1 //===------------------------- UnwindCursor.hpp ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 // 8 // C++ interface to lower levels of libunwind 9 //===----------------------------------------------------------------------===// 10 11 #ifndef __UNWINDCURSOR_HPP__ 12 #define __UNWINDCURSOR_HPP__ 13 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <unwind.h> 18 19 #ifdef _WIN32 20 #include <windows.h> 21 #include <ntverp.h> 22 #endif 23 #ifdef __APPLE__ 24 #include <mach-o/dyld.h> 25 #endif 26 27 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 28 // Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and 29 // earlier) SDKs. 30 // MinGW-w64 has always provided this struct. 31 #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \ 32 !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000 33 struct _DISPATCHER_CONTEXT { 34 ULONG64 ControlPc; 35 ULONG64 ImageBase; 36 PRUNTIME_FUNCTION FunctionEntry; 37 ULONG64 EstablisherFrame; 38 ULONG64 TargetIp; 39 PCONTEXT ContextRecord; 40 PEXCEPTION_ROUTINE LanguageHandler; 41 PVOID HandlerData; 42 PUNWIND_HISTORY_TABLE HistoryTable; 43 ULONG ScopeIndex; 44 ULONG Fill0; 45 }; 46 #endif 47 48 struct UNWIND_INFO { 49 uint8_t Version : 3; 50 uint8_t Flags : 5; 51 uint8_t SizeOfProlog; 52 uint8_t CountOfCodes; 53 uint8_t FrameRegister : 4; 54 uint8_t FrameOffset : 4; 55 uint16_t UnwindCodes[2]; 56 }; 57 58 extern "C" _Unwind_Reason_Code __libunwind_seh_personality( 59 int, _Unwind_Action, uint64_t, _Unwind_Exception *, 60 struct _Unwind_Context *); 61 62 #endif 63 64 #include "config.h" 65 66 #include "AddressSpace.hpp" 67 #include "CompactUnwinder.hpp" 68 #include "config.h" 69 #include "DwarfInstructions.hpp" 70 #include "EHHeaderParser.hpp" 71 #include "libunwind.h" 72 #include "Registers.hpp" 73 #include "RWMutex.hpp" 74 #include "Unwind-EHABI.h" 75 76 namespace libunwind { 77 78 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 79 /// Cache of recently found FDEs. 80 template <typename A> 81 class _LIBUNWIND_HIDDEN DwarfFDECache { 82 typedef typename A::pint_t pint_t; 83 public: 84 static constexpr pint_t kSearchAll = static_cast<pint_t>(-1); 85 static pint_t findFDE(pint_t mh, pint_t pc); 86 static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde); 87 static void removeAllIn(pint_t mh); 88 static void iterateCacheEntries(void (*func)(unw_word_t ip_start, 89 unw_word_t ip_end, 90 unw_word_t fde, unw_word_t mh)); 91 92 private: 93 94 struct entry { 95 pint_t mh; 96 pint_t ip_start; 97 pint_t ip_end; 98 pint_t fde; 99 }; 100 101 // These fields are all static to avoid needing an initializer. 102 // There is only one instance of this class per process. 103 static RWMutex _lock; 104 #ifdef __APPLE__ 105 static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide); 106 static bool _registeredForDyldUnloads; 107 #endif 108 static entry *_buffer; 109 static entry *_bufferUsed; 110 static entry *_bufferEnd; 111 static entry _initialBuffer[64]; 112 }; 113 114 template <typename A> 115 typename DwarfFDECache<A>::entry * 116 DwarfFDECache<A>::_buffer = _initialBuffer; 117 118 template <typename A> 119 typename DwarfFDECache<A>::entry * 120 DwarfFDECache<A>::_bufferUsed = _initialBuffer; 121 122 template <typename A> 123 typename DwarfFDECache<A>::entry * 124 DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64]; 125 126 template <typename A> 127 typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64]; 128 129 template <typename A> 130 RWMutex DwarfFDECache<A>::_lock; 131 132 #ifdef __APPLE__ 133 template <typename A> 134 bool DwarfFDECache<A>::_registeredForDyldUnloads = false; 135 #endif 136 137 template <typename A> 138 typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) { 139 pint_t result = 0; 140 _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared()); 141 for (entry *p = _buffer; p < _bufferUsed; ++p) { 142 if ((mh == p->mh) || (mh == kSearchAll)) { 143 if ((p->ip_start <= pc) && (pc < p->ip_end)) { 144 result = p->fde; 145 break; 146 } 147 } 148 } 149 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared()); 150 return result; 151 } 152 153 template <typename A> 154 void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end, 155 pint_t fde) { 156 #if !defined(_LIBUNWIND_NO_HEAP) 157 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 158 if (_bufferUsed >= _bufferEnd) { 159 size_t oldSize = (size_t)(_bufferEnd - _buffer); 160 size_t newSize = oldSize * 4; 161 // Can't use operator new (we are below it). 162 entry *newBuffer = (entry *)malloc(newSize * sizeof(entry)); 163 memcpy(newBuffer, _buffer, oldSize * sizeof(entry)); 164 if (_buffer != _initialBuffer) 165 free(_buffer); 166 _buffer = newBuffer; 167 _bufferUsed = &newBuffer[oldSize]; 168 _bufferEnd = &newBuffer[newSize]; 169 } 170 _bufferUsed->mh = mh; 171 _bufferUsed->ip_start = ip_start; 172 _bufferUsed->ip_end = ip_end; 173 _bufferUsed->fde = fde; 174 ++_bufferUsed; 175 #ifdef __APPLE__ 176 if (!_registeredForDyldUnloads) { 177 _dyld_register_func_for_remove_image(&dyldUnloadHook); 178 _registeredForDyldUnloads = true; 179 } 180 #endif 181 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 182 #endif 183 } 184 185 template <typename A> 186 void DwarfFDECache<A>::removeAllIn(pint_t mh) { 187 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 188 entry *d = _buffer; 189 for (const entry *s = _buffer; s < _bufferUsed; ++s) { 190 if (s->mh != mh) { 191 if (d != s) 192 *d = *s; 193 ++d; 194 } 195 } 196 _bufferUsed = d; 197 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 198 } 199 200 #ifdef __APPLE__ 201 template <typename A> 202 void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) { 203 removeAllIn((pint_t) mh); 204 } 205 #endif 206 207 template <typename A> 208 void DwarfFDECache<A>::iterateCacheEntries(void (*func)( 209 unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) { 210 _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); 211 for (entry *p = _buffer; p < _bufferUsed; ++p) { 212 (*func)(p->ip_start, p->ip_end, p->fde, p->mh); 213 } 214 _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); 215 } 216 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 217 218 219 #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field)) 220 221 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 222 template <typename A> class UnwindSectionHeader { 223 public: 224 UnwindSectionHeader(A &addressSpace, typename A::pint_t addr) 225 : _addressSpace(addressSpace), _addr(addr) {} 226 227 uint32_t version() const { 228 return _addressSpace.get32(_addr + 229 offsetof(unwind_info_section_header, version)); 230 } 231 uint32_t commonEncodingsArraySectionOffset() const { 232 return _addressSpace.get32(_addr + 233 offsetof(unwind_info_section_header, 234 commonEncodingsArraySectionOffset)); 235 } 236 uint32_t commonEncodingsArrayCount() const { 237 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, 238 commonEncodingsArrayCount)); 239 } 240 uint32_t personalityArraySectionOffset() const { 241 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, 242 personalityArraySectionOffset)); 243 } 244 uint32_t personalityArrayCount() const { 245 return _addressSpace.get32( 246 _addr + offsetof(unwind_info_section_header, personalityArrayCount)); 247 } 248 uint32_t indexSectionOffset() const { 249 return _addressSpace.get32( 250 _addr + offsetof(unwind_info_section_header, indexSectionOffset)); 251 } 252 uint32_t indexCount() const { 253 return _addressSpace.get32( 254 _addr + offsetof(unwind_info_section_header, indexCount)); 255 } 256 257 private: 258 A &_addressSpace; 259 typename A::pint_t _addr; 260 }; 261 262 template <typename A> class UnwindSectionIndexArray { 263 public: 264 UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr) 265 : _addressSpace(addressSpace), _addr(addr) {} 266 267 uint32_t functionOffset(uint32_t index) const { 268 return _addressSpace.get32( 269 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 270 functionOffset)); 271 } 272 uint32_t secondLevelPagesSectionOffset(uint32_t index) const { 273 return _addressSpace.get32( 274 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 275 secondLevelPagesSectionOffset)); 276 } 277 uint32_t lsdaIndexArraySectionOffset(uint32_t index) const { 278 return _addressSpace.get32( 279 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, 280 lsdaIndexArraySectionOffset)); 281 } 282 283 private: 284 A &_addressSpace; 285 typename A::pint_t _addr; 286 }; 287 288 template <typename A> class UnwindSectionRegularPageHeader { 289 public: 290 UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr) 291 : _addressSpace(addressSpace), _addr(addr) {} 292 293 uint32_t kind() const { 294 return _addressSpace.get32( 295 _addr + offsetof(unwind_info_regular_second_level_page_header, kind)); 296 } 297 uint16_t entryPageOffset() const { 298 return _addressSpace.get16( 299 _addr + offsetof(unwind_info_regular_second_level_page_header, 300 entryPageOffset)); 301 } 302 uint16_t entryCount() const { 303 return _addressSpace.get16( 304 _addr + 305 offsetof(unwind_info_regular_second_level_page_header, entryCount)); 306 } 307 308 private: 309 A &_addressSpace; 310 typename A::pint_t _addr; 311 }; 312 313 template <typename A> class UnwindSectionRegularArray { 314 public: 315 UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr) 316 : _addressSpace(addressSpace), _addr(addr) {} 317 318 uint32_t functionOffset(uint32_t index) const { 319 return _addressSpace.get32( 320 _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, 321 functionOffset)); 322 } 323 uint32_t encoding(uint32_t index) const { 324 return _addressSpace.get32( 325 _addr + 326 arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding)); 327 } 328 329 private: 330 A &_addressSpace; 331 typename A::pint_t _addr; 332 }; 333 334 template <typename A> class UnwindSectionCompressedPageHeader { 335 public: 336 UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr) 337 : _addressSpace(addressSpace), _addr(addr) {} 338 339 uint32_t kind() const { 340 return _addressSpace.get32( 341 _addr + 342 offsetof(unwind_info_compressed_second_level_page_header, kind)); 343 } 344 uint16_t entryPageOffset() const { 345 return _addressSpace.get16( 346 _addr + offsetof(unwind_info_compressed_second_level_page_header, 347 entryPageOffset)); 348 } 349 uint16_t entryCount() const { 350 return _addressSpace.get16( 351 _addr + 352 offsetof(unwind_info_compressed_second_level_page_header, entryCount)); 353 } 354 uint16_t encodingsPageOffset() const { 355 return _addressSpace.get16( 356 _addr + offsetof(unwind_info_compressed_second_level_page_header, 357 encodingsPageOffset)); 358 } 359 uint16_t encodingsCount() const { 360 return _addressSpace.get16( 361 _addr + offsetof(unwind_info_compressed_second_level_page_header, 362 encodingsCount)); 363 } 364 365 private: 366 A &_addressSpace; 367 typename A::pint_t _addr; 368 }; 369 370 template <typename A> class UnwindSectionCompressedArray { 371 public: 372 UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr) 373 : _addressSpace(addressSpace), _addr(addr) {} 374 375 uint32_t functionOffset(uint32_t index) const { 376 return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET( 377 _addressSpace.get32(_addr + index * sizeof(uint32_t))); 378 } 379 uint16_t encodingIndex(uint32_t index) const { 380 return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX( 381 _addressSpace.get32(_addr + index * sizeof(uint32_t))); 382 } 383 384 private: 385 A &_addressSpace; 386 typename A::pint_t _addr; 387 }; 388 389 template <typename A> class UnwindSectionLsdaArray { 390 public: 391 UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr) 392 : _addressSpace(addressSpace), _addr(addr) {} 393 394 uint32_t functionOffset(uint32_t index) const { 395 return _addressSpace.get32( 396 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, 397 index, functionOffset)); 398 } 399 uint32_t lsdaOffset(uint32_t index) const { 400 return _addressSpace.get32( 401 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, 402 index, lsdaOffset)); 403 } 404 405 private: 406 A &_addressSpace; 407 typename A::pint_t _addr; 408 }; 409 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 410 411 class _LIBUNWIND_HIDDEN AbstractUnwindCursor { 412 public: 413 // NOTE: provide a class specific placement deallocation function (S5.3.4 p20) 414 // This avoids an unnecessary dependency to libc++abi. 415 void operator delete(void *, size_t) {} 416 417 virtual ~AbstractUnwindCursor() {} 418 virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); } 419 virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); } 420 virtual void setReg(int, unw_word_t) { 421 _LIBUNWIND_ABORT("setReg not implemented"); 422 } 423 virtual bool validFloatReg(int) { 424 _LIBUNWIND_ABORT("validFloatReg not implemented"); 425 } 426 virtual unw_fpreg_t getFloatReg(int) { 427 _LIBUNWIND_ABORT("getFloatReg not implemented"); 428 } 429 virtual void setFloatReg(int, unw_fpreg_t) { 430 _LIBUNWIND_ABORT("setFloatReg not implemented"); 431 } 432 virtual int step() { _LIBUNWIND_ABORT("step not implemented"); } 433 virtual void getInfo(unw_proc_info_t *) { 434 _LIBUNWIND_ABORT("getInfo not implemented"); 435 } 436 virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); } 437 virtual bool isSignalFrame() { 438 _LIBUNWIND_ABORT("isSignalFrame not implemented"); 439 } 440 virtual bool getFunctionName(char *, size_t, unw_word_t *) { 441 _LIBUNWIND_ABORT("getFunctionName not implemented"); 442 } 443 virtual void setInfoBasedOnIPRegister(bool = false) { 444 _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented"); 445 } 446 virtual const char *getRegisterName(int) { 447 _LIBUNWIND_ABORT("getRegisterName not implemented"); 448 } 449 #ifdef __arm__ 450 virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); } 451 #endif 452 }; 453 454 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32) 455 456 /// \c UnwindCursor contains all state (including all register values) during 457 /// an unwind. This is normally stack-allocated inside a unw_cursor_t. 458 template <typename A, typename R> 459 class UnwindCursor : public AbstractUnwindCursor { 460 typedef typename A::pint_t pint_t; 461 public: 462 UnwindCursor(unw_context_t *context, A &as); 463 UnwindCursor(CONTEXT *context, A &as); 464 UnwindCursor(A &as, void *threadArg); 465 virtual ~UnwindCursor() {} 466 virtual bool validReg(int); 467 virtual unw_word_t getReg(int); 468 virtual void setReg(int, unw_word_t); 469 virtual bool validFloatReg(int); 470 virtual unw_fpreg_t getFloatReg(int); 471 virtual void setFloatReg(int, unw_fpreg_t); 472 virtual int step(); 473 virtual void getInfo(unw_proc_info_t *); 474 virtual void jumpto(); 475 virtual bool isSignalFrame(); 476 virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); 477 virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); 478 virtual const char *getRegisterName(int num); 479 #ifdef __arm__ 480 virtual void saveVFPAsX(); 481 #endif 482 483 DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; } 484 void setDispatcherContext(DISPATCHER_CONTEXT *disp) { _dispContext = *disp; } 485 486 // libunwind does not and should not depend on C++ library which means that we 487 // need our own defition of inline placement new. 488 static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } 489 490 private: 491 492 pint_t getLastPC() const { return _dispContext.ControlPc; } 493 void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; } 494 RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { 495 _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc, 496 &_dispContext.ImageBase, 497 _dispContext.HistoryTable); 498 *base = _dispContext.ImageBase; 499 return _dispContext.FunctionEntry; 500 } 501 bool getInfoFromSEH(pint_t pc); 502 int stepWithSEHData() { 503 _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER, 504 _dispContext.ImageBase, 505 _dispContext.ControlPc, 506 _dispContext.FunctionEntry, 507 _dispContext.ContextRecord, 508 &_dispContext.HandlerData, 509 &_dispContext.EstablisherFrame, 510 NULL); 511 // Update some fields of the unwind info now, since we have them. 512 _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); 513 if (_dispContext.LanguageHandler) { 514 _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); 515 } else 516 _info.handler = 0; 517 return UNW_STEP_SUCCESS; 518 } 519 520 A &_addressSpace; 521 unw_proc_info_t _info; 522 DISPATCHER_CONTEXT _dispContext; 523 CONTEXT _msContext; 524 UNWIND_HISTORY_TABLE _histTable; 525 bool _unwindInfoMissing; 526 }; 527 528 529 template <typename A, typename R> 530 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) 531 : _addressSpace(as), _unwindInfoMissing(false) { 532 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 533 "UnwindCursor<> does not fit in unw_cursor_t"); 534 static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)), 535 "UnwindCursor<> requires more alignment than unw_cursor_t"); 536 memset(&_info, 0, sizeof(_info)); 537 memset(&_histTable, 0, sizeof(_histTable)); 538 _dispContext.ContextRecord = &_msContext; 539 _dispContext.HistoryTable = &_histTable; 540 // Initialize MS context from ours. 541 R r(context); 542 _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT; 543 #if defined(_LIBUNWIND_TARGET_X86_64) 544 _msContext.Rax = r.getRegister(UNW_X86_64_RAX); 545 _msContext.Rcx = r.getRegister(UNW_X86_64_RCX); 546 _msContext.Rdx = r.getRegister(UNW_X86_64_RDX); 547 _msContext.Rbx = r.getRegister(UNW_X86_64_RBX); 548 _msContext.Rsp = r.getRegister(UNW_X86_64_RSP); 549 _msContext.Rbp = r.getRegister(UNW_X86_64_RBP); 550 _msContext.Rsi = r.getRegister(UNW_X86_64_RSI); 551 _msContext.Rdi = r.getRegister(UNW_X86_64_RDI); 552 _msContext.R8 = r.getRegister(UNW_X86_64_R8); 553 _msContext.R9 = r.getRegister(UNW_X86_64_R9); 554 _msContext.R10 = r.getRegister(UNW_X86_64_R10); 555 _msContext.R11 = r.getRegister(UNW_X86_64_R11); 556 _msContext.R12 = r.getRegister(UNW_X86_64_R12); 557 _msContext.R13 = r.getRegister(UNW_X86_64_R13); 558 _msContext.R14 = r.getRegister(UNW_X86_64_R14); 559 _msContext.R15 = r.getRegister(UNW_X86_64_R15); 560 _msContext.Rip = r.getRegister(UNW_REG_IP); 561 union { 562 v128 v; 563 M128A m; 564 } t; 565 t.v = r.getVectorRegister(UNW_X86_64_XMM0); 566 _msContext.Xmm0 = t.m; 567 t.v = r.getVectorRegister(UNW_X86_64_XMM1); 568 _msContext.Xmm1 = t.m; 569 t.v = r.getVectorRegister(UNW_X86_64_XMM2); 570 _msContext.Xmm2 = t.m; 571 t.v = r.getVectorRegister(UNW_X86_64_XMM3); 572 _msContext.Xmm3 = t.m; 573 t.v = r.getVectorRegister(UNW_X86_64_XMM4); 574 _msContext.Xmm4 = t.m; 575 t.v = r.getVectorRegister(UNW_X86_64_XMM5); 576 _msContext.Xmm5 = t.m; 577 t.v = r.getVectorRegister(UNW_X86_64_XMM6); 578 _msContext.Xmm6 = t.m; 579 t.v = r.getVectorRegister(UNW_X86_64_XMM7); 580 _msContext.Xmm7 = t.m; 581 t.v = r.getVectorRegister(UNW_X86_64_XMM8); 582 _msContext.Xmm8 = t.m; 583 t.v = r.getVectorRegister(UNW_X86_64_XMM9); 584 _msContext.Xmm9 = t.m; 585 t.v = r.getVectorRegister(UNW_X86_64_XMM10); 586 _msContext.Xmm10 = t.m; 587 t.v = r.getVectorRegister(UNW_X86_64_XMM11); 588 _msContext.Xmm11 = t.m; 589 t.v = r.getVectorRegister(UNW_X86_64_XMM12); 590 _msContext.Xmm12 = t.m; 591 t.v = r.getVectorRegister(UNW_X86_64_XMM13); 592 _msContext.Xmm13 = t.m; 593 t.v = r.getVectorRegister(UNW_X86_64_XMM14); 594 _msContext.Xmm14 = t.m; 595 t.v = r.getVectorRegister(UNW_X86_64_XMM15); 596 _msContext.Xmm15 = t.m; 597 #elif defined(_LIBUNWIND_TARGET_ARM) 598 _msContext.R0 = r.getRegister(UNW_ARM_R0); 599 _msContext.R1 = r.getRegister(UNW_ARM_R1); 600 _msContext.R2 = r.getRegister(UNW_ARM_R2); 601 _msContext.R3 = r.getRegister(UNW_ARM_R3); 602 _msContext.R4 = r.getRegister(UNW_ARM_R4); 603 _msContext.R5 = r.getRegister(UNW_ARM_R5); 604 _msContext.R6 = r.getRegister(UNW_ARM_R6); 605 _msContext.R7 = r.getRegister(UNW_ARM_R7); 606 _msContext.R8 = r.getRegister(UNW_ARM_R8); 607 _msContext.R9 = r.getRegister(UNW_ARM_R9); 608 _msContext.R10 = r.getRegister(UNW_ARM_R10); 609 _msContext.R11 = r.getRegister(UNW_ARM_R11); 610 _msContext.R12 = r.getRegister(UNW_ARM_R12); 611 _msContext.Sp = r.getRegister(UNW_ARM_SP); 612 _msContext.Lr = r.getRegister(UNW_ARM_LR); 613 _msContext.Pc = r.getRegister(UNW_ARM_IP); 614 for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) { 615 union { 616 uint64_t w; 617 double d; 618 } d; 619 d.d = r.getFloatRegister(i); 620 _msContext.D[i - UNW_ARM_D0] = d.w; 621 } 622 #elif defined(_LIBUNWIND_TARGET_AARCH64) 623 for (int i = UNW_ARM64_X0; i <= UNW_ARM64_X30; ++i) 624 _msContext.X[i - UNW_ARM64_X0] = r.getRegister(i); 625 _msContext.Sp = r.getRegister(UNW_REG_SP); 626 _msContext.Pc = r.getRegister(UNW_REG_IP); 627 for (int i = UNW_ARM64_D0; i <= UNW_ARM64_D31; ++i) 628 _msContext.V[i - UNW_ARM64_D0].D[0] = r.getFloatRegister(i); 629 #endif 630 } 631 632 template <typename A, typename R> 633 UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as) 634 : _addressSpace(as), _unwindInfoMissing(false) { 635 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 636 "UnwindCursor<> does not fit in unw_cursor_t"); 637 memset(&_info, 0, sizeof(_info)); 638 memset(&_histTable, 0, sizeof(_histTable)); 639 _dispContext.ContextRecord = &_msContext; 640 _dispContext.HistoryTable = &_histTable; 641 _msContext = *context; 642 } 643 644 645 template <typename A, typename R> 646 bool UnwindCursor<A, R>::validReg(int regNum) { 647 if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true; 648 #if defined(_LIBUNWIND_TARGET_X86_64) 649 if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_R15) return true; 650 #elif defined(_LIBUNWIND_TARGET_ARM) 651 if (regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) return true; 652 #elif defined(_LIBUNWIND_TARGET_AARCH64) 653 if (regNum >= UNW_ARM64_X0 && regNum <= UNW_ARM64_X30) return true; 654 #endif 655 return false; 656 } 657 658 template <typename A, typename R> 659 unw_word_t UnwindCursor<A, R>::getReg(int regNum) { 660 switch (regNum) { 661 #if defined(_LIBUNWIND_TARGET_X86_64) 662 case UNW_REG_IP: return _msContext.Rip; 663 case UNW_X86_64_RAX: return _msContext.Rax; 664 case UNW_X86_64_RDX: return _msContext.Rdx; 665 case UNW_X86_64_RCX: return _msContext.Rcx; 666 case UNW_X86_64_RBX: return _msContext.Rbx; 667 case UNW_REG_SP: 668 case UNW_X86_64_RSP: return _msContext.Rsp; 669 case UNW_X86_64_RBP: return _msContext.Rbp; 670 case UNW_X86_64_RSI: return _msContext.Rsi; 671 case UNW_X86_64_RDI: return _msContext.Rdi; 672 case UNW_X86_64_R8: return _msContext.R8; 673 case UNW_X86_64_R9: return _msContext.R9; 674 case UNW_X86_64_R10: return _msContext.R10; 675 case UNW_X86_64_R11: return _msContext.R11; 676 case UNW_X86_64_R12: return _msContext.R12; 677 case UNW_X86_64_R13: return _msContext.R13; 678 case UNW_X86_64_R14: return _msContext.R14; 679 case UNW_X86_64_R15: return _msContext.R15; 680 #elif defined(_LIBUNWIND_TARGET_ARM) 681 case UNW_ARM_R0: return _msContext.R0; 682 case UNW_ARM_R1: return _msContext.R1; 683 case UNW_ARM_R2: return _msContext.R2; 684 case UNW_ARM_R3: return _msContext.R3; 685 case UNW_ARM_R4: return _msContext.R4; 686 case UNW_ARM_R5: return _msContext.R5; 687 case UNW_ARM_R6: return _msContext.R6; 688 case UNW_ARM_R7: return _msContext.R7; 689 case UNW_ARM_R8: return _msContext.R8; 690 case UNW_ARM_R9: return _msContext.R9; 691 case UNW_ARM_R10: return _msContext.R10; 692 case UNW_ARM_R11: return _msContext.R11; 693 case UNW_ARM_R12: return _msContext.R12; 694 case UNW_REG_SP: 695 case UNW_ARM_SP: return _msContext.Sp; 696 case UNW_ARM_LR: return _msContext.Lr; 697 case UNW_REG_IP: 698 case UNW_ARM_IP: return _msContext.Pc; 699 #elif defined(_LIBUNWIND_TARGET_AARCH64) 700 case UNW_REG_SP: return _msContext.Sp; 701 case UNW_REG_IP: return _msContext.Pc; 702 default: return _msContext.X[regNum - UNW_ARM64_X0]; 703 #endif 704 } 705 _LIBUNWIND_ABORT("unsupported register"); 706 } 707 708 template <typename A, typename R> 709 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { 710 switch (regNum) { 711 #if defined(_LIBUNWIND_TARGET_X86_64) 712 case UNW_REG_IP: _msContext.Rip = value; break; 713 case UNW_X86_64_RAX: _msContext.Rax = value; break; 714 case UNW_X86_64_RDX: _msContext.Rdx = value; break; 715 case UNW_X86_64_RCX: _msContext.Rcx = value; break; 716 case UNW_X86_64_RBX: _msContext.Rbx = value; break; 717 case UNW_REG_SP: 718 case UNW_X86_64_RSP: _msContext.Rsp = value; break; 719 case UNW_X86_64_RBP: _msContext.Rbp = value; break; 720 case UNW_X86_64_RSI: _msContext.Rsi = value; break; 721 case UNW_X86_64_RDI: _msContext.Rdi = value; break; 722 case UNW_X86_64_R8: _msContext.R8 = value; break; 723 case UNW_X86_64_R9: _msContext.R9 = value; break; 724 case UNW_X86_64_R10: _msContext.R10 = value; break; 725 case UNW_X86_64_R11: _msContext.R11 = value; break; 726 case UNW_X86_64_R12: _msContext.R12 = value; break; 727 case UNW_X86_64_R13: _msContext.R13 = value; break; 728 case UNW_X86_64_R14: _msContext.R14 = value; break; 729 case UNW_X86_64_R15: _msContext.R15 = value; break; 730 #elif defined(_LIBUNWIND_TARGET_ARM) 731 case UNW_ARM_R0: _msContext.R0 = value; break; 732 case UNW_ARM_R1: _msContext.R1 = value; break; 733 case UNW_ARM_R2: _msContext.R2 = value; break; 734 case UNW_ARM_R3: _msContext.R3 = value; break; 735 case UNW_ARM_R4: _msContext.R4 = value; break; 736 case UNW_ARM_R5: _msContext.R5 = value; break; 737 case UNW_ARM_R6: _msContext.R6 = value; break; 738 case UNW_ARM_R7: _msContext.R7 = value; break; 739 case UNW_ARM_R8: _msContext.R8 = value; break; 740 case UNW_ARM_R9: _msContext.R9 = value; break; 741 case UNW_ARM_R10: _msContext.R10 = value; break; 742 case UNW_ARM_R11: _msContext.R11 = value; break; 743 case UNW_ARM_R12: _msContext.R12 = value; break; 744 case UNW_REG_SP: 745 case UNW_ARM_SP: _msContext.Sp = value; break; 746 case UNW_ARM_LR: _msContext.Lr = value; break; 747 case UNW_REG_IP: 748 case UNW_ARM_IP: _msContext.Pc = value; break; 749 #elif defined(_LIBUNWIND_TARGET_AARCH64) 750 case UNW_REG_SP: _msContext.Sp = value; break; 751 case UNW_REG_IP: _msContext.Pc = value; break; 752 case UNW_ARM64_X0: 753 case UNW_ARM64_X1: 754 case UNW_ARM64_X2: 755 case UNW_ARM64_X3: 756 case UNW_ARM64_X4: 757 case UNW_ARM64_X5: 758 case UNW_ARM64_X6: 759 case UNW_ARM64_X7: 760 case UNW_ARM64_X8: 761 case UNW_ARM64_X9: 762 case UNW_ARM64_X10: 763 case UNW_ARM64_X11: 764 case UNW_ARM64_X12: 765 case UNW_ARM64_X13: 766 case UNW_ARM64_X14: 767 case UNW_ARM64_X15: 768 case UNW_ARM64_X16: 769 case UNW_ARM64_X17: 770 case UNW_ARM64_X18: 771 case UNW_ARM64_X19: 772 case UNW_ARM64_X20: 773 case UNW_ARM64_X21: 774 case UNW_ARM64_X22: 775 case UNW_ARM64_X23: 776 case UNW_ARM64_X24: 777 case UNW_ARM64_X25: 778 case UNW_ARM64_X26: 779 case UNW_ARM64_X27: 780 case UNW_ARM64_X28: 781 case UNW_ARM64_FP: 782 case UNW_ARM64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break; 783 #endif 784 default: 785 _LIBUNWIND_ABORT("unsupported register"); 786 } 787 } 788 789 template <typename A, typename R> 790 bool UnwindCursor<A, R>::validFloatReg(int regNum) { 791 #if defined(_LIBUNWIND_TARGET_ARM) 792 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true; 793 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true; 794 #elif defined(_LIBUNWIND_TARGET_AARCH64) 795 if (regNum >= UNW_ARM64_D0 && regNum <= UNW_ARM64_D31) return true; 796 #else 797 (void)regNum; 798 #endif 799 return false; 800 } 801 802 template <typename A, typename R> 803 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { 804 #if defined(_LIBUNWIND_TARGET_ARM) 805 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { 806 union { 807 uint32_t w; 808 float f; 809 } d; 810 d.w = _msContext.S[regNum - UNW_ARM_S0]; 811 return d.f; 812 } 813 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { 814 union { 815 uint64_t w; 816 double d; 817 } d; 818 d.w = _msContext.D[regNum - UNW_ARM_D0]; 819 return d.d; 820 } 821 _LIBUNWIND_ABORT("unsupported float register"); 822 #elif defined(_LIBUNWIND_TARGET_AARCH64) 823 return _msContext.V[regNum - UNW_ARM64_D0].D[0]; 824 #else 825 (void)regNum; 826 _LIBUNWIND_ABORT("float registers unimplemented"); 827 #endif 828 } 829 830 template <typename A, typename R> 831 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { 832 #if defined(_LIBUNWIND_TARGET_ARM) 833 if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { 834 union { 835 uint32_t w; 836 float f; 837 } d; 838 d.f = value; 839 _msContext.S[regNum - UNW_ARM_S0] = d.w; 840 } 841 if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { 842 union { 843 uint64_t w; 844 double d; 845 } d; 846 d.d = value; 847 _msContext.D[regNum - UNW_ARM_D0] = d.w; 848 } 849 _LIBUNWIND_ABORT("unsupported float register"); 850 #elif defined(_LIBUNWIND_TARGET_AARCH64) 851 _msContext.V[regNum - UNW_ARM64_D0].D[0] = value; 852 #else 853 (void)regNum; 854 (void)value; 855 _LIBUNWIND_ABORT("float registers unimplemented"); 856 #endif 857 } 858 859 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { 860 RtlRestoreContext(&_msContext, nullptr); 861 } 862 863 #ifdef __arm__ 864 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {} 865 #endif 866 867 template <typename A, typename R> 868 const char *UnwindCursor<A, R>::getRegisterName(int regNum) { 869 return R::getRegisterName(regNum); 870 } 871 872 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { 873 return false; 874 } 875 876 #else // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32) 877 878 /// UnwindCursor contains all state (including all register values) during 879 /// an unwind. This is normally stack allocated inside a unw_cursor_t. 880 template <typename A, typename R> 881 class UnwindCursor : public AbstractUnwindCursor{ 882 typedef typename A::pint_t pint_t; 883 public: 884 UnwindCursor(unw_context_t *context, A &as); 885 UnwindCursor(A &as, void *threadArg); 886 virtual ~UnwindCursor() {} 887 virtual bool validReg(int); 888 virtual unw_word_t getReg(int); 889 virtual void setReg(int, unw_word_t); 890 virtual bool validFloatReg(int); 891 virtual unw_fpreg_t getFloatReg(int); 892 virtual void setFloatReg(int, unw_fpreg_t); 893 virtual int step(); 894 virtual void getInfo(unw_proc_info_t *); 895 virtual void jumpto(); 896 virtual bool isSignalFrame(); 897 virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); 898 virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); 899 virtual const char *getRegisterName(int num); 900 #ifdef __arm__ 901 virtual void saveVFPAsX(); 902 #endif 903 904 // libunwind does not and should not depend on C++ library which means that we 905 // need our own defition of inline placement new. 906 static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } 907 908 private: 909 910 #if defined(_LIBUNWIND_ARM_EHABI) 911 bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s); 912 913 int stepWithEHABI() { 914 size_t len = 0; 915 size_t off = 0; 916 // FIXME: Calling decode_eht_entry() here is violating the libunwind 917 // abstraction layer. 918 const uint32_t *ehtp = 919 decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info), 920 &off, &len); 921 if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) != 922 _URC_CONTINUE_UNWIND) 923 return UNW_STEP_END; 924 return UNW_STEP_SUCCESS; 925 } 926 #endif 927 928 #if defined(_LIBUNWIND_TARGET_LINUX) && defined(_LIBUNWIND_TARGET_AARCH64) 929 bool setInfoForSigReturn() { 930 R dummy; 931 return setInfoForSigReturn(dummy); 932 } 933 int stepThroughSigReturn() { 934 R dummy; 935 return stepThroughSigReturn(dummy); 936 } 937 bool setInfoForSigReturn(Registers_arm64 &); 938 int stepThroughSigReturn(Registers_arm64 &); 939 template <typename Registers> bool setInfoForSigReturn(Registers &) { 940 return false; 941 } 942 template <typename Registers> int stepThroughSigReturn(Registers &) { 943 return UNW_STEP_END; 944 } 945 #endif 946 947 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 948 bool getInfoFromFdeCie(const typename CFI_Parser<A>::FDE_Info &fdeInfo, 949 const typename CFI_Parser<A>::CIE_Info &cieInfo, 950 pint_t pc, uintptr_t dso_base); 951 bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, 952 uint32_t fdeSectionOffsetHint=0); 953 int stepWithDwarfFDE() { 954 return DwarfInstructions<A, R>::stepWithDwarf(_addressSpace, 955 (pint_t)this->getReg(UNW_REG_IP), 956 (pint_t)_info.unwind_info, 957 _registers, _isSignalFrame); 958 } 959 #endif 960 961 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 962 bool getInfoFromCompactEncodingSection(pint_t pc, 963 const UnwindInfoSections §s); 964 int stepWithCompactEncoding() { 965 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 966 if ( compactSaysUseDwarf() ) 967 return stepWithDwarfFDE(); 968 #endif 969 R dummy; 970 return stepWithCompactEncoding(dummy); 971 } 972 973 #if defined(_LIBUNWIND_TARGET_X86_64) 974 int stepWithCompactEncoding(Registers_x86_64 &) { 975 return CompactUnwinder_x86_64<A>::stepWithCompactEncoding( 976 _info.format, _info.start_ip, _addressSpace, _registers); 977 } 978 #endif 979 980 #if defined(_LIBUNWIND_TARGET_I386) 981 int stepWithCompactEncoding(Registers_x86 &) { 982 return CompactUnwinder_x86<A>::stepWithCompactEncoding( 983 _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers); 984 } 985 #endif 986 987 #if defined(_LIBUNWIND_TARGET_PPC) 988 int stepWithCompactEncoding(Registers_ppc &) { 989 return UNW_EINVAL; 990 } 991 #endif 992 993 #if defined(_LIBUNWIND_TARGET_PPC64) 994 int stepWithCompactEncoding(Registers_ppc64 &) { 995 return UNW_EINVAL; 996 } 997 #endif 998 999 1000 #if defined(_LIBUNWIND_TARGET_AARCH64) 1001 int stepWithCompactEncoding(Registers_arm64 &) { 1002 return CompactUnwinder_arm64<A>::stepWithCompactEncoding( 1003 _info.format, _info.start_ip, _addressSpace, _registers); 1004 } 1005 #endif 1006 1007 #if defined(_LIBUNWIND_TARGET_MIPS_O32) 1008 int stepWithCompactEncoding(Registers_mips_o32 &) { 1009 return UNW_EINVAL; 1010 } 1011 #endif 1012 1013 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) 1014 int stepWithCompactEncoding(Registers_mips_newabi &) { 1015 return UNW_EINVAL; 1016 } 1017 #endif 1018 1019 #if defined(_LIBUNWIND_TARGET_SPARC) 1020 int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; } 1021 #endif 1022 1023 #if defined (_LIBUNWIND_TARGET_RISCV) 1024 int stepWithCompactEncoding(Registers_riscv &) { 1025 return UNW_EINVAL; 1026 } 1027 #endif 1028 1029 bool compactSaysUseDwarf(uint32_t *offset=NULL) const { 1030 R dummy; 1031 return compactSaysUseDwarf(dummy, offset); 1032 } 1033 1034 #if defined(_LIBUNWIND_TARGET_X86_64) 1035 bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const { 1036 if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) { 1037 if (offset) 1038 *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET); 1039 return true; 1040 } 1041 return false; 1042 } 1043 #endif 1044 1045 #if defined(_LIBUNWIND_TARGET_I386) 1046 bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const { 1047 if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) { 1048 if (offset) 1049 *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET); 1050 return true; 1051 } 1052 return false; 1053 } 1054 #endif 1055 1056 #if defined(_LIBUNWIND_TARGET_PPC) 1057 bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const { 1058 return true; 1059 } 1060 #endif 1061 1062 #if defined(_LIBUNWIND_TARGET_PPC64) 1063 bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const { 1064 return true; 1065 } 1066 #endif 1067 1068 #if defined(_LIBUNWIND_TARGET_AARCH64) 1069 bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const { 1070 if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) { 1071 if (offset) 1072 *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET); 1073 return true; 1074 } 1075 return false; 1076 } 1077 #endif 1078 1079 #if defined(_LIBUNWIND_TARGET_MIPS_O32) 1080 bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const { 1081 return true; 1082 } 1083 #endif 1084 1085 #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) 1086 bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const { 1087 return true; 1088 } 1089 #endif 1090 1091 #if defined(_LIBUNWIND_TARGET_SPARC) 1092 bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; } 1093 #endif 1094 1095 #if defined (_LIBUNWIND_TARGET_RISCV) 1096 bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const { 1097 return true; 1098 } 1099 #endif 1100 1101 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1102 1103 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1104 compact_unwind_encoding_t dwarfEncoding() const { 1105 R dummy; 1106 return dwarfEncoding(dummy); 1107 } 1108 1109 #if defined(_LIBUNWIND_TARGET_X86_64) 1110 compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const { 1111 return UNWIND_X86_64_MODE_DWARF; 1112 } 1113 #endif 1114 1115 #if defined(_LIBUNWIND_TARGET_I386) 1116 compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const { 1117 return UNWIND_X86_MODE_DWARF; 1118 } 1119 #endif 1120 1121 #if defined(_LIBUNWIND_TARGET_PPC) 1122 compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const { 1123 return 0; 1124 } 1125 #endif 1126 1127 #if defined(_LIBUNWIND_TARGET_PPC64) 1128 compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const { 1129 return 0; 1130 } 1131 #endif 1132 1133 #if defined(_LIBUNWIND_TARGET_AARCH64) 1134 compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const { 1135 return UNWIND_ARM64_MODE_DWARF; 1136 } 1137 #endif 1138 1139 #if defined(_LIBUNWIND_TARGET_ARM) 1140 compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const { 1141 return 0; 1142 } 1143 #endif 1144 1145 #if defined (_LIBUNWIND_TARGET_OR1K) 1146 compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const { 1147 return 0; 1148 } 1149 #endif 1150 1151 #if defined (_LIBUNWIND_TARGET_HEXAGON) 1152 compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const { 1153 return 0; 1154 } 1155 #endif 1156 1157 #if defined (_LIBUNWIND_TARGET_MIPS_O32) 1158 compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const { 1159 return 0; 1160 } 1161 #endif 1162 1163 #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI) 1164 compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const { 1165 return 0; 1166 } 1167 #endif 1168 1169 #if defined(_LIBUNWIND_TARGET_SPARC) 1170 compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; } 1171 #endif 1172 1173 #if defined (_LIBUNWIND_TARGET_RISCV) 1174 compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const { 1175 return 0; 1176 } 1177 #endif 1178 1179 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1180 1181 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1182 // For runtime environments using SEH unwind data without Windows runtime 1183 // support. 1184 pint_t getLastPC() const { /* FIXME: Implement */ return 0; } 1185 void setLastPC(pint_t pc) { /* FIXME: Implement */ } 1186 RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { 1187 /* FIXME: Implement */ 1188 *base = 0; 1189 return nullptr; 1190 } 1191 bool getInfoFromSEH(pint_t pc); 1192 int stepWithSEHData() { /* FIXME: Implement */ return 0; } 1193 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1194 1195 1196 A &_addressSpace; 1197 R _registers; 1198 unw_proc_info_t _info; 1199 bool _unwindInfoMissing; 1200 bool _isSignalFrame; 1201 #if defined(_LIBUNWIND_TARGET_LINUX) && defined(_LIBUNWIND_TARGET_AARCH64) 1202 bool _isSigReturn = false; 1203 #endif 1204 }; 1205 1206 1207 template <typename A, typename R> 1208 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) 1209 : _addressSpace(as), _registers(context), _unwindInfoMissing(false), 1210 _isSignalFrame(false) { 1211 static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), 1212 "UnwindCursor<> does not fit in unw_cursor_t"); 1213 static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)), 1214 "UnwindCursor<> requires more alignment than unw_cursor_t"); 1215 memset(&_info, 0, sizeof(_info)); 1216 } 1217 1218 template <typename A, typename R> 1219 UnwindCursor<A, R>::UnwindCursor(A &as, void *) 1220 : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) { 1221 memset(&_info, 0, sizeof(_info)); 1222 // FIXME 1223 // fill in _registers from thread arg 1224 } 1225 1226 1227 template <typename A, typename R> 1228 bool UnwindCursor<A, R>::validReg(int regNum) { 1229 return _registers.validRegister(regNum); 1230 } 1231 1232 template <typename A, typename R> 1233 unw_word_t UnwindCursor<A, R>::getReg(int regNum) { 1234 return _registers.getRegister(regNum); 1235 } 1236 1237 template <typename A, typename R> 1238 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { 1239 _registers.setRegister(regNum, (typename A::pint_t)value); 1240 } 1241 1242 template <typename A, typename R> 1243 bool UnwindCursor<A, R>::validFloatReg(int regNum) { 1244 return _registers.validFloatRegister(regNum); 1245 } 1246 1247 template <typename A, typename R> 1248 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { 1249 return _registers.getFloatRegister(regNum); 1250 } 1251 1252 template <typename A, typename R> 1253 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { 1254 _registers.setFloatRegister(regNum, value); 1255 } 1256 1257 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { 1258 _registers.jumpto(); 1259 } 1260 1261 #ifdef __arm__ 1262 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() { 1263 _registers.saveVFPAsX(); 1264 } 1265 #endif 1266 1267 template <typename A, typename R> 1268 const char *UnwindCursor<A, R>::getRegisterName(int regNum) { 1269 return _registers.getRegisterName(regNum); 1270 } 1271 1272 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { 1273 return _isSignalFrame; 1274 } 1275 1276 #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1277 1278 #if defined(_LIBUNWIND_ARM_EHABI) 1279 template<typename A> 1280 struct EHABISectionIterator { 1281 typedef EHABISectionIterator _Self; 1282 1283 typedef typename A::pint_t value_type; 1284 typedef typename A::pint_t* pointer; 1285 typedef typename A::pint_t& reference; 1286 typedef size_t size_type; 1287 typedef size_t difference_type; 1288 1289 static _Self begin(A& addressSpace, const UnwindInfoSections& sects) { 1290 return _Self(addressSpace, sects, 0); 1291 } 1292 static _Self end(A& addressSpace, const UnwindInfoSections& sects) { 1293 return _Self(addressSpace, sects, 1294 sects.arm_section_length / sizeof(EHABIIndexEntry)); 1295 } 1296 1297 EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i) 1298 : _i(i), _addressSpace(&addressSpace), _sects(§s) {} 1299 1300 _Self& operator++() { ++_i; return *this; } 1301 _Self& operator+=(size_t a) { _i += a; return *this; } 1302 _Self& operator--() { assert(_i > 0); --_i; return *this; } 1303 _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; } 1304 1305 _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; } 1306 _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; } 1307 1308 size_t operator-(const _Self& other) const { return _i - other._i; } 1309 1310 bool operator==(const _Self& other) const { 1311 assert(_addressSpace == other._addressSpace); 1312 assert(_sects == other._sects); 1313 return _i == other._i; 1314 } 1315 1316 bool operator!=(const _Self& other) const { 1317 assert(_addressSpace == other._addressSpace); 1318 assert(_sects == other._sects); 1319 return _i != other._i; 1320 } 1321 1322 typename A::pint_t operator*() const { return functionAddress(); } 1323 1324 typename A::pint_t functionAddress() const { 1325 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( 1326 EHABIIndexEntry, _i, functionOffset); 1327 return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr)); 1328 } 1329 1330 typename A::pint_t dataAddress() { 1331 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( 1332 EHABIIndexEntry, _i, data); 1333 return indexAddr; 1334 } 1335 1336 private: 1337 size_t _i; 1338 A* _addressSpace; 1339 const UnwindInfoSections* _sects; 1340 }; 1341 1342 namespace { 1343 1344 template <typename A> 1345 EHABISectionIterator<A> EHABISectionUpperBound( 1346 EHABISectionIterator<A> first, 1347 EHABISectionIterator<A> last, 1348 typename A::pint_t value) { 1349 size_t len = last - first; 1350 while (len > 0) { 1351 size_t l2 = len / 2; 1352 EHABISectionIterator<A> m = first + l2; 1353 if (value < *m) { 1354 len = l2; 1355 } else { 1356 first = ++m; 1357 len -= l2 + 1; 1358 } 1359 } 1360 return first; 1361 } 1362 1363 } 1364 1365 template <typename A, typename R> 1366 bool UnwindCursor<A, R>::getInfoFromEHABISection( 1367 pint_t pc, 1368 const UnwindInfoSections §s) { 1369 EHABISectionIterator<A> begin = 1370 EHABISectionIterator<A>::begin(_addressSpace, sects); 1371 EHABISectionIterator<A> end = 1372 EHABISectionIterator<A>::end(_addressSpace, sects); 1373 if (begin == end) 1374 return false; 1375 1376 EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc); 1377 if (itNextPC == begin) 1378 return false; 1379 EHABISectionIterator<A> itThisPC = itNextPC - 1; 1380 1381 pint_t thisPC = itThisPC.functionAddress(); 1382 // If an exception is thrown from a function, corresponding to the last entry 1383 // in the table, we don't really know the function extent and have to choose a 1384 // value for nextPC. Choosing max() will allow the range check during trace to 1385 // succeed. 1386 pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress(); 1387 pint_t indexDataAddr = itThisPC.dataAddress(); 1388 1389 if (indexDataAddr == 0) 1390 return false; 1391 1392 uint32_t indexData = _addressSpace.get32(indexDataAddr); 1393 if (indexData == UNW_EXIDX_CANTUNWIND) 1394 return false; 1395 1396 // If the high bit is set, the exception handling table entry is inline inside 1397 // the index table entry on the second word (aka |indexDataAddr|). Otherwise, 1398 // the table points at an offset in the exception handling table (section 5 1399 // EHABI). 1400 pint_t exceptionTableAddr; 1401 uint32_t exceptionTableData; 1402 bool isSingleWordEHT; 1403 if (indexData & 0x80000000) { 1404 exceptionTableAddr = indexDataAddr; 1405 // TODO(ajwong): Should this data be 0? 1406 exceptionTableData = indexData; 1407 isSingleWordEHT = true; 1408 } else { 1409 exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData); 1410 exceptionTableData = _addressSpace.get32(exceptionTableAddr); 1411 isSingleWordEHT = false; 1412 } 1413 1414 // Now we know the 3 things: 1415 // exceptionTableAddr -- exception handler table entry. 1416 // exceptionTableData -- the data inside the first word of the eht entry. 1417 // isSingleWordEHT -- whether the entry is in the index. 1418 unw_word_t personalityRoutine = 0xbadf00d; 1419 bool scope32 = false; 1420 uintptr_t lsda; 1421 1422 // If the high bit in the exception handling table entry is set, the entry is 1423 // in compact form (section 6.3 EHABI). 1424 if (exceptionTableData & 0x80000000) { 1425 // Grab the index of the personality routine from the compact form. 1426 uint32_t choice = (exceptionTableData & 0x0f000000) >> 24; 1427 uint32_t extraWords = 0; 1428 switch (choice) { 1429 case 0: 1430 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0; 1431 extraWords = 0; 1432 scope32 = false; 1433 lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4); 1434 break; 1435 case 1: 1436 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1; 1437 extraWords = (exceptionTableData & 0x00ff0000) >> 16; 1438 scope32 = false; 1439 lsda = exceptionTableAddr + (extraWords + 1) * 4; 1440 break; 1441 case 2: 1442 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2; 1443 extraWords = (exceptionTableData & 0x00ff0000) >> 16; 1444 scope32 = true; 1445 lsda = exceptionTableAddr + (extraWords + 1) * 4; 1446 break; 1447 default: 1448 _LIBUNWIND_ABORT("unknown personality routine"); 1449 return false; 1450 } 1451 1452 if (isSingleWordEHT) { 1453 if (extraWords != 0) { 1454 _LIBUNWIND_ABORT("index inlined table detected but pr function " 1455 "requires extra words"); 1456 return false; 1457 } 1458 } 1459 } else { 1460 pint_t personalityAddr = 1461 exceptionTableAddr + signExtendPrel31(exceptionTableData); 1462 personalityRoutine = personalityAddr; 1463 1464 // ARM EHABI # 6.2, # 9.2 1465 // 1466 // +---- ehtp 1467 // v 1468 // +--------------------------------------+ 1469 // | +--------+--------+--------+-------+ | 1470 // | |0| prel31 to personalityRoutine | | 1471 // | +--------+--------+--------+-------+ | 1472 // | | N | unwind opcodes | | <-- UnwindData 1473 // | +--------+--------+--------+-------+ | 1474 // | | Word 2 unwind opcodes | | 1475 // | +--------+--------+--------+-------+ | 1476 // | ... | 1477 // | +--------+--------+--------+-------+ | 1478 // | | Word N unwind opcodes | | 1479 // | +--------+--------+--------+-------+ | 1480 // | | LSDA | | <-- lsda 1481 // | | ... | | 1482 // | +--------+--------+--------+-------+ | 1483 // +--------------------------------------+ 1484 1485 uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1; 1486 uint32_t FirstDataWord = *UnwindData; 1487 size_t N = ((FirstDataWord >> 24) & 0xff); 1488 size_t NDataWords = N + 1; 1489 lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords); 1490 } 1491 1492 _info.start_ip = thisPC; 1493 _info.end_ip = nextPC; 1494 _info.handler = personalityRoutine; 1495 _info.unwind_info = exceptionTableAddr; 1496 _info.lsda = lsda; 1497 // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0. 1498 _info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0); // Use enum? 1499 1500 return true; 1501 } 1502 #endif 1503 1504 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1505 template <typename A, typename R> 1506 bool UnwindCursor<A, R>::getInfoFromFdeCie( 1507 const typename CFI_Parser<A>::FDE_Info &fdeInfo, 1508 const typename CFI_Parser<A>::CIE_Info &cieInfo, pint_t pc, 1509 uintptr_t dso_base) { 1510 typename CFI_Parser<A>::PrologInfo prolog; 1511 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, 1512 R::getArch(), &prolog)) { 1513 // Save off parsed FDE info 1514 _info.start_ip = fdeInfo.pcStart; 1515 _info.end_ip = fdeInfo.pcEnd; 1516 _info.lsda = fdeInfo.lsda; 1517 _info.handler = cieInfo.personality; 1518 // Some frameless functions need SP altered when resuming in function, so 1519 // propagate spExtraArgSize. 1520 _info.gp = prolog.spExtraArgSize; 1521 _info.flags = 0; 1522 _info.format = dwarfEncoding(); 1523 _info.unwind_info = fdeInfo.fdeStart; 1524 _info.unwind_info_size = static_cast<uint32_t>(fdeInfo.fdeLength); 1525 _info.extra = static_cast<unw_word_t>(dso_base); 1526 return true; 1527 } 1528 return false; 1529 } 1530 1531 template <typename A, typename R> 1532 bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc, 1533 const UnwindInfoSections §s, 1534 uint32_t fdeSectionOffsetHint) { 1535 typename CFI_Parser<A>::FDE_Info fdeInfo; 1536 typename CFI_Parser<A>::CIE_Info cieInfo; 1537 bool foundFDE = false; 1538 bool foundInCache = false; 1539 // If compact encoding table gave offset into dwarf section, go directly there 1540 if (fdeSectionOffsetHint != 0) { 1541 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1542 sects.dwarf_section_length, 1543 sects.dwarf_section + fdeSectionOffsetHint, 1544 &fdeInfo, &cieInfo); 1545 } 1546 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) 1547 if (!foundFDE && (sects.dwarf_index_section != 0)) { 1548 foundFDE = EHHeaderParser<A>::findFDE( 1549 _addressSpace, pc, sects.dwarf_index_section, 1550 (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo); 1551 } 1552 #endif 1553 if (!foundFDE) { 1554 // otherwise, search cache of previously found FDEs. 1555 pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc); 1556 if (cachedFDE != 0) { 1557 foundFDE = 1558 CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1559 sects.dwarf_section_length, 1560 cachedFDE, &fdeInfo, &cieInfo); 1561 foundInCache = foundFDE; 1562 } 1563 } 1564 if (!foundFDE) { 1565 // Still not found, do full scan of __eh_frame section. 1566 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, 1567 sects.dwarf_section_length, 0, 1568 &fdeInfo, &cieInfo); 1569 } 1570 if (foundFDE) { 1571 if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, sects.dso_base)) { 1572 // Add to cache (to make next lookup faster) if we had no hint 1573 // and there was no index. 1574 if (!foundInCache && (fdeSectionOffsetHint == 0)) { 1575 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) 1576 if (sects.dwarf_index_section == 0) 1577 #endif 1578 DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd, 1579 fdeInfo.fdeStart); 1580 } 1581 return true; 1582 } 1583 } 1584 //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc); 1585 return false; 1586 } 1587 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1588 1589 1590 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1591 template <typename A, typename R> 1592 bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc, 1593 const UnwindInfoSections §s) { 1594 const bool log = false; 1595 if (log) 1596 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n", 1597 (uint64_t)pc, (uint64_t)sects.dso_base); 1598 1599 const UnwindSectionHeader<A> sectionHeader(_addressSpace, 1600 sects.compact_unwind_section); 1601 if (sectionHeader.version() != UNWIND_SECTION_VERSION) 1602 return false; 1603 1604 // do a binary search of top level index to find page with unwind info 1605 pint_t targetFunctionOffset = pc - sects.dso_base; 1606 const UnwindSectionIndexArray<A> topIndex(_addressSpace, 1607 sects.compact_unwind_section 1608 + sectionHeader.indexSectionOffset()); 1609 uint32_t low = 0; 1610 uint32_t high = sectionHeader.indexCount(); 1611 uint32_t last = high - 1; 1612 while (low < high) { 1613 uint32_t mid = (low + high) / 2; 1614 //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n", 1615 //mid, low, high, topIndex.functionOffset(mid)); 1616 if (topIndex.functionOffset(mid) <= targetFunctionOffset) { 1617 if ((mid == last) || 1618 (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) { 1619 low = mid; 1620 break; 1621 } else { 1622 low = mid + 1; 1623 } 1624 } else { 1625 high = mid; 1626 } 1627 } 1628 const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low); 1629 const uint32_t firstLevelNextPageFunctionOffset = 1630 topIndex.functionOffset(low + 1); 1631 const pint_t secondLevelAddr = 1632 sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low); 1633 const pint_t lsdaArrayStartAddr = 1634 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low); 1635 const pint_t lsdaArrayEndAddr = 1636 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1); 1637 if (log) 1638 fprintf(stderr, "\tfirst level search for result index=%d " 1639 "to secondLevelAddr=0x%llX\n", 1640 low, (uint64_t) secondLevelAddr); 1641 // do a binary search of second level page index 1642 uint32_t encoding = 0; 1643 pint_t funcStart = 0; 1644 pint_t funcEnd = 0; 1645 pint_t lsda = 0; 1646 pint_t personality = 0; 1647 uint32_t pageKind = _addressSpace.get32(secondLevelAddr); 1648 if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) { 1649 // regular page 1650 UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace, 1651 secondLevelAddr); 1652 UnwindSectionRegularArray<A> pageIndex( 1653 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); 1654 // binary search looks for entry with e where index[e].offset <= pc < 1655 // index[e+1].offset 1656 if (log) 1657 fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in " 1658 "regular page starting at secondLevelAddr=0x%llX\n", 1659 (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr); 1660 low = 0; 1661 high = pageHeader.entryCount(); 1662 while (low < high) { 1663 uint32_t mid = (low + high) / 2; 1664 if (pageIndex.functionOffset(mid) <= targetFunctionOffset) { 1665 if (mid == (uint32_t)(pageHeader.entryCount() - 1)) { 1666 // at end of table 1667 low = mid; 1668 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; 1669 break; 1670 } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) { 1671 // next is too big, so we found it 1672 low = mid; 1673 funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base; 1674 break; 1675 } else { 1676 low = mid + 1; 1677 } 1678 } else { 1679 high = mid; 1680 } 1681 } 1682 encoding = pageIndex.encoding(low); 1683 funcStart = pageIndex.functionOffset(low) + sects.dso_base; 1684 if (pc < funcStart) { 1685 if (log) 1686 fprintf( 1687 stderr, 1688 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", 1689 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); 1690 return false; 1691 } 1692 if (pc > funcEnd) { 1693 if (log) 1694 fprintf( 1695 stderr, 1696 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", 1697 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); 1698 return false; 1699 } 1700 } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) { 1701 // compressed page 1702 UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace, 1703 secondLevelAddr); 1704 UnwindSectionCompressedArray<A> pageIndex( 1705 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); 1706 const uint32_t targetFunctionPageOffset = 1707 (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset); 1708 // binary search looks for entry with e where index[e].offset <= pc < 1709 // index[e+1].offset 1710 if (log) 1711 fprintf(stderr, "\tbinary search of compressed page starting at " 1712 "secondLevelAddr=0x%llX\n", 1713 (uint64_t) secondLevelAddr); 1714 low = 0; 1715 last = pageHeader.entryCount() - 1; 1716 high = pageHeader.entryCount(); 1717 while (low < high) { 1718 uint32_t mid = (low + high) / 2; 1719 if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) { 1720 if ((mid == last) || 1721 (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) { 1722 low = mid; 1723 break; 1724 } else { 1725 low = mid + 1; 1726 } 1727 } else { 1728 high = mid; 1729 } 1730 } 1731 funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset 1732 + sects.dso_base; 1733 if (low < last) 1734 funcEnd = 1735 pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset 1736 + sects.dso_base; 1737 else 1738 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; 1739 if (pc < funcStart) { 1740 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX " 1741 "not in second level compressed unwind table. " 1742 "funcStart=0x%llX", 1743 (uint64_t) pc, (uint64_t) funcStart); 1744 return false; 1745 } 1746 if (pc > funcEnd) { 1747 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX " 1748 "not in second level compressed unwind table. " 1749 "funcEnd=0x%llX", 1750 (uint64_t) pc, (uint64_t) funcEnd); 1751 return false; 1752 } 1753 uint16_t encodingIndex = pageIndex.encodingIndex(low); 1754 if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) { 1755 // encoding is in common table in section header 1756 encoding = _addressSpace.get32( 1757 sects.compact_unwind_section + 1758 sectionHeader.commonEncodingsArraySectionOffset() + 1759 encodingIndex * sizeof(uint32_t)); 1760 } else { 1761 // encoding is in page specific table 1762 uint16_t pageEncodingIndex = 1763 encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount(); 1764 encoding = _addressSpace.get32(secondLevelAddr + 1765 pageHeader.encodingsPageOffset() + 1766 pageEncodingIndex * sizeof(uint32_t)); 1767 } 1768 } else { 1769 _LIBUNWIND_DEBUG_LOG( 1770 "malformed __unwind_info at 0x%0llX bad second level page", 1771 (uint64_t)sects.compact_unwind_section); 1772 return false; 1773 } 1774 1775 // look up LSDA, if encoding says function has one 1776 if (encoding & UNWIND_HAS_LSDA) { 1777 UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr); 1778 uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base); 1779 low = 0; 1780 high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) / 1781 sizeof(unwind_info_section_header_lsda_index_entry); 1782 // binary search looks for entry with exact match for functionOffset 1783 if (log) 1784 fprintf(stderr, 1785 "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n", 1786 funcStartOffset); 1787 while (low < high) { 1788 uint32_t mid = (low + high) / 2; 1789 if (lsdaIndex.functionOffset(mid) == funcStartOffset) { 1790 lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base; 1791 break; 1792 } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) { 1793 low = mid + 1; 1794 } else { 1795 high = mid; 1796 } 1797 } 1798 if (lsda == 0) { 1799 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for " 1800 "pc=0x%0llX, but lsda table has no entry", 1801 encoding, (uint64_t) pc); 1802 return false; 1803 } 1804 } 1805 1806 // extract personality routine, if encoding says function has one 1807 uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >> 1808 (__builtin_ctz(UNWIND_PERSONALITY_MASK)); 1809 if (personalityIndex != 0) { 1810 --personalityIndex; // change 1-based to zero-based index 1811 if (personalityIndex >= sectionHeader.personalityArrayCount()) { 1812 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, " 1813 "but personality table has only %d entries", 1814 encoding, personalityIndex, 1815 sectionHeader.personalityArrayCount()); 1816 return false; 1817 } 1818 int32_t personalityDelta = (int32_t)_addressSpace.get32( 1819 sects.compact_unwind_section + 1820 sectionHeader.personalityArraySectionOffset() + 1821 personalityIndex * sizeof(uint32_t)); 1822 pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta; 1823 personality = _addressSpace.getP(personalityPointer); 1824 if (log) 1825 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " 1826 "personalityDelta=0x%08X, personality=0x%08llX\n", 1827 (uint64_t) pc, personalityDelta, (uint64_t) personality); 1828 } 1829 1830 if (log) 1831 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " 1832 "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n", 1833 (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart); 1834 _info.start_ip = funcStart; 1835 _info.end_ip = funcEnd; 1836 _info.lsda = lsda; 1837 _info.handler = personality; 1838 _info.gp = 0; 1839 _info.flags = 0; 1840 _info.format = encoding; 1841 _info.unwind_info = 0; 1842 _info.unwind_info_size = 0; 1843 _info.extra = sects.dso_base; 1844 return true; 1845 } 1846 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1847 1848 1849 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1850 template <typename A, typename R> 1851 bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) { 1852 pint_t base; 1853 RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base); 1854 if (!unwindEntry) { 1855 _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc); 1856 return false; 1857 } 1858 _info.gp = 0; 1859 _info.flags = 0; 1860 _info.format = 0; 1861 _info.unwind_info_size = sizeof(RUNTIME_FUNCTION); 1862 _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry); 1863 _info.extra = base; 1864 _info.start_ip = base + unwindEntry->BeginAddress; 1865 #ifdef _LIBUNWIND_TARGET_X86_64 1866 _info.end_ip = base + unwindEntry->EndAddress; 1867 // Only fill in the handler and LSDA if they're stale. 1868 if (pc != getLastPC()) { 1869 UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData); 1870 if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) { 1871 // The personality is given in the UNWIND_INFO itself. The LSDA immediately 1872 // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit 1873 // these structures.) 1874 // N.B. UNWIND_INFO structs are DWORD-aligned. 1875 uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1; 1876 const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]); 1877 _info.lsda = reinterpret_cast<unw_word_t>(handler+1); 1878 if (*handler) { 1879 _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); 1880 } else 1881 _info.handler = 0; 1882 } else { 1883 _info.lsda = 0; 1884 _info.handler = 0; 1885 } 1886 } 1887 #elif defined(_LIBUNWIND_TARGET_ARM) 1888 _info.end_ip = _info.start_ip + unwindEntry->FunctionLength; 1889 _info.lsda = 0; // FIXME 1890 _info.handler = 0; // FIXME 1891 #endif 1892 setLastPC(pc); 1893 return true; 1894 } 1895 #endif 1896 1897 1898 template <typename A, typename R> 1899 void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) { 1900 #if defined(_LIBUNWIND_TARGET_LINUX) && defined(_LIBUNWIND_TARGET_AARCH64) 1901 _isSigReturn = false; 1902 #endif 1903 1904 pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); 1905 #if defined(_LIBUNWIND_ARM_EHABI) 1906 // Remove the thumb bit so the IP represents the actual instruction address. 1907 // This matches the behaviour of _Unwind_GetIP on arm. 1908 pc &= (pint_t)~0x1; 1909 #endif 1910 1911 // Exit early if at the top of the stack. 1912 if (pc == 0) { 1913 _unwindInfoMissing = true; 1914 return; 1915 } 1916 1917 // If the last line of a function is a "throw" the compiler sometimes 1918 // emits no instructions after the call to __cxa_throw. This means 1919 // the return address is actually the start of the next function. 1920 // To disambiguate this, back up the pc when we know it is a return 1921 // address. 1922 if (isReturnAddress) 1923 --pc; 1924 1925 // Ask address space object to find unwind sections for this pc. 1926 UnwindInfoSections sects; 1927 if (_addressSpace.findUnwindSections(pc, sects)) { 1928 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1929 // If there is a compact unwind encoding table, look there first. 1930 if (sects.compact_unwind_section != 0) { 1931 if (this->getInfoFromCompactEncodingSection(pc, sects)) { 1932 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1933 // Found info in table, done unless encoding says to use dwarf. 1934 uint32_t dwarfOffset; 1935 if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) { 1936 if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) { 1937 // found info in dwarf, done 1938 return; 1939 } 1940 } 1941 #endif 1942 // If unwind table has entry, but entry says there is no unwind info, 1943 // record that we have no unwind info. 1944 if (_info.format == 0) 1945 _unwindInfoMissing = true; 1946 return; 1947 } 1948 } 1949 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 1950 1951 #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 1952 // If there is SEH unwind info, look there next. 1953 if (this->getInfoFromSEH(pc)) 1954 return; 1955 #endif 1956 1957 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1958 // If there is dwarf unwind info, look there next. 1959 if (sects.dwarf_section != 0) { 1960 if (this->getInfoFromDwarfSection(pc, sects)) { 1961 // found info in dwarf, done 1962 return; 1963 } 1964 } 1965 #endif 1966 1967 #if defined(_LIBUNWIND_ARM_EHABI) 1968 // If there is ARM EHABI unwind info, look there next. 1969 if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects)) 1970 return; 1971 #endif 1972 } 1973 1974 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 1975 // There is no static unwind info for this pc. Look to see if an FDE was 1976 // dynamically registered for it. 1977 pint_t cachedFDE = DwarfFDECache<A>::findFDE(DwarfFDECache<A>::kSearchAll, 1978 pc); 1979 if (cachedFDE != 0) { 1980 typename CFI_Parser<A>::FDE_Info fdeInfo; 1981 typename CFI_Parser<A>::CIE_Info cieInfo; 1982 if (!CFI_Parser<A>::decodeFDE(_addressSpace, cachedFDE, &fdeInfo, &cieInfo)) 1983 if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0)) 1984 return; 1985 } 1986 1987 // Lastly, ask AddressSpace object about platform specific ways to locate 1988 // other FDEs. 1989 pint_t fde; 1990 if (_addressSpace.findOtherFDE(pc, fde)) { 1991 typename CFI_Parser<A>::FDE_Info fdeInfo; 1992 typename CFI_Parser<A>::CIE_Info cieInfo; 1993 if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) { 1994 // Double check this FDE is for a function that includes the pc. 1995 if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) 1996 if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0)) 1997 return; 1998 } 1999 } 2000 #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 2001 2002 #if defined(_LIBUNWIND_TARGET_LINUX) && defined(_LIBUNWIND_TARGET_AARCH64) 2003 if (setInfoForSigReturn()) 2004 return; 2005 #endif 2006 2007 // no unwind info, flag that we can't reliably unwind 2008 _unwindInfoMissing = true; 2009 } 2010 2011 #if defined(_LIBUNWIND_TARGET_LINUX) && defined(_LIBUNWIND_TARGET_AARCH64) 2012 template <typename A, typename R> 2013 bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_arm64 &) { 2014 // Look for the sigreturn trampoline. The trampoline's body is two 2015 // specific instructions (see below). Typically the trampoline comes from the 2016 // vDSO[1] (i.e. the __kernel_rt_sigreturn function). A libc might provide its 2017 // own restorer function, though, or user-mode QEMU might write a trampoline 2018 // onto the stack. 2019 // 2020 // This special code path is a fallback that is only used if the trampoline 2021 // lacks proper (e.g. DWARF) unwind info. On AArch64, a new DWARF register 2022 // constant for the PC needs to be defined before DWARF can handle a signal 2023 // trampoline. This code may segfault if the target PC is unreadable, e.g.: 2024 // - The PC points at a function compiled without unwind info, and which is 2025 // part of an execute-only mapping (e.g. using -Wl,--execute-only). 2026 // - The PC is invalid and happens to point to unreadable or unmapped memory. 2027 // 2028 // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/vdso/sigreturn.S 2029 const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); 2030 // Look for instructions: mov x8, #0x8b; svc #0x0 2031 if (_addressSpace.get32(pc) == 0xd2801168 && 2032 _addressSpace.get32(pc + 4) == 0xd4000001) { 2033 _info = {}; 2034 _isSigReturn = true; 2035 return true; 2036 } 2037 return false; 2038 } 2039 2040 template <typename A, typename R> 2041 int UnwindCursor<A, R>::stepThroughSigReturn(Registers_arm64 &) { 2042 // In the signal trampoline frame, sp points to an rt_sigframe[1], which is: 2043 // - 128-byte siginfo struct 2044 // - ucontext struct: 2045 // - 8-byte long (uc_flags) 2046 // - 8-byte pointer (uc_link) 2047 // - 24-byte stack_t 2048 // - 128-byte signal set 2049 // - 8 bytes of padding because sigcontext has 16-byte alignment 2050 // - sigcontext/mcontext_t 2051 // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/signal.c 2052 const pint_t kOffsetSpToSigcontext = (128 + 8 + 8 + 24 + 128 + 8); // 304 2053 2054 // Offsets from sigcontext to each register. 2055 const pint_t kOffsetGprs = 8; // offset to "__u64 regs[31]" field 2056 const pint_t kOffsetSp = 256; // offset to "__u64 sp" field 2057 const pint_t kOffsetPc = 264; // offset to "__u64 pc" field 2058 2059 pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext; 2060 2061 for (int i = 0; i <= 30; ++i) { 2062 uint64_t value = _addressSpace.get64(sigctx + kOffsetGprs + 2063 static_cast<pint_t>(i * 8)); 2064 _registers.setRegister(UNW_ARM64_X0 + i, value); 2065 } 2066 _registers.setSP(_addressSpace.get64(sigctx + kOffsetSp)); 2067 _registers.setIP(_addressSpace.get64(sigctx + kOffsetPc)); 2068 _isSignalFrame = true; 2069 return UNW_STEP_SUCCESS; 2070 } 2071 #endif // defined(_LIBUNWIND_TARGET_LINUX) && defined(_LIBUNWIND_TARGET_AARCH64) 2072 2073 template <typename A, typename R> 2074 int UnwindCursor<A, R>::step() { 2075 // Bottom of stack is defined is when unwind info cannot be found. 2076 if (_unwindInfoMissing) 2077 return UNW_STEP_END; 2078 2079 // Use unwinding info to modify register set as if function returned. 2080 int result; 2081 #if defined(_LIBUNWIND_TARGET_LINUX) && defined(_LIBUNWIND_TARGET_AARCH64) 2082 if (_isSigReturn) { 2083 result = this->stepThroughSigReturn(); 2084 } else 2085 #endif 2086 { 2087 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) 2088 result = this->stepWithCompactEncoding(); 2089 #elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) 2090 result = this->stepWithSEHData(); 2091 #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) 2092 result = this->stepWithDwarfFDE(); 2093 #elif defined(_LIBUNWIND_ARM_EHABI) 2094 result = this->stepWithEHABI(); 2095 #else 2096 #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \ 2097 _LIBUNWIND_SUPPORT_SEH_UNWIND or \ 2098 _LIBUNWIND_SUPPORT_DWARF_UNWIND or \ 2099 _LIBUNWIND_ARM_EHABI 2100 #endif 2101 } 2102 2103 // update info based on new PC 2104 if (result == UNW_STEP_SUCCESS) { 2105 this->setInfoBasedOnIPRegister(true); 2106 if (_unwindInfoMissing) 2107 return UNW_STEP_END; 2108 } 2109 2110 return result; 2111 } 2112 2113 template <typename A, typename R> 2114 void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) { 2115 if (_unwindInfoMissing) 2116 memset(info, 0, sizeof(*info)); 2117 else 2118 *info = _info; 2119 } 2120 2121 template <typename A, typename R> 2122 bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen, 2123 unw_word_t *offset) { 2124 return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP), 2125 buf, bufLen, offset); 2126 } 2127 2128 } // namespace libunwind 2129 2130 #endif // __UNWINDCURSOR_HPP__ 2131