403 404 private: 405 A &_addressSpace; 406 typename A::pint_t _addr; 407 }; 408 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 409 410 class _LIBUNWIND_HIDDEN AbstractUnwindCursor { 411 public: 412 // NOTE: provide a class specific placement deallocation function (S5.3.4 p20) 413 // This avoids an unnecessary dependency to libc++abi. 414 void operator delete(void *, size_t) {} 415 416 virtual ~AbstractUnwindCursor() {} 417 virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); } 418 virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); } 419 virtual void setReg(int, unw_word_t) { 420 _LIBUNWIND_ABORT("setReg not implemented"); 421 } 422 virtual bool validFloatReg(int) { 423 _LIBUNWIND_ABORT("validFloatReg not implemented"); 424 } 425 virtual unw_fpreg_t getFloatReg(int) { 426 _LIBUNWIND_ABORT("getFloatReg not implemented"); 427 } 428 virtual void setFloatReg(int, unw_fpreg_t) { 429 _LIBUNWIND_ABORT("setFloatReg not implemented"); 430 } 431 virtual int step() { _LIBUNWIND_ABORT("step not implemented"); } 432 virtual void getInfo(unw_proc_info_t *) { 433 _LIBUNWIND_ABORT("getInfo not implemented"); 434 } 435 virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); } 436 virtual bool isSignalFrame() { 437 _LIBUNWIND_ABORT("isSignalFrame not implemented"); 438 } 439 virtual bool getFunctionName(char *, size_t, unw_word_t *) { 440 _LIBUNWIND_ABORT("getFunctionName not implemented"); 441 } 442 virtual void setInfoBasedOnIPRegister(bool = false) { 443 _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented"); 444 } 445 virtual const char *getRegisterName(int) { 446 _LIBUNWIND_ABORT("getRegisterName not implemented"); 447 } 448 #ifdef __arm__ 449 virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); } 450 #endif 451 }; 452 453 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32) 454 455 /// \c UnwindCursor contains all state (including all register values) during 456 /// an unwind. This is normally stack-allocated inside a unw_cursor_t. 457 template <typename A, typename R> 458 class UnwindCursor : public AbstractUnwindCursor { 459 typedef typename A::pint_t pint_t; 460 public: 461 UnwindCursor(unw_context_t *context, A &as); 462 UnwindCursor(CONTEXT *context, A &as); 463 UnwindCursor(A &as, void *threadArg); 464 virtual ~UnwindCursor() {} 465 virtual bool validReg(int); 466 virtual unw_word_t getReg(int); 467 virtual void setReg(int, unw_word_t); 468 virtual bool validFloatReg(int); 469 virtual unw_fpreg_t getFloatReg(int); 470 virtual void setFloatReg(int, unw_fpreg_t); 471 virtual int step(); 472 virtual void getInfo(unw_proc_info_t *); 473 virtual void jumpto(); 474 virtual bool isSignalFrame(); 475 virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); 476 virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); 477 virtual const char *getRegisterName(int num); 478 #ifdef __arm__ 479 virtual void saveVFPAsX(); 480 #endif 481 482 DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; } 483 void setDispatcherContext(DISPATCHER_CONTEXT *disp) { _dispContext = *disp; } 484 485 // libunwind does not and should not depend on C++ library which means that we 486 // need our own defition of inline placement new. 487 static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } 488 489 private: 490 491 pint_t getLastPC() const { return _dispContext.ControlPc; } 492 void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; } 493 RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { 494 _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc, 495 &_dispContext.ImageBase, 496 _dispContext.HistoryTable); 497 *base = _dispContext.ImageBase; 498 return _dispContext.FunctionEntry; 499 } 500 bool getInfoFromSEH(pint_t pc); 501 int stepWithSEHData() { 502 _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER, 503 _dispContext.ImageBase, 504 _dispContext.ControlPc, 505 _dispContext.FunctionEntry, 506 _dispContext.ContextRecord, 507 &_dispContext.HandlerData, 508 &_dispContext.EstablisherFrame, 509 NULL); 510 // Update some fields of the unwind info now, since we have them. 511 _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); 512 if (_dispContext.LanguageHandler) { 513 _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); 514 } else 515 _info.handler = 0; 516 return UNW_STEP_SUCCESS; 517 } 518 519 A &_addressSpace; 520 unw_proc_info_t _info; 521 DISPATCHER_CONTEXT _dispContext; 522 CONTEXT _msContext; 523 UNWIND_HISTORY_TABLE _histTable; 524 bool _unwindInfoMissing; 525 }; 526 527 528 template <typename A, typename R> 529 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) 530 : _addressSpace(as), _unwindInfoMissing(false) { 531 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 532 "UnwindCursor<> does not fit in unw_cursor_t"); 533 memset(&_info, 0, sizeof(_info)); 534 memset(&_histTable, 0, sizeof(_histTable)); 535 _dispContext.ContextRecord = &_msContext; 536 _dispContext.HistoryTable = &_histTable; 537 // Initialize MS context from ours. 538 R r(context); 539 _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT; 540 #if defined(_LIBUNWIND_TARGET_X86_64) 541 _msContext.Rax = r.getRegister(UNW_X86_64_RAX); 542 _msContext.Rcx = r.getRegister(UNW_X86_64_RCX); 543 _msContext.Rdx = r.getRegister(UNW_X86_64_RDX); 544 _msContext.Rbx = r.getRegister(UNW_X86_64_RBX); 545 _msContext.Rsp = r.getRegister(UNW_X86_64_RSP); 546 _msContext.Rbp = r.getRegister(UNW_X86_64_RBP); 547 _msContext.Rsi = r.getRegister(UNW_X86_64_RSI); 548 _msContext.Rdi = r.getRegister(UNW_X86_64_RDI); 549 _msContext.R8 = r.getRegister(UNW_X86_64_R8); 550 _msContext.R9 = r.getRegister(UNW_X86_64_R9); 551 _msContext.R10 = r.getRegister(UNW_X86_64_R10); 552 _msContext.R11 = r.getRegister(UNW_X86_64_R11); 553 _msContext.R12 = r.getRegister(UNW_X86_64_R12); 554 _msContext.R13 = r.getRegister(UNW_X86_64_R13); 555 _msContext.R14 = r.getRegister(UNW_X86_64_R14); 556 _msContext.R15 = r.getRegister(UNW_X86_64_R15); 557 _msContext.Rip = r.getRegister(UNW_REG_IP); 558 union { 559 v128 v; 560 M128A m; 561 } t; 562 t.v = r.getVectorRegister(UNW_X86_64_XMM0); 563 _msContext.Xmm0 = t.m; 564 t.v = r.getVectorRegister(UNW_X86_64_XMM1); 565 _msContext.Xmm1 = t.m; 566 t.v = r.getVectorRegister(UNW_X86_64_XMM2); 567 _msContext.Xmm2 = t.m; 568 t.v = r.getVectorRegister(UNW_X86_64_XMM3); 569 _msContext.Xmm3 = t.m; 570 t.v = r.getVectorRegister(UNW_X86_64_XMM4); 571 _msContext.Xmm4 = t.m; 572 t.v = r.getVectorRegister(UNW_X86_64_XMM5); 573 _msContext.Xmm5 = t.m; 574 t.v = r.getVectorRegister(UNW_X86_64_XMM6); 575 _msContext.Xmm6 = t.m; 576 t.v = r.getVectorRegister(UNW_X86_64_XMM7); 577 _msContext.Xmm7 = t.m; 578 t.v = r.getVectorRegister(UNW_X86_64_XMM8); 579 _msContext.Xmm8 = t.m; 580 t.v = r.getVectorRegister(UNW_X86_64_XMM9); 581 _msContext.Xmm9 = t.m; 582 t.v = r.getVectorRegister(UNW_X86_64_XMM10); 583 _msContext.Xmm10 = t.m; 584 t.v = r.getVectorRegister(UNW_X86_64_XMM11); 585 _msContext.Xmm11 = t.m; 586 t.v = r.getVectorRegister(UNW_X86_64_XMM12); 587 _msContext.Xmm12 = t.m; 588 t.v = r.getVectorRegister(UNW_X86_64_XMM13); 589 _msContext.Xmm13 = t.m; 590 t.v = r.getVectorRegister(UNW_X86_64_XMM14); 591 _msContext.Xmm14 = t.m; 592 t.v = r.getVectorRegister(UNW_X86_64_XMM15); 593 _msContext.Xmm15 = t.m; 594 #elif defined(_LIBUNWIND_TARGET_ARM) 595 _msContext.R0 = r.getRegister(UNW_ARM_R0); 596 _msContext.R1 = r.getRegister(UNW_ARM_R1); 597 _msContext.R2 = r.getRegister(UNW_ARM_R2); 598 _msContext.R3 = r.getRegister(UNW_ARM_R3); 599 _msContext.R4 = r.getRegister(UNW_ARM_R4); 600 _msContext.R5 = r.getRegister(UNW_ARM_R5); 601 _msContext.R6 = r.getRegister(UNW_ARM_R6); 602 _msContext.R7 = r.getRegister(UNW_ARM_R7); 603 _msContext.R8 = r.getRegister(UNW_ARM_R8); 604 _msContext.R9 = r.getRegister(UNW_ARM_R9); 605 _msContext.R10 = r.getRegister(UNW_ARM_R10); 606 _msContext.R11 = r.getRegister(UNW_ARM_R11); 607 _msContext.R12 = r.getRegister(UNW_ARM_R12); 608 _msContext.Sp = r.getRegister(UNW_ARM_SP); 609 _msContext.Lr = r.getRegister(UNW_ARM_LR); 610 _msContext.Pc = r.getRegister(UNW_ARM_IP); 611 for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) { 612 union { 613 uint64_t w; 614 double d; 615 } d; 616 d.d = r.getFloatRegister(i); 617 _msContext.D[i - UNW_ARM_D0] = d.w; 618 } 619 #elif defined(_LIBUNWIND_TARGET_AARCH64) 620 for (int i = UNW_ARM64_X0; i <= UNW_ARM64_X30; ++i) 621 _msContext.X[i - UNW_ARM64_X0] = r.getRegister(i); 622 _msContext.Sp = r.getRegister(UNW_REG_SP); 623 _msContext.Pc = r.getRegister(UNW_REG_IP); 624 for (int i = UNW_ARM64_D0; i <= UNW_ARM64_D31; ++i) 625 _msContext.V[i - UNW_ARM64_D0].D[0] = r.getFloatRegister(i); 626 #endif 627 } 628 629 template <typename A, typename R> 630 UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as) 631 : _addressSpace(as), _unwindInfoMissing(false) { 632 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 633 "UnwindCursor<> does not fit in unw_cursor_t"); 634 memset(&_info, 0, sizeof(_info)); 635 memset(&_histTable, 0, sizeof(_histTable)); 636 _dispContext.ContextRecord = &_msContext; 637 _dispContext.HistoryTable = &_histTable; 638 _msContext = *context; 639 } 640 641 642 template <typename A, typename R> 643 bool UnwindCursor<A, R>::validReg(int regNum) { 644 if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true; 645 #if defined(_LIBUNWIND_TARGET_X86_64) 646 if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_R15) return true; 647 #elif defined(_LIBUNWIND_TARGET_ARM) 648 if (regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) return true; 649 #elif defined(_LIBUNWIND_TARGET_AARCH64) 650 if (regNum >= UNW_ARM64_X0 && regNum <= UNW_ARM64_X30) return true; 651 #endif 652 return false; 653 } 654 655 template <typename A, typename R> 656 unw_word_t UnwindCursor<A, R>::getReg(int regNum) { 657 switch (regNum) { 658 #if defined(_LIBUNWIND_TARGET_X86_64) 659 case UNW_REG_IP: return _msContext.Rip; 660 case UNW_X86_64_RAX: return _msContext.Rax; 661 case UNW_X86_64_RDX: return _msContext.Rdx; 662 case UNW_X86_64_RCX: return _msContext.Rcx; 663 case UNW_X86_64_RBX: return _msContext.Rbx; 664 case UNW_REG_SP: 665 case UNW_X86_64_RSP: return _msContext.Rsp; 666 case UNW_X86_64_RBP: return _msContext.Rbp; 667 case UNW_X86_64_RSI: return _msContext.Rsi; 668 case UNW_X86_64_RDI: return _msContext.Rdi; 669 case UNW_X86_64_R8: return _msContext.R8; 670 case UNW_X86_64_R9: return _msContext.R9; 671 case UNW_X86_64_R10: return _msContext.R10; 672 case UNW_X86_64_R11: return _msContext.R11; 673 case UNW_X86_64_R12: return _msContext.R12; 674 case UNW_X86_64_R13: return _msContext.R13; 675 case UNW_X86_64_R14: return _msContext.R14; 676 case UNW_X86_64_R15: return _msContext.R15; 677 #elif defined(_LIBUNWIND_TARGET_ARM) 678 case UNW_ARM_R0: return _msContext.R0; 679 case UNW_ARM_R1: return _msContext.R1; 680 case UNW_ARM_R2: return _msContext.R2; 681 case UNW_ARM_R3: return _msContext.R3; 682 case UNW_ARM_R4: return _msContext.R4; 683 case UNW_ARM_R5: return _msContext.R5; 684 case UNW_ARM_R6: return _msContext.R6; 685 case UNW_ARM_R7: return _msContext.R7; 686 case UNW_ARM_R8: return _msContext.R8; 687 case UNW_ARM_R9: return _msContext.R9; 688 case UNW_ARM_R10: return _msContext.R10; 689 case UNW_ARM_R11: return _msContext.R11; 690 case UNW_ARM_R12: return _msContext.R12; 691 case UNW_REG_SP: 692 case UNW_ARM_SP: return _msContext.Sp; 693 case UNW_ARM_LR: return _msContext.Lr; 694 case UNW_REG_IP: 695 case UNW_ARM_IP: return _msContext.Pc; 696 #elif defined(_LIBUNWIND_TARGET_AARCH64) 697 case UNW_REG_SP: return _msContext.Sp; 698 case UNW_REG_IP: return _msContext.Pc; 699 default: return _msContext.X[regNum - UNW_ARM64_X0]; 700 #endif 701 } 702 _LIBUNWIND_ABORT("unsupported register"); 703 } 704 705 template <typename A, typename R> 706 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { 707 switch (regNum) { 708 #if defined(_LIBUNWIND_TARGET_X86_64) 709 case UNW_REG_IP: _msContext.Rip = value; break; 710 case UNW_X86_64_RAX: _msContext.Rax = value; break; 711 case UNW_X86_64_RDX: _msContext.Rdx = value; break; 712 case UNW_X86_64_RCX: _msContext.Rcx = value; break; 713 case UNW_X86_64_RBX: _msContext.Rbx = value; break; 714 case UNW_REG_SP: 715 case UNW_X86_64_RSP: _msContext.Rsp = value; break; 716 case UNW_X86_64_RBP: _msContext.Rbp = value; break; 717 case UNW_X86_64_RSI: _msContext.Rsi = value; break; 718 case UNW_X86_64_RDI: _msContext.Rdi = value; break; 719 case UNW_X86_64_R8: _msContext.R8 = value; break; 720 case UNW_X86_64_R9: _msContext.R9 = value; break; 721 case UNW_X86_64_R10: _msContext.R10 = value; break; 722 case UNW_X86_64_R11: _msContext.R11 = value; break; 723 case UNW_X86_64_R12: _msContext.R12 = value; break; 724 case UNW_X86_64_R13: _msContext.R13 = value; break; 725 case UNW_X86_64_R14: _msContext.R14 = value; break; 726 case UNW_X86_64_R15: _msContext.R15 = value; break; 727 #elif defined(_LIBUNWIND_TARGET_ARM) 728 case UNW_ARM_R0: _msContext.R0 = value; break; 729 case UNW_ARM_R1: _msContext.R1 = value; break; 730 case UNW_ARM_R2: _msContext.R2 = value; break; 731 case UNW_ARM_R3: _msContext.R3 = value; break; 732 case UNW_ARM_R4: _msContext.R4 = value; break; 733 case UNW_ARM_R5: _msContext.R5 = value; break; 734 case UNW_ARM_R6: _msContext.R6 = value; break; 735 case UNW_ARM_R7: _msContext.R7 = value; break; 736 case UNW_ARM_R8: _msContext.R8 = value; break; 737 case UNW_ARM_R9: _msContext.R9 = value; break; 738 case UNW_ARM_R10: _msContext.R10 = value; break; 739 case UNW_ARM_R11: _msContext.R11 = value; break; 740 case UNW_ARM_R12: _msContext.R12 = value; break; 741 case UNW_REG_SP: 742 case UNW_ARM_SP: _msContext.Sp = value; break; 743 case UNW_ARM_LR: _msContext.Lr = value; break; 744 case UNW_REG_IP: 745 case UNW_ARM_IP: _msContext.Pc = value; break; 746 #elif defined(_LIBUNWIND_TARGET_AARCH64) 747 case UNW_REG_SP: _msContext.Sp = value; break; 748 case UNW_REG_IP: _msContext.Pc = value; break; 749 case UNW_ARM64_X0: 750 case UNW_ARM64_X1: 751 case UNW_ARM64_X2: 752 case UNW_ARM64_X3: 753 case UNW_ARM64_X4: 754 case UNW_ARM64_X5: 755 case UNW_ARM64_X6: 756 case UNW_ARM64_X7: 757 case UNW_ARM64_X8: 758 case UNW_ARM64_X9: 759 case UNW_ARM64_X10: 760 case UNW_ARM64_X11: 761 case UNW_ARM64_X12: 762 case UNW_ARM64_X13: 763 case UNW_ARM64_X14: 764 case UNW_ARM64_X15: 765 case UNW_ARM64_X16: 766 case UNW_ARM64_X17: 767 case UNW_ARM64_X18: 768 case UNW_ARM64_X19: 769 case UNW_ARM64_X20: 770 case UNW_ARM64_X21: 771 case UNW_ARM64_X22: 772 case UNW_ARM64_X23: 773 case UNW_ARM64_X24: 774 case UNW_ARM64_X25: 775 case UNW_ARM64_X26: 776 case UNW_ARM64_X27: 777 case UNW_ARM64_X28: 778 case UNW_ARM64_FP: 779 case UNW_ARM64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break; 780 #endif 781 default: 782 _LIBUNWIND_ABORT("unsupported register"); 783 } 784 } 785 786 template <typename A, typename R> 787 bool UnwindCursor<A, R>::validFloatReg(int regNum) { 788 #if defined(_LIBUNWIND_TARGET_ARM) 789 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true; 790 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true; 791 #elif defined(_LIBUNWIND_TARGET_AARCH64) 792 if (regNum >= UNW_ARM64_D0 && regNum <= UNW_ARM64_D31) return true; 793 #else 794 (void)regNum; 795 #endif 796 return false; 797 } 798 799 template <typename A, typename R> 800 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { 801 #if defined(_LIBUNWIND_TARGET_ARM) 802 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { 803 union { 804 uint32_t w; 805 float f; 806 } d; 807 d.w = _msContext.S[regNum - UNW_ARM_S0]; 808 return d.f; 809 } 810 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { 811 union { 812 uint64_t w; 813 double d; 814 } d; 815 d.w = _msContext.D[regNum - UNW_ARM_D0]; 816 return d.d; 817 } 818 _LIBUNWIND_ABORT("unsupported float register"); 819 #elif defined(_LIBUNWIND_TARGET_AARCH64) 820 return _msContext.V[regNum - UNW_ARM64_D0].D[0]; 821 #else 822 (void)regNum; 823 _LIBUNWIND_ABORT("float registers unimplemented"); 824 #endif 825 } 826 827 template <typename A, typename R> 828 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { 829 #if defined(_LIBUNWIND_TARGET_ARM) 830 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { 831 union { 832 uint32_t w; 833 float f; 834 } d; 835 d.f = value; 836 _msContext.S[regNum - UNW_ARM_S0] = d.w; 837 } 838 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { 839 union { 840 uint64_t w; 841 double d; 842 } d; 843 d.d = value; 844 _msContext.D[regNum - UNW_ARM_D0] = d.w; 845 } 846 _LIBUNWIND_ABORT("unsupported float register"); 847 #elif defined(_LIBUNWIND_TARGET_AARCH64) 848 _msContext.V[regNum - UNW_ARM64_D0].D[0] = value; 849 #else 850 (void)regNum; 851 (void)value; 852 _LIBUNWIND_ABORT("float registers unimplemented"); 853 #endif 854 } 855 856 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { 857 RtlRestoreContext(&_msContext, nullptr); 858 } 859 860 #ifdef __arm__ 861 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {} 862 #endif 863 864 template <typename A, typename R> 865 const char *UnwindCursor<A, R>::getRegisterName(int regNum) { 866 return R::getRegisterName(regNum); 867 } 868 869 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { 870 return false; 871 } 872 873 #else // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32) 874 875 /// UnwindCursor contains all state (including all register values) during 876 /// an unwind. This is normally stack allocated inside a unw_cursor_t. 877 template <typename A, typename R> 878 class UnwindCursor : public AbstractUnwindCursor{ 879 typedef typename A::pint_t pint_t; 880 public: 881 UnwindCursor(unw_context_t *context, A &as); 882 UnwindCursor(A &as, void *threadArg); 883 virtual ~UnwindCursor() {} 884 virtual bool validReg(int); 885 virtual unw_word_t getReg(int); 886 virtual void setReg(int, unw_word_t); 887 virtual bool validFloatReg(int); 888 virtual unw_fpreg_t getFloatReg(int); 889 virtual void setFloatReg(int, unw_fpreg_t); 890 virtual int step(); 891 virtual void getInfo(unw_proc_info_t *); 892 virtual void jumpto(); 893 virtual bool isSignalFrame(); 894 virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); 895 virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); 896 virtual const char *getRegisterName(int num); 897 #ifdef __arm__ 898 virtual void saveVFPAsX(); 899 #endif 900 901 // libunwind does not and should not depend on C++ library which means that we 902 // need our own defition of inline placement new. 903 static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } 904 905 private: 906 907 #if defined(_LIBUNWIND_ARM_EHABI) 908 bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s); 909 910 int stepWithEHABI() { 911 size_t len = 0; 912 size_t off = 0; 913 // FIXME: Calling decode_eht_entry() here is violating the libunwind 914 // abstraction layer. 915 const uint32_t *ehtp = 916 decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info), 917 &off, &len); 918 if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) != 919 _URC_CONTINUE_UNWIND) 920 return UNW_STEP_END; 921 return UNW_STEP_SUCCESS; 922 } 923 #endif 924 925 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 926 bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, 927 uint32_t fdeSectionOffsetHint=0); 928 int stepWithDwarfFDE() { 929 return DwarfInstructions<A, R>::stepWithDwarf(_addressSpace, 930 (pint_t)this->getReg(UNW_REG_IP), 931 (pint_t)_info.unwind_info, 932 _registers, _isSignalFrame); 933 } 934 #endif 935 936 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 937 bool getInfoFromCompactEncodingSection(pint_t pc, 938 const UnwindInfoSections §s); 939 int stepWithCompactEncoding() { 940 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 941 if ( compactSaysUseDwarf() ) 942 return stepWithDwarfFDE(); 943 #endif 944 R dummy; 945 return stepWithCompactEncoding(dummy); 946 } 947 948 #if defined(_LIBUNWIND_TARGET_X86_64) 949 int stepWithCompactEncoding(Registers_x86_64 &) { 950 return CompactUnwinder_x86_64<A>::stepWithCompactEncoding( 951 _info.format, _info.start_ip, _addressSpace, _registers); 952 } 953 #endif 954 955 #if defined(_LIBUNWIND_TARGET_I386) 956 int stepWithCompactEncoding(Registers_x86 &) { 957 return CompactUnwinder_x86<A>::stepWithCompactEncoding( 958 _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers); 959 } 960 #endif 961 962 #if defined(_LIBUNWIND_TARGET_PPC) 963 int stepWithCompactEncoding(Registers_ppc &) { 964 return UNW_EINVAL; 965 } 966 #endif 967 968 #if defined(_LIBUNWIND_TARGET_PPC64) 969 int stepWithCompactEncoding(Registers_ppc64 &) { 970 return UNW_EINVAL; 971 } 972 #endif 973 974 975 #if defined(_LIBUNWIND_TARGET_AARCH64) 976 int stepWithCompactEncoding(Registers_arm64 &) { 977 return CompactUnwinder_arm64<A>::stepWithCompactEncoding( 978 _info.format, _info.start_ip, _addressSpace, _registers); 979 } 980 #endif 981 982 #if defined(_LIBUNWIND_TARGET_MIPS_O32) 983 int stepWithCompactEncoding(Registers_mips_o32 &) { 984 return UNW_EINVAL; 985 } 986 #endif 987 988 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) 989 int stepWithCompactEncoding(Registers_mips_newabi &) { 990 return UNW_EINVAL; 991 } 992 #endif 993 994 #if defined(_LIBUNWIND_TARGET_SPARC) 995 int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; } 996 #endif 997 998 #if defined (_LIBUNWIND_TARGET_RISCV) 999 int stepWithCompactEncoding(Registers_riscv &) { 1000 return UNW_EINVAL; 1001 } 1002 #endif 1003 1004 bool compactSaysUseDwarf(uint32_t *offset=NULL) const { 1005 R dummy; 1006 return compactSaysUseDwarf(dummy, offset); 1007 } 1008 1009 #if defined(_LIBUNWIND_TARGET_X86_64) 1010 bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const { 1011 if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) { 1012 if (offset) 1013 *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET); 1014 return true; 1015 } 1016 return false; 1017 } 1018 #endif 1019 1020 #if defined(_LIBUNWIND_TARGET_I386) 1021 bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const { 1022 if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) { 1023 if (offset) 1024 *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET); 1025 return true; 1026 } 1027 return false; 1028 } 1029 #endif 1030 1031 #if defined(_LIBUNWIND_TARGET_PPC) 1032 bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const { 1033 return true; 1034 } 1035 #endif 1036 1037 #if defined(_LIBUNWIND_TARGET_PPC64) 1038 bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const { 1039 return true; 1040 } 1041 #endif 1042 1043 #if defined(_LIBUNWIND_TARGET_AARCH64) 1044 bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const { 1045 if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) { 1046 if (offset) 1047 *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET); 1048 return true; 1049 } 1050 return false; 1051 } 1052 #endif 1053 1054 #if defined(_LIBUNWIND_TARGET_MIPS_O32) 1055 bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const { 1056 return true; 1057 } 1058 #endif 1059 1060 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) 1061 bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const { 1062 return true; 1063 } 1064 #endif 1065 1066 #if defined(_LIBUNWIND_TARGET_SPARC) 1067 bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; } 1068 #endif 1069 1070 #if defined (_LIBUNWIND_TARGET_RISCV) 1071 bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const { 1072 return true; 1073 } 1074 #endif 1075 1076 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1077 1078 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1079 compact_unwind_encoding_t dwarfEncoding() const { 1080 R dummy; 1081 return dwarfEncoding(dummy); 1082 } 1083 1084 #if defined(_LIBUNWIND_TARGET_X86_64) 1085 compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const { 1086 return UNWIND_X86_64_MODE_DWARF; 1087 } 1088 #endif 1089 1090 #if defined(_LIBUNWIND_TARGET_I386) 1091 compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const { 1092 return UNWIND_X86_MODE_DWARF; 1093 } 1094 #endif 1095 1096 #if defined(_LIBUNWIND_TARGET_PPC) 1097 compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const { 1098 return 0; 1099 } 1100 #endif 1101 1102 #if defined(_LIBUNWIND_TARGET_PPC64) 1103 compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const { 1104 return 0; 1105 } 1106 #endif 1107 1108 #if defined(_LIBUNWIND_TARGET_AARCH64) 1109 compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const { 1110 return UNWIND_ARM64_MODE_DWARF; 1111 } 1112 #endif 1113 1114 #if defined(_LIBUNWIND_TARGET_ARM) 1115 compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const { 1116 return 0; 1117 } 1118 #endif 1119 1120 #if defined (_LIBUNWIND_TARGET_OR1K) 1121 compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const { 1122 return 0; 1123 } 1124 #endif 1125 1126 #if defined (_LIBUNWIND_TARGET_RISCV) 1127 compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const { 1128 return 0; 1129 } 1130 #endif 1131 1132 #if defined (_LIBUNWIND_TARGET_MIPS_O32) 1133 compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const { 1134 return 0; 1135 } 1136 #endif 1137 1138 #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI) 1139 compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const { 1140 return 0; 1141 } 1142 #endif 1143 1144 #if defined(_LIBUNWIND_TARGET_SPARC) 1145 compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; } 1146 #endif 1147 1148 #if defined (_LIBUNWIND_TARGET_RISCV) 1149 compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const { 1150 return 0; 1151 } 1152 #endif 1153 1154 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1155 1156 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1157 // For runtime environments using SEH unwind data without Windows runtime 1158 // support. 1159 pint_t getLastPC() const { /* FIXME: Implement */ return 0; } 1160 void setLastPC(pint_t pc) { /* FIXME: Implement */ } 1161 RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { 1162 /* FIXME: Implement */ 1163 *base = 0; 1164 return nullptr; 1165 } 1166 bool getInfoFromSEH(pint_t pc); 1167 int stepWithSEHData() { /* FIXME: Implement */ return 0; } 1168 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1169 1170 1171 A &_addressSpace; 1172 R _registers; 1173 unw_proc_info_t _info; 1174 bool _unwindInfoMissing; 1175 bool _isSignalFrame; 1176 }; 1177 1178 1179 template <typename A, typename R> 1180 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) 1181 : _addressSpace(as), _registers(context), _unwindInfoMissing(false), 1182 _isSignalFrame(false) { 1183 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 1184 "UnwindCursor<> does not fit in unw_cursor_t"); 1185 memset(&_info, 0, sizeof(_info)); 1186 } 1187 1188 template <typename A, typename R> 1189 UnwindCursor<A, R>::UnwindCursor(A &as, void *) 1190 : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) { 1191 memset(&_info, 0, sizeof(_info)); 1192 // FIXME 1193 // fill in _registers from thread arg 1194 } 1195 1196 1197 template <typename A, typename R> 1198 bool UnwindCursor<A, R>::validReg(int regNum) { 1199 return _registers.validRegister(regNum); 1200 } 1201 1202 template <typename A, typename R> 1203 unw_word_t UnwindCursor<A, R>::getReg(int regNum) { 1204 return _registers.getRegister(regNum); 1205 } 1206 1207 template <typename A, typename R> 1208 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { 1209 _registers.setRegister(regNum, (typename A::pint_t)value); 1210 } 1211 1212 template <typename A, typename R> 1213 bool UnwindCursor<A, R>::validFloatReg(int regNum) { 1214 return _registers.validFloatRegister(regNum); 1215 } 1216 1217 template <typename A, typename R> 1218 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { 1219 return _registers.getFloatRegister(regNum); 1220 } 1221 1222 template <typename A, typename R> 1223 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { 1224 _registers.setFloatRegister(regNum, value); 1225 } 1226 1227 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { 1228 _registers.jumpto(); 1229 } 1230 1231 #ifdef __arm__ 1232 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() { 1233 _registers.saveVFPAsX(); 1234 } 1235 #endif 1236 1237 template <typename A, typename R> 1238 const char *UnwindCursor<A, R>::getRegisterName(int regNum) { 1239 return _registers.getRegisterName(regNum); 1240 } 1241 1242 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { 1243 return _isSignalFrame; 1244 } 1245 1246 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1247 1248 #if defined(_LIBUNWIND_ARM_EHABI) 1249 template<typename A> 1250 struct EHABISectionIterator { 1251 typedef EHABISectionIterator _Self; 1252 1253 typedef typename A::pint_t value_type; 1254 typedef typename A::pint_t* pointer; 1255 typedef typename A::pint_t& reference; 1256 typedef size_t size_type; 1257 typedef size_t difference_type; 1258 1259 static _Self begin(A& addressSpace, const UnwindInfoSections& sects) { 1260 return _Self(addressSpace, sects, 0); 1261 } 1262 static _Self end(A& addressSpace, const UnwindInfoSections& sects) { 1263 return _Self(addressSpace, sects, 1264 sects.arm_section_length / sizeof(EHABIIndexEntry)); 1265 } 1266 1267 EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i) 1268 : _i(i), _addressSpace(&addressSpace), _sects(§s) {} 1269 1270 _Self& operator++() { ++_i; return *this; } 1271 _Self& operator+=(size_t a) { _i += a; return *this; } 1272 _Self& operator--() { assert(_i > 0); --_i; return *this; } 1273 _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; } 1274 1275 _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; } 1276 _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; } 1277 1278 size_t operator-(const _Self& other) { return _i - other._i; } 1279 1280 bool operator==(const _Self& other) const { 1281 assert(_addressSpace == other._addressSpace); 1282 assert(_sects == other._sects); 1283 return _i == other._i; 1284 } 1285 1286 typename A::pint_t operator*() const { return functionAddress(); } 1287 1288 typename A::pint_t functionAddress() const { 1289 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( 1290 EHABIIndexEntry, _i, functionOffset); 1291 return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr)); 1292 } 1293 1294 typename A::pint_t dataAddress() { 1295 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( 1296 EHABIIndexEntry, _i, data); 1297 return indexAddr; 1298 } 1299 1300 private: 1301 size_t _i; 1302 A* _addressSpace; 1303 const UnwindInfoSections* _sects; 1304 }; 1305 1306 namespace { 1307 1308 template <typename A> 1309 EHABISectionIterator<A> EHABISectionUpperBound( 1310 EHABISectionIterator<A> first, 1311 EHABISectionIterator<A> last, 1312 typename A::pint_t value) { 1313 size_t len = last - first; 1314 while (len > 0) { 1315 size_t l2 = len / 2; 1316 EHABISectionIterator<A> m = first + l2; 1317 if (value < *m) { 1318 len = l2; 1319 } else { 1320 first = ++m; 1321 len -= l2 + 1; 1322 } 1323 } 1324 return first; 1325 } 1326 1327 } 1328 1329 template <typename A, typename R> 1330 bool UnwindCursor<A, R>::getInfoFromEHABISection( 1331 pint_t pc, 1332 const UnwindInfoSections §s) { 1333 EHABISectionIterator<A> begin = 1334 EHABISectionIterator<A>::begin(_addressSpace, sects); 1335 EHABISectionIterator<A> end = 1336 EHABISectionIterator<A>::end(_addressSpace, sects); 1337 if (begin == end) 1338 return false; 1339 1340 EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc); 1341 if (itNextPC == begin) 1342 return false; 1343 EHABISectionIterator<A> itThisPC = itNextPC - 1; 1344 1345 pint_t thisPC = itThisPC.functionAddress(); 1346 // If an exception is thrown from a function, corresponding to the last entry 1347 // in the table, we don't really know the function extent and have to choose a 1348 // value for nextPC. Choosing max() will allow the range check during trace to 1349 // succeed. 1350 pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress(); 1351 pint_t indexDataAddr = itThisPC.dataAddress(); 1352 1353 if (indexDataAddr == 0) 1354 return false; 1355 1356 uint32_t indexData = _addressSpace.get32(indexDataAddr); 1357 if (indexData == UNW_EXIDX_CANTUNWIND) 1358 return false; 1359 1360 // If the high bit is set, the exception handling table entry is inline inside 1361 // the index table entry on the second word (aka |indexDataAddr|). Otherwise, 1362 // the table points at an offset in the exception handling table (section 5 EHABI). 1363 pint_t exceptionTableAddr; 1364 uint32_t exceptionTableData; 1365 bool isSingleWordEHT; 1366 if (indexData & 0x80000000) { 1367 exceptionTableAddr = indexDataAddr; 1368 // TODO(ajwong): Should this data be 0? 1369 exceptionTableData = indexData; 1370 isSingleWordEHT = true; 1371 } else { 1372 exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData); 1373 exceptionTableData = _addressSpace.get32(exceptionTableAddr); 1374 isSingleWordEHT = false; 1375 } 1376 1377 // Now we know the 3 things: 1378 // exceptionTableAddr -- exception handler table entry. 1379 // exceptionTableData -- the data inside the first word of the eht entry. 1380 // isSingleWordEHT -- whether the entry is in the index. 1381 unw_word_t personalityRoutine = 0xbadf00d; 1382 bool scope32 = false; 1383 uintptr_t lsda; 1384 1385 // If the high bit in the exception handling table entry is set, the entry is 1386 // in compact form (section 6.3 EHABI). 1387 if (exceptionTableData & 0x80000000) { 1388 // Grab the index of the personality routine from the compact form. 1389 uint32_t choice = (exceptionTableData & 0x0f000000) >> 24; 1390 uint32_t extraWords = 0; 1391 switch (choice) { 1392 case 0: 1393 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0; 1394 extraWords = 0; 1395 scope32 = false; 1396 lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4); 1397 break; 1398 case 1: 1399 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1; 1400 extraWords = (exceptionTableData & 0x00ff0000) >> 16; 1401 scope32 = false; 1402 lsda = exceptionTableAddr + (extraWords + 1) * 4; 1403 break; 1404 case 2: 1405 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2; 1406 extraWords = (exceptionTableData & 0x00ff0000) >> 16; 1407 scope32 = true; 1408 lsda = exceptionTableAddr + (extraWords + 1) * 4; 1409 break; 1410 default: 1411 _LIBUNWIND_ABORT("unknown personality routine"); 1412 return false; 1413 } 1414 1415 if (isSingleWordEHT) { 1416 if (extraWords != 0) { 1417 _LIBUNWIND_ABORT("index inlined table detected but pr function " 1418 "requires extra words"); 1419 return false; 1420 } 1421 } 1422 } else { 1423 pint_t personalityAddr = 1424 exceptionTableAddr + signExtendPrel31(exceptionTableData); 1425 personalityRoutine = personalityAddr; 1426 1427 // ARM EHABI # 6.2, # 9.2 1428 // 1429 // +---- ehtp 1430 // v 1431 // +--------------------------------------+ 1432 // | +--------+--------+--------+-------+ | 1433 // | |0| prel31 to personalityRoutine | | 1434 // | +--------+--------+--------+-------+ | 1435 // | | N | unwind opcodes | | <-- UnwindData 1436 // | +--------+--------+--------+-------+ | 1437 // | | Word 2 unwind opcodes | | 1438 // | +--------+--------+--------+-------+ | 1439 // | ... | 1440 // | +--------+--------+--------+-------+ | 1441 // | | Word N unwind opcodes | | 1442 // | +--------+--------+--------+-------+ | 1443 // | | LSDA | | <-- lsda 1444 // | | ... | | 1445 // | +--------+--------+--------+-------+ | 1446 // +--------------------------------------+ 1447 1448 uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1; 1449 uint32_t FirstDataWord = *UnwindData; 1450 size_t N = ((FirstDataWord >> 24) & 0xff); 1451 size_t NDataWords = N + 1; 1452 lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords); 1453 } 1454 1455 _info.start_ip = thisPC; 1456 _info.end_ip = nextPC; 1457 _info.handler = personalityRoutine; 1458 _info.unwind_info = exceptionTableAddr; 1459 _info.lsda = lsda; 1460 // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0. 1461 _info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0; // Use enum? 1462 1463 return true; 1464 } 1465 #endif 1466 1467 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1468 template <typename A, typename R> 1469 bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc, 1470 const UnwindInfoSections §s, 1471 uint32_t fdeSectionOffsetHint) { 1472 typename CFI_Parser<A>::FDE_Info fdeInfo; 1473 typename CFI_Parser<A>::CIE_Info cieInfo; 1474 bool foundFDE = false; 1475 bool foundInCache = false; 1476 // If compact encoding table gave offset into dwarf section, go directly there 1477 if (fdeSectionOffsetHint != 0) { 1478 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1479 (uint32_t)sects.dwarf_section_length, 1480 sects.dwarf_section + fdeSectionOffsetHint, 1481 &fdeInfo, &cieInfo); 1482 } 1483 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) 1484 if (!foundFDE && (sects.dwarf_index_section != 0)) { 1485 foundFDE = EHHeaderParser<A>::findFDE( 1486 _addressSpace, pc, sects.dwarf_index_section, 1487 (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo); 1488 } 1489 #endif 1490 if (!foundFDE) { 1491 // otherwise, search cache of previously found FDEs. 1492 pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc); 1493 if (cachedFDE != 0) { 1494 foundFDE = 1495 CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1496 (uint32_t)sects.dwarf_section_length, 1497 cachedFDE, &fdeInfo, &cieInfo); 1498 foundInCache = foundFDE; 1499 } 1500 } 1501 if (!foundFDE) { 1502 // Still not found, do full scan of __eh_frame section. 1503 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1504 (uint32_t)sects.dwarf_section_length, 0, 1505 &fdeInfo, &cieInfo); 1506 } 1507 if (foundFDE) { 1508 typename CFI_Parser<A>::PrologInfo prolog; 1509 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, 1510 R::getArch(), &prolog)) { 1511 // Save off parsed FDE info 1512 _info.start_ip = fdeInfo.pcStart; 1513 _info.end_ip = fdeInfo.pcEnd; 1514 _info.lsda = fdeInfo.lsda; 1515 _info.handler = cieInfo.personality; 1516 _info.gp = prolog.spExtraArgSize; 1517 _info.flags = 0; 1518 _info.format = dwarfEncoding(); 1519 _info.unwind_info = fdeInfo.fdeStart; 1520 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; 1521 _info.extra = (unw_word_t) sects.dso_base; 1522 1523 // Add to cache (to make next lookup faster) if we had no hint 1524 // and there was no index. 1525 if (!foundInCache && (fdeSectionOffsetHint == 0)) { 1526 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) 1527 if (sects.dwarf_index_section == 0) 1528 #endif 1529 DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd, 1530 fdeInfo.fdeStart); 1531 } 1532 return true; 1533 } 1534 } 1535 //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc); 1536 return false; 1537 } 1538 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1539 1540 1541 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1542 template <typename A, typename R> 1543 bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc, 1544 const UnwindInfoSections §s) { 1545 const bool log = false; 1546 if (log) 1547 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n", 1548 (uint64_t)pc, (uint64_t)sects.dso_base); 1549 1550 const UnwindSectionHeader<A> sectionHeader(_addressSpace, 1551 sects.compact_unwind_section); 1552 if (sectionHeader.version() != UNWIND_SECTION_VERSION) 1553 return false; 1554 1555 // do a binary search of top level index to find page with unwind info 1556 pint_t targetFunctionOffset = pc - sects.dso_base; 1557 const UnwindSectionIndexArray<A> topIndex(_addressSpace, 1558 sects.compact_unwind_section 1559 + sectionHeader.indexSectionOffset()); 1560 uint32_t low = 0; 1561 uint32_t high = sectionHeader.indexCount(); 1562 uint32_t last = high - 1; 1563 while (low < high) { 1564 uint32_t mid = (low + high) / 2; 1565 //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n", 1566 //mid, low, high, topIndex.functionOffset(mid)); 1567 if (topIndex.functionOffset(mid) <= targetFunctionOffset) { 1568 if ((mid == last) || 1569 (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) { 1570 low = mid; 1571 break; 1572 } else { 1573 low = mid + 1; 1574 } 1575 } else { 1576 high = mid; 1577 } 1578 } 1579 const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low); 1580 const uint32_t firstLevelNextPageFunctionOffset = 1581 topIndex.functionOffset(low + 1); 1582 const pint_t secondLevelAddr = 1583 sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low); 1584 const pint_t lsdaArrayStartAddr = 1585 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low); 1586 const pint_t lsdaArrayEndAddr = 1587 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1); 1588 if (log) 1589 fprintf(stderr, "\tfirst level search for result index=%d " 1590 "to secondLevelAddr=0x%llX\n", 1591 low, (uint64_t) secondLevelAddr); 1592 // do a binary search of second level page index 1593 uint32_t encoding = 0; 1594 pint_t funcStart = 0; 1595 pint_t funcEnd = 0; 1596 pint_t lsda = 0; 1597 pint_t personality = 0; 1598 uint32_t pageKind = _addressSpace.get32(secondLevelAddr); 1599 if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) { 1600 // regular page 1601 UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace, 1602 secondLevelAddr); 1603 UnwindSectionRegularArray<A> pageIndex( 1604 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); 1605 // binary search looks for entry with e where index[e].offset <= pc < 1606 // index[e+1].offset 1607 if (log) 1608 fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in " 1609 "regular page starting at secondLevelAddr=0x%llX\n", 1610 (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr); 1611 low = 0; 1612 high = pageHeader.entryCount(); 1613 while (low < high) { 1614 uint32_t mid = (low + high) / 2; 1615 if (pageIndex.functionOffset(mid) <= targetFunctionOffset) { 1616 if (mid == (uint32_t)(pageHeader.entryCount() - 1)) { 1617 // at end of table 1618 low = mid; 1619 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; 1620 break; 1621 } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) { 1622 // next is too big, so we found it 1623 low = mid; 1624 funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base; 1625 break; 1626 } else { 1627 low = mid + 1; 1628 } 1629 } else { 1630 high = mid; 1631 } 1632 } 1633 encoding = pageIndex.encoding(low); 1634 funcStart = pageIndex.functionOffset(low) + sects.dso_base; 1635 if (pc < funcStart) { 1636 if (log) 1637 fprintf( 1638 stderr, 1639 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", 1640 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); 1641 return false; 1642 } 1643 if (pc > funcEnd) { 1644 if (log) 1645 fprintf( 1646 stderr, 1647 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", 1648 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); 1649 return false; 1650 } 1651 } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) { 1652 // compressed page 1653 UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace, 1654 secondLevelAddr); 1655 UnwindSectionCompressedArray<A> pageIndex( 1656 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); 1657 const uint32_t targetFunctionPageOffset = 1658 (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset); 1659 // binary search looks for entry with e where index[e].offset <= pc < 1660 // index[e+1].offset 1661 if (log) 1662 fprintf(stderr, "\tbinary search of compressed page starting at " 1663 "secondLevelAddr=0x%llX\n", 1664 (uint64_t) secondLevelAddr); 1665 low = 0; 1666 last = pageHeader.entryCount() - 1; 1667 high = pageHeader.entryCount(); 1668 while (low < high) { 1669 uint32_t mid = (low + high) / 2; 1670 if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) { 1671 if ((mid == last) || 1672 (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) { 1673 low = mid; 1674 break; 1675 } else { 1676 low = mid + 1; 1677 } 1678 } else { 1679 high = mid; 1680 } 1681 } 1682 funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset 1683 + sects.dso_base; 1684 if (low < last) 1685 funcEnd = 1686 pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset 1687 + sects.dso_base; 1688 else 1689 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; 1690 if (pc < funcStart) { 1691 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " 1692 "level compressed unwind table. funcStart=0x%llX", 1693 (uint64_t) pc, (uint64_t) funcStart); 1694 return false; 1695 } 1696 if (pc > funcEnd) { 1697 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " 1698 "level compressed unwind table. funcEnd=0x%llX", 1699 (uint64_t) pc, (uint64_t) funcEnd); 1700 return false; 1701 } 1702 uint16_t encodingIndex = pageIndex.encodingIndex(low); 1703 if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) { 1704 // encoding is in common table in section header 1705 encoding = _addressSpace.get32( 1706 sects.compact_unwind_section + 1707 sectionHeader.commonEncodingsArraySectionOffset() + 1708 encodingIndex * sizeof(uint32_t)); 1709 } else { 1710 // encoding is in page specific table 1711 uint16_t pageEncodingIndex = 1712 encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount(); 1713 encoding = _addressSpace.get32(secondLevelAddr + 1714 pageHeader.encodingsPageOffset() + 1715 pageEncodingIndex * sizeof(uint32_t)); 1716 } 1717 } else { 1718 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info at 0x%0llX bad second " 1719 "level page", 1720 (uint64_t) sects.compact_unwind_section); 1721 return false; 1722 } 1723 1724 // look up LSDA, if encoding says function has one 1725 if (encoding & UNWIND_HAS_LSDA) { 1726 UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr); 1727 uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base); 1728 low = 0; 1729 high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) / 1730 sizeof(unwind_info_section_header_lsda_index_entry); 1731 // binary search looks for entry with exact match for functionOffset 1732 if (log) 1733 fprintf(stderr, 1734 "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n", 1735 funcStartOffset); 1736 while (low < high) { 1737 uint32_t mid = (low + high) / 2; 1738 if (lsdaIndex.functionOffset(mid) == funcStartOffset) { 1739 lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base; 1740 break; 1741 } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) { 1742 low = mid + 1; 1743 } else { 1744 high = mid; 1745 } 1746 } 1747 if (lsda == 0) { 1748 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for " 1749 "pc=0x%0llX, but lsda table has no entry", 1750 encoding, (uint64_t) pc); 1751 return false; 1752 } 1753 } 1754 1755 // extact personality routine, if encoding says function has one 1756 uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >> 1757 (__builtin_ctz(UNWIND_PERSONALITY_MASK)); 1758 if (personalityIndex != 0) { 1759 --personalityIndex; // change 1-based to zero-based index 1760 if (personalityIndex > sectionHeader.personalityArrayCount()) { 1761 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, " 1762 "but personality table has only %d entries", 1763 encoding, personalityIndex, 1764 sectionHeader.personalityArrayCount()); 1765 return false; 1766 } 1767 int32_t personalityDelta = (int32_t)_addressSpace.get32( 1768 sects.compact_unwind_section + 1769 sectionHeader.personalityArraySectionOffset() + 1770 personalityIndex * sizeof(uint32_t)); 1771 pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta; 1772 personality = _addressSpace.getP(personalityPointer); 1773 if (log) 1774 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " 1775 "personalityDelta=0x%08X, personality=0x%08llX\n", 1776 (uint64_t) pc, personalityDelta, (uint64_t) personality); 1777 } 1778 1779 if (log) 1780 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " 1781 "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n", 1782 (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart); 1783 _info.start_ip = funcStart; 1784 _info.end_ip = funcEnd; 1785 _info.lsda = lsda; 1786 _info.handler = personality; 1787 _info.gp = 0; 1788 _info.flags = 0; 1789 _info.format = encoding; 1790 _info.unwind_info = 0; 1791 _info.unwind_info_size = 0; 1792 _info.extra = sects.dso_base; 1793 return true; 1794 } 1795 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1796 1797 1798 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1799 template <typename A, typename R> 1800 bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) { 1801 pint_t base; 1802 RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base); 1803 if (!unwindEntry) { 1804 _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc); 1805 return false; 1806 } 1807 _info.gp = 0; 1808 _info.flags = 0; 1809 _info.format = 0; 1810 _info.unwind_info_size = sizeof(RUNTIME_FUNCTION); 1811 _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry); 1812 _info.extra = base; 1813 _info.start_ip = base + unwindEntry->BeginAddress; 1814 #ifdef _LIBUNWIND_TARGET_X86_64 1815 _info.end_ip = base + unwindEntry->EndAddress; 1816 // Only fill in the handler and LSDA if they're stale. 1817 if (pc != getLastPC()) { 1818 UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData); 1819 if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) { 1820 // The personality is given in the UNWIND_INFO itself. The LSDA immediately 1821 // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit 1822 // these structures.) 1823 // N.B. UNWIND_INFO structs are DWORD-aligned. 1824 uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1; 1825 const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]); 1826 _info.lsda = reinterpret_cast<unw_word_t>(handler+1); 1827 if (*handler) { 1828 _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); 1829 } else 1830 _info.handler = 0; 1831 } else { 1832 _info.lsda = 0; 1833 _info.handler = 0; 1834 } 1835 } 1836 #elif defined(_LIBUNWIND_TARGET_ARM) 1837 _info.end_ip = _info.start_ip + unwindEntry->FunctionLength; 1838 _info.lsda = 0; // FIXME 1839 _info.handler = 0; // FIXME 1840 #endif 1841 setLastPC(pc); 1842 return true; 1843 } 1844 #endif 1845 1846 1847 template <typename A, typename R> 1848 void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) { 1849 pint_t pc = (pint_t)this->getReg(UNW_REG_IP); 1850 #if defined(_LIBUNWIND_ARM_EHABI) 1851 // Remove the thumb bit so the IP represents the actual instruction address. 1852 // This matches the behaviour of _Unwind_GetIP on arm. 1853 pc &= (pint_t)~0x1; 1854 #endif 1855 1856 // If the last line of a function is a "throw" the compiler sometimes 1857 // emits no instructions after the call to __cxa_throw. This means 1858 // the return address is actually the start of the next function. 1859 // To disambiguate this, back up the pc when we know it is a return 1860 // address. 1861 if (isReturnAddress) 1862 --pc; 1863 1864 // Ask address space object to find unwind sections for this pc. 1865 UnwindInfoSections sects; 1866 if (_addressSpace.findUnwindSections(pc, sects)) { 1867 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1868 // If there is a compact unwind encoding table, look there first. 1869 if (sects.compact_unwind_section != 0) { 1870 if (this->getInfoFromCompactEncodingSection(pc, sects)) { 1871 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1872 // Found info in table, done unless encoding says to use dwarf. 1873 uint32_t dwarfOffset; 1874 if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) { 1875 if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) { 1876 // found info in dwarf, done 1877 return; 1878 } 1879 } 1880 #endif 1881 // If unwind table has entry, but entry says there is no unwind info, 1882 // record that we have no unwind info. 1883 if (_info.format == 0) 1884 _unwindInfoMissing = true; 1885 return; 1886 } 1887 } 1888 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1889 1890 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1891 // If there is SEH unwind info, look there next. 1892 if (this->getInfoFromSEH(pc)) 1893 return; 1894 #endif 1895 1896 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1897 // If there is dwarf unwind info, look there next. 1898 if (sects.dwarf_section != 0) { 1899 if (this->getInfoFromDwarfSection(pc, sects)) { 1900 // found info in dwarf, done 1901 return; 1902 } 1903 } 1904 #endif 1905 1906 #if defined(_LIBUNWIND_ARM_EHABI) 1907 // If there is ARM EHABI unwind info, look there next. 1908 if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects)) 1909 return; 1910 #endif 1911 } 1912 1913 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1914 // There is no static unwind info for this pc. Look to see if an FDE was 1915 // dynamically registered for it. 1916 pint_t cachedFDE = DwarfFDECache<A>::findFDE(0, pc); 1917 if (cachedFDE != 0) { 1918 CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo; 1919 CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo; 1920 const char *msg = CFI_Parser<A>::decodeFDE(_addressSpace, 1921 cachedFDE, &fdeInfo, &cieInfo); 1922 if (msg == NULL) { 1923 typename CFI_Parser<A>::PrologInfo prolog; 1924 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, 1925 pc, R::getArch(), &prolog)) { 1926 // save off parsed FDE info 1927 _info.start_ip = fdeInfo.pcStart; 1928 _info.end_ip = fdeInfo.pcEnd; 1929 _info.lsda = fdeInfo.lsda; 1930 _info.handler = cieInfo.personality; 1931 _info.gp = prolog.spExtraArgSize; 1932 // Some frameless functions need SP 1933 // altered when resuming in function. 1934 _info.flags = 0; 1935 _info.format = dwarfEncoding(); 1936 _info.unwind_info = fdeInfo.fdeStart; 1937 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; 1938 _info.extra = 0; 1939 return; 1940 } 1941 } 1942 } 1943 1944 // Lastly, ask AddressSpace object about platform specific ways to locate 1945 // other FDEs. 1946 pint_t fde; 1947 if (_addressSpace.findOtherFDE(pc, fde)) { 1948 CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo; 1949 CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo; 1950 if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) { 1951 // Double check this FDE is for a function that includes the pc. 1952 if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) { 1953 typename CFI_Parser<A>::PrologInfo prolog; 1954 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, 1955 pc, R::getArch(), &prolog)) { 1956 // save off parsed FDE info 1957 _info.start_ip = fdeInfo.pcStart; 1958 _info.end_ip = fdeInfo.pcEnd; 1959 _info.lsda = fdeInfo.lsda; 1960 _info.handler = cieInfo.personality; 1961 _info.gp = prolog.spExtraArgSize; 1962 _info.flags = 0; 1963 _info.format = dwarfEncoding(); 1964 _info.unwind_info = fdeInfo.fdeStart; 1965 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; 1966 _info.extra = 0; 1967 return; 1968 } 1969 } 1970 } 1971 } 1972 #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1973 1974 // no unwind info, flag that we can't reliably unwind 1975 _unwindInfoMissing = true; 1976 } 1977 1978 template <typename A, typename R> 1979 int UnwindCursor<A, R>::step() { 1980 // Bottom of stack is defined is when unwind info cannot be found. 1981 if (_unwindInfoMissing) 1982 return UNW_STEP_END; 1983 1984 // Use unwinding info to modify register set as if function returned. 1985 int result; 1986 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1987 result = this->stepWithCompactEncoding(); 1988 #elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1989 result = this->stepWithSEHData(); 1990 #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1991 result = this->stepWithDwarfFDE(); 1992 #elif defined(_LIBUNWIND_ARM_EHABI) 1993 result = this->stepWithEHABI(); 1994 #else 1995 #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \ 1996 _LIBUNWIND_SUPPORT_SEH_UNWIND or \ 1997 _LIBUNWIND_SUPPORT_DWARF_UNWIND or \ 1998 _LIBUNWIND_ARM_EHABI 1999 #endif 2000 2001 // update info based on new PC 2002 if (result == UNW_STEP_SUCCESS) { 2003 this->setInfoBasedOnIPRegister(true); 2004 if (_unwindInfoMissing) 2005 return UNW_STEP_END; 2006 } 2007 2008 return result; 2009 } 2010 2011 template <typename A, typename R> 2012 void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) { 2013 if (_unwindInfoMissing) 2014 memset(info, 0, sizeof(*info)); 2015 else 2016 *info = _info; 2017 } 2018 2019 template <typename A, typename R> 2020 bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen, 2021 unw_word_t *offset) { 2022 return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP), 2023 buf, bufLen, offset); 2024 } 2025 2026 } // namespace libunwind 2027 2028 #endif // __UNWINDCURSOR_HPP__ 2029