xref: /freebsd/contrib/llvm-project/libcxx/src/ryu/d2s.cpp (revision 1fd87a682ad7442327078e1eeb63edc4258f9815)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 // Copyright (c) Microsoft Corporation.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 
12 // Copyright 2018 Ulf Adams
13 // Copyright (c) Microsoft Corporation. All rights reserved.
14 
15 // Boost Software License - Version 1.0 - August 17th, 2003
16 
17 // Permission is hereby granted, free of charge, to any person or organization
18 // obtaining a copy of the software and accompanying documentation covered by
19 // this license (the "Software") to use, reproduce, display, distribute,
20 // execute, and transmit the Software, and to prepare derivative works of the
21 // Software, and to permit third-parties to whom the Software is furnished to
22 // do so, all subject to the following:
23 
24 // The copyright notices in the Software and this entire statement, including
25 // the above license grant, this restriction and the following disclaimer,
26 // must be included in all copies of the Software, in whole or in part, and
27 // all derivative works of the Software, unless such copies or derivative
28 // works are solely in the form of machine-executable object code generated by
29 // a source language processor.
30 
31 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33 // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
34 // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
35 // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
36 // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
37 // DEALINGS IN THE SOFTWARE.
38 
39 // Avoid formatting to keep the changes with the original code minimal.
40 // clang-format off
41 
42 #include "__config"
43 #include "charconv"
44 
45 #include "include/ryu/common.h"
46 #include "include/ryu/d2fixed.h"
47 #include "include/ryu/d2s.h"
48 #include "include/ryu/d2s_full_table.h"
49 #include "include/ryu/d2s_intrinsics.h"
50 #include "include/ryu/digit_table.h"
51 #include "include/ryu/ryu.h"
52 
53 _LIBCPP_BEGIN_NAMESPACE_STD
54 
55 // We need a 64x128-bit multiplication and a subsequent 128-bit shift.
56 // Multiplication:
57 //   The 64-bit factor is variable and passed in, the 128-bit factor comes
58 //   from a lookup table. We know that the 64-bit factor only has 55
59 //   significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
60 //   factor only has 124 significant bits (i.e., the 4 topmost bits are
61 //   zeros).
62 // Shift:
63 //   In principle, the multiplication result requires 55 + 124 = 179 bits to
64 //   represent. However, we then shift this value to the right by __j, which is
65 //   at least __j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
66 //   bits. This means that we only need the topmost 64 significant bits of
67 //   the 64x128-bit multiplication.
68 //
69 // There are several ways to do this:
70 // 1. Best case: the compiler exposes a 128-bit type.
71 //    We perform two 64x64-bit multiplications, add the higher 64 bits of the
72 //    lower result to the higher result, and shift by __j - 64 bits.
73 //
74 //    We explicitly cast from 64-bit to 128-bit, so the compiler can tell
75 //    that these are only 64-bit inputs, and can map these to the best
76 //    possible sequence of assembly instructions.
77 //    x64 machines happen to have matching assembly instructions for
78 //    64x64-bit multiplications and 128-bit shifts.
79 //
80 // 2. Second best case: the compiler exposes intrinsics for the x64 assembly
81 //    instructions mentioned in 1.
82 //
83 // 3. We only have 64x64 bit instructions that return the lower 64 bits of
84 //    the result, i.e., we have to use plain C.
85 //    Our inputs are less than the full width, so we have three options:
86 //    a. Ignore this fact and just implement the intrinsics manually.
87 //    b. Split both into 31-bit pieces, which guarantees no internal overflow,
88 //       but requires extra work upfront (unless we change the lookup table).
89 //    c. Split only the first factor into 31-bit pieces, which also guarantees
90 //       no internal overflow, but requires extra work since the intermediate
91 //       results are not perfectly aligned.
92 #ifdef _LIBCPP_INTRINSIC128
93 
94 [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShift(const uint64_t __m, const uint64_t* const __mul, const int32_t __j) {
95   // __m is maximum 55 bits
96   uint64_t __high1;                                               // 128
97   const uint64_t __low1 = __ryu_umul128(__m, __mul[1], &__high1); // 64
98   uint64_t __high0;                                               // 64
99   (void) __ryu_umul128(__m, __mul[0], &__high0);                  // 0
100   const uint64_t __sum = __high0 + __low1;
101   if (__sum < __high0) {
102     ++__high1; // overflow into __high1
103   }
104   return __ryu_shiftright128(__sum, __high1, static_cast<uint32_t>(__j - 64));
105 }
106 
107 [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShiftAll(const uint64_t __m, const uint64_t* const __mul, const int32_t __j,
108   uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) {
109   *__vp = __mulShift(4 * __m + 2, __mul, __j);
110   *__vm = __mulShift(4 * __m - 1 - __mmShift, __mul, __j);
111   return __mulShift(4 * __m, __mul, __j);
112 }
113 
114 #else // ^^^ intrinsics available ^^^ / vvv intrinsics unavailable vvv
115 
116 [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline _LIBCPP_ALWAYS_INLINE uint64_t __mulShiftAll(uint64_t __m, const uint64_t* const __mul, const int32_t __j,
117   uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) { // TRANSITION, VSO-634761
118   __m <<= 1;
119   // __m is maximum 55 bits
120   uint64_t __tmp;
121   const uint64_t __lo = __ryu_umul128(__m, __mul[0], &__tmp);
122   uint64_t __hi;
123   const uint64_t __mid = __tmp + __ryu_umul128(__m, __mul[1], &__hi);
124   __hi += __mid < __tmp; // overflow into __hi
125 
126   const uint64_t __lo2 = __lo + __mul[0];
127   const uint64_t __mid2 = __mid + __mul[1] + (__lo2 < __lo);
128   const uint64_t __hi2 = __hi + (__mid2 < __mid);
129   *__vp = __ryu_shiftright128(__mid2, __hi2, static_cast<uint32_t>(__j - 64 - 1));
130 
131   if (__mmShift == 1) {
132     const uint64_t __lo3 = __lo - __mul[0];
133     const uint64_t __mid3 = __mid - __mul[1] - (__lo3 > __lo);
134     const uint64_t __hi3 = __hi - (__mid3 > __mid);
135     *__vm = __ryu_shiftright128(__mid3, __hi3, static_cast<uint32_t>(__j - 64 - 1));
136   } else {
137     const uint64_t __lo3 = __lo + __lo;
138     const uint64_t __mid3 = __mid + __mid + (__lo3 < __lo);
139     const uint64_t __hi3 = __hi + __hi + (__mid3 < __mid);
140     const uint64_t __lo4 = __lo3 - __mul[0];
141     const uint64_t __mid4 = __mid3 - __mul[1] - (__lo4 > __lo3);
142     const uint64_t __hi4 = __hi3 - (__mid4 > __mid3);
143     *__vm = __ryu_shiftright128(__mid4, __hi4, static_cast<uint32_t>(__j - 64));
144   }
145 
146   return __ryu_shiftright128(__mid, __hi, static_cast<uint32_t>(__j - 64 - 1));
147 }
148 
149 #endif // ^^^ intrinsics unavailable ^^^
150 
151 [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __decimalLength17(const uint64_t __v) {
152   // This is slightly faster than a loop.
153   // The average output length is 16.38 digits, so we check high-to-low.
154   // Function precondition: __v is not an 18, 19, or 20-digit number.
155   // (17 digits are sufficient for round-tripping.)
156   _LIBCPP_ASSERT(__v < 100000000000000000u, "");
157   if (__v >= 10000000000000000u) { return 17; }
158   if (__v >= 1000000000000000u) { return 16; }
159   if (__v >= 100000000000000u) { return 15; }
160   if (__v >= 10000000000000u) { return 14; }
161   if (__v >= 1000000000000u) { return 13; }
162   if (__v >= 100000000000u) { return 12; }
163   if (__v >= 10000000000u) { return 11; }
164   if (__v >= 1000000000u) { return 10; }
165   if (__v >= 100000000u) { return 9; }
166   if (__v >= 10000000u) { return 8; }
167   if (__v >= 1000000u) { return 7; }
168   if (__v >= 100000u) { return 6; }
169   if (__v >= 10000u) { return 5; }
170   if (__v >= 1000u) { return 4; }
171   if (__v >= 100u) { return 3; }
172   if (__v >= 10u) { return 2; }
173   return 1;
174 }
175 
176 // A floating decimal representing m * 10^e.
177 struct __floating_decimal_64 {
178   uint64_t __mantissa;
179   int32_t __exponent;
180 };
181 
182 [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_64 __d2d(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent) {
183   int32_t __e2;
184   uint64_t __m2;
185   if (__ieeeExponent == 0) {
186     // We subtract 2 so that the bounds computation has 2 additional bits.
187     __e2 = 1 - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2;
188     __m2 = __ieeeMantissa;
189   } else {
190     __e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2;
191     __m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
192   }
193   const bool __even = (__m2 & 1) == 0;
194   const bool __acceptBounds = __even;
195 
196   // Step 2: Determine the interval of valid decimal representations.
197   const uint64_t __mv = 4 * __m2;
198   // Implicit bool -> int conversion. True is 1, false is 0.
199   const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1;
200   // We would compute __mp and __mm like this:
201   // uint64_t __mp = 4 * __m2 + 2;
202   // uint64_t __mm = __mv - 1 - __mmShift;
203 
204   // Step 3: Convert to a decimal power base using 128-bit arithmetic.
205   uint64_t __vr, __vp, __vm;
206   int32_t __e10;
207   bool __vmIsTrailingZeros = false;
208   bool __vrIsTrailingZeros = false;
209   if (__e2 >= 0) {
210     // I tried special-casing __q == 0, but there was no effect on performance.
211     // This expression is slightly faster than max(0, __log10Pow2(__e2) - 1).
212     const uint32_t __q = __log10Pow2(__e2) - (__e2 > 3);
213     __e10 = static_cast<int32_t>(__q);
214     const int32_t __k = __DOUBLE_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1;
215     const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k;
216     __vr = __mulShiftAll(__m2, __DOUBLE_POW5_INV_SPLIT[__q], __i, &__vp, &__vm, __mmShift);
217     if (__q <= 21) {
218       // This should use __q <= 22, but I think 21 is also safe. Smaller values
219       // may still be safe, but it's more difficult to reason about them.
220       // Only one of __mp, __mv, and __mm can be a multiple of 5, if any.
221       const uint32_t __mvMod5 = static_cast<uint32_t>(__mv) - 5 * static_cast<uint32_t>(__div5(__mv));
222       if (__mvMod5 == 0) {
223         __vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q);
224       } else if (__acceptBounds) {
225         // Same as min(__e2 + (~__mm & 1), __pow5Factor(__mm)) >= __q
226         // <=> __e2 + (~__mm & 1) >= __q && __pow5Factor(__mm) >= __q
227         // <=> true && __pow5Factor(__mm) >= __q, since __e2 >= __q.
228         __vmIsTrailingZeros = __multipleOfPowerOf5(__mv - 1 - __mmShift, __q);
229       } else {
230         // Same as min(__e2 + 1, __pow5Factor(__mp)) >= __q.
231         __vp -= __multipleOfPowerOf5(__mv + 2, __q);
232       }
233     }
234   } else {
235     // This expression is slightly faster than max(0, __log10Pow5(-__e2) - 1).
236     const uint32_t __q = __log10Pow5(-__e2) - (-__e2 > 1);
237     __e10 = static_cast<int32_t>(__q) + __e2;
238     const int32_t __i = -__e2 - static_cast<int32_t>(__q);
239     const int32_t __k = __pow5bits(__i) - __DOUBLE_POW5_BITCOUNT;
240     const int32_t __j = static_cast<int32_t>(__q) - __k;
241     __vr = __mulShiftAll(__m2, __DOUBLE_POW5_SPLIT[__i], __j, &__vp, &__vm, __mmShift);
242     if (__q <= 1) {
243       // {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits.
244       // __mv = 4 * __m2, so it always has at least two trailing 0 bits.
245       __vrIsTrailingZeros = true;
246       if (__acceptBounds) {
247         // __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1.
248         __vmIsTrailingZeros = __mmShift == 1;
249       } else {
250         // __mp = __mv + 2, so it always has at least one trailing 0 bit.
251         --__vp;
252       }
253     } else if (__q < 63) { // TRANSITION(ulfjack): Use a tighter bound here.
254       // We need to compute min(ntz(__mv), __pow5Factor(__mv) - __e2) >= __q - 1
255       // <=> ntz(__mv) >= __q - 1 && __pow5Factor(__mv) - __e2 >= __q - 1
256       // <=> ntz(__mv) >= __q - 1 (__e2 is negative and -__e2 >= __q)
257       // <=> (__mv & ((1 << (__q - 1)) - 1)) == 0
258       // We also need to make sure that the left shift does not overflow.
259       __vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1);
260     }
261   }
262 
263   // Step 4: Find the shortest decimal representation in the interval of valid representations.
264   int32_t __removed = 0;
265   uint8_t __lastRemovedDigit = 0;
266   uint64_t _Output;
267   // On average, we remove ~2 digits.
268   if (__vmIsTrailingZeros || __vrIsTrailingZeros) {
269     // General case, which happens rarely (~0.7%).
270     for (;;) {
271       const uint64_t __vpDiv10 = __div10(__vp);
272       const uint64_t __vmDiv10 = __div10(__vm);
273       if (__vpDiv10 <= __vmDiv10) {
274         break;
275       }
276       const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10);
277       const uint64_t __vrDiv10 = __div10(__vr);
278       const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
279       __vmIsTrailingZeros &= __vmMod10 == 0;
280       __vrIsTrailingZeros &= __lastRemovedDigit == 0;
281       __lastRemovedDigit = static_cast<uint8_t>(__vrMod10);
282       __vr = __vrDiv10;
283       __vp = __vpDiv10;
284       __vm = __vmDiv10;
285       ++__removed;
286     }
287     if (__vmIsTrailingZeros) {
288       for (;;) {
289         const uint64_t __vmDiv10 = __div10(__vm);
290         const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10);
291         if (__vmMod10 != 0) {
292           break;
293         }
294         const uint64_t __vpDiv10 = __div10(__vp);
295         const uint64_t __vrDiv10 = __div10(__vr);
296         const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
297         __vrIsTrailingZeros &= __lastRemovedDigit == 0;
298         __lastRemovedDigit = static_cast<uint8_t>(__vrMod10);
299         __vr = __vrDiv10;
300         __vp = __vpDiv10;
301         __vm = __vmDiv10;
302         ++__removed;
303       }
304     }
305     if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) {
306       // Round even if the exact number is .....50..0.
307       __lastRemovedDigit = 4;
308     }
309     // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
310     _Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5);
311   } else {
312     // Specialized for the common case (~99.3%). Percentages below are relative to this.
313     bool __roundUp = false;
314     const uint64_t __vpDiv100 = __div100(__vp);
315     const uint64_t __vmDiv100 = __div100(__vm);
316     if (__vpDiv100 > __vmDiv100) { // Optimization: remove two digits at a time (~86.2%).
317       const uint64_t __vrDiv100 = __div100(__vr);
318       const uint32_t __vrMod100 = static_cast<uint32_t>(__vr) - 100 * static_cast<uint32_t>(__vrDiv100);
319       __roundUp = __vrMod100 >= 50;
320       __vr = __vrDiv100;
321       __vp = __vpDiv100;
322       __vm = __vmDiv100;
323       __removed += 2;
324     }
325     // Loop iterations below (approximately), without optimization above:
326     // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
327     // Loop iterations below (approximately), with optimization above:
328     // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
329     for (;;) {
330       const uint64_t __vpDiv10 = __div10(__vp);
331       const uint64_t __vmDiv10 = __div10(__vm);
332       if (__vpDiv10 <= __vmDiv10) {
333         break;
334       }
335       const uint64_t __vrDiv10 = __div10(__vr);
336       const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10);
337       __roundUp = __vrMod10 >= 5;
338       __vr = __vrDiv10;
339       __vp = __vpDiv10;
340       __vm = __vmDiv10;
341       ++__removed;
342     }
343     // We need to take __vr + 1 if __vr is outside bounds or we need to round up.
344     _Output = __vr + (__vr == __vm || __roundUp);
345   }
346   const int32_t __exp = __e10 + __removed;
347 
348   __floating_decimal_64 __fd;
349   __fd.__exponent = __exp;
350   __fd.__mantissa = _Output;
351   return __fd;
352 }
353 
354 [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_64 __v,
355   chars_format _Fmt, const double __f) {
356   // Step 5: Print the decimal representation.
357   uint64_t _Output = __v.__mantissa;
358   int32_t _Ryu_exponent = __v.__exponent;
359   const uint32_t __olength = __decimalLength17(_Output);
360   int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1;
361 
362   if (_Fmt == chars_format{}) {
363     int32_t _Lower;
364     int32_t _Upper;
365 
366     if (__olength == 1) {
367       // Value | Fixed   | Scientific
368       // 1e-3  | "0.001" | "1e-03"
369       // 1e4   | "10000" | "1e+04"
370       _Lower = -3;
371       _Upper = 4;
372     } else {
373       // Value   | Fixed       | Scientific
374       // 1234e-7 | "0.0001234" | "1.234e-04"
375       // 1234e5  | "123400000" | "1.234e+08"
376       _Lower = -static_cast<int32_t>(__olength + 3);
377       _Upper = 5;
378     }
379 
380     if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) {
381       _Fmt = chars_format::fixed;
382     } else {
383       _Fmt = chars_format::scientific;
384     }
385   } else if (_Fmt == chars_format::general) {
386     // C11 7.21.6.1 "The fprintf function"/8:
387     // "Let P equal [...] 6 if the precision is omitted [...].
388     // Then, if a conversion with style E would have an exponent of X:
389     // - if P > X >= -4, the conversion is with style f [...].
390     // - otherwise, the conversion is with style e [...]."
391     if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) {
392       _Fmt = chars_format::fixed;
393     } else {
394       _Fmt = chars_format::scientific;
395     }
396   }
397 
398   if (_Fmt == chars_format::fixed) {
399     // Example: _Output == 1729, __olength == 4
400 
401     // _Ryu_exponent | Printed  | _Whole_digits | _Total_fixed_length  | Notes
402     // --------------|----------|---------------|----------------------|---------------------------------------
403     //             2 | 172900   |  6            | _Whole_digits        | Ryu can't be used for printing
404     //             1 | 17290    |  5            | (sometimes adjusted) | when the trimmed digits are nonzero.
405     // --------------|----------|---------------|----------------------|---------------------------------------
406     //             0 | 1729     |  4            | _Whole_digits        | Unified length cases.
407     // --------------|----------|---------------|----------------------|---------------------------------------
408     //            -1 | 172.9    |  3            | __olength + 1        | This case can't happen for
409     //            -2 | 17.29    |  2            |                      | __olength == 1, but no additional
410     //            -3 | 1.729    |  1            |                      | code is needed to avoid it.
411     // --------------|----------|---------------|----------------------|---------------------------------------
412     //            -4 | 0.1729   |  0            | 2 - _Ryu_exponent    | C11 7.21.6.1 "The fprintf function"/8:
413     //            -5 | 0.01729  | -1            |                      | "If a decimal-point character appears,
414     //            -6 | 0.001729 | -2            |                      | at least one digit appears before it."
415 
416     const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent;
417 
418     uint32_t _Total_fixed_length;
419     if (_Ryu_exponent >= 0) { // cases "172900" and "1729"
420       _Total_fixed_length = static_cast<uint32_t>(_Whole_digits);
421       if (_Output == 1) {
422         // Rounding can affect the number of digits.
423         // For example, 1e23 is exactly "99999999999999991611392" which is 23 digits instead of 24.
424         // We can use a lookup table to detect this and adjust the total length.
425         static constexpr uint8_t _Adjustment[309] = {
426           0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0,
427           1,1,0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,1,1,
428           1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,0,1,0,1,1,0,1,
429           1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,
430           0,1,0,1,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,1,1,1,1,1,0,1,0,1,1,0,0,0,1,
431           1,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0,0,0,0,1,1,0,
432           0,1,0,1,1,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,0,0,0,0,0,1,1,0,1,0 };
433         _Total_fixed_length -= _Adjustment[_Ryu_exponent];
434         // _Whole_digits doesn't need to be adjusted because these cases won't refer to it later.
435       }
436     } else if (_Whole_digits > 0) { // case "17.29"
437       _Total_fixed_length = __olength + 1;
438     } else { // case "0.001729"
439       _Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent);
440     }
441 
442     if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
443       return { _Last, errc::value_too_large };
444     }
445 
446     char* _Mid;
447     if (_Ryu_exponent > 0) { // case "172900"
448       bool _Can_use_ryu;
449 
450       if (_Ryu_exponent > 22) { // 10^22 is the largest power of 10 that's exactly representable as a double.
451         _Can_use_ryu = false;
452       } else {
453         // Ryu generated X: __v.__mantissa * 10^_Ryu_exponent
454         // __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits)
455         // 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent
456 
457         // _Trailing_zero_bits is [0, 56] (aside: because 2^56 is the largest power of 2
458         // with 17 decimal digits, which is double's round-trip limit.)
459         // _Ryu_exponent is [1, 22].
460         // Normalization adds [2, 52] (aside: at least 2 because the pre-normalized mantissa is at least 5).
461         // This adds up to [3, 130], which is well below double's maximum binary exponent 1023.
462 
463         // Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent.
464 
465         // If that product would exceed 53 bits, then X can't be exactly represented as a double.
466         // (That's not a problem for round-tripping, because X is close enough to the original double,
467         // but X isn't mathematically equal to the original double.) This requires a high-precision fallback.
468 
469         // If the product is 53 bits or smaller, then X can be exactly represented as a double (and we don't
470         // need to re-synthesize it; the original double must have been X, because Ryu wouldn't produce the
471         // same output for two different doubles X and Y). This allows Ryu's output to be used (zero-filled).
472 
473         // (2^53 - 1) / 5^0 (for indexing), (2^53 - 1) / 5^1, ..., (2^53 - 1) / 5^22
474         static constexpr uint64_t _Max_shifted_mantissa[23] = {
475           9007199254740991u, 1801439850948198u, 360287970189639u, 72057594037927u, 14411518807585u,
476           2882303761517u, 576460752303u, 115292150460u, 23058430092u, 4611686018u, 922337203u, 184467440u,
477           36893488u, 7378697u, 1475739u, 295147u, 59029u, 11805u, 2361u, 472u, 94u, 18u, 3u };
478 
479         unsigned long _Trailing_zero_bits;
480 #ifdef _LIBCPP_HAS_BITSCAN64
481         (void) _BitScanForward64(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero
482 #else // ^^^ 64-bit ^^^ / vvv 32-bit vvv
483         const uint32_t _Low_mantissa = static_cast<uint32_t>(__v.__mantissa);
484         if (_Low_mantissa != 0) {
485           (void) _BitScanForward(&_Trailing_zero_bits, _Low_mantissa);
486         } else {
487           const uint32_t _High_mantissa = static_cast<uint32_t>(__v.__mantissa >> 32); // nonzero here
488           (void) _BitScanForward(&_Trailing_zero_bits, _High_mantissa);
489           _Trailing_zero_bits += 32;
490         }
491 #endif // ^^^ 32-bit ^^^
492         const uint64_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits;
493         _Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent];
494       }
495 
496       if (!_Can_use_ryu) {
497         // Print the integer exactly.
498         // Performance note: This will redundantly perform bounds checking.
499         // Performance note: This will redundantly decompose the IEEE representation.
500         return __d2fixed_buffered_n(_First, _Last, __f, 0);
501       }
502 
503       // _Can_use_ryu
504       // Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length).
505       _Mid = _First + __olength;
506     } else { // cases "1729", "17.29", and "0.001729"
507       // Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length).
508       _Mid = _First + _Total_fixed_length;
509     }
510 
511     // We prefer 32-bit operations, even on 64-bit platforms.
512     // We have at most 17 digits, and uint32_t can store 9 digits.
513     // If _Output doesn't fit into uint32_t, we cut off 8 digits,
514     // so the rest will fit into uint32_t.
515     if ((_Output >> 32) != 0) {
516       // Expensive 64-bit division.
517       const uint64_t __q = __div1e8(_Output);
518       uint32_t __output2 = static_cast<uint32_t>(_Output - 100000000 * __q);
519       _Output = __q;
520 
521       const uint32_t __c = __output2 % 10000;
522       __output2 /= 10000;
523       const uint32_t __d = __output2 % 10000;
524       const uint32_t __c0 = (__c % 100) << 1;
525       const uint32_t __c1 = (__c / 100) << 1;
526       const uint32_t __d0 = (__d % 100) << 1;
527       const uint32_t __d1 = (__d / 100) << 1;
528 
529       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
530       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
531       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __d0, 2);
532       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __d1, 2);
533     }
534     uint32_t __output2 = static_cast<uint32_t>(_Output);
535     while (__output2 >= 10000) {
536 #ifdef __clang__ // TRANSITION, LLVM-38217
537       const uint32_t __c = __output2 - 10000 * (__output2 / 10000);
538 #else
539       const uint32_t __c = __output2 % 10000;
540 #endif
541       __output2 /= 10000;
542       const uint32_t __c0 = (__c % 100) << 1;
543       const uint32_t __c1 = (__c / 100) << 1;
544       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
545       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
546     }
547     if (__output2 >= 100) {
548       const uint32_t __c = (__output2 % 100) << 1;
549       __output2 /= 100;
550       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
551     }
552     if (__output2 >= 10) {
553       const uint32_t __c = __output2 << 1;
554       _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
555     } else {
556       *--_Mid = static_cast<char>('0' + __output2);
557     }
558 
559     if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu
560       // Performance note: it might be more efficient to do this immediately after setting _Mid.
561       _VSTD::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent));
562     } else if (_Ryu_exponent == 0) { // case "1729"
563       // Done!
564     } else if (_Whole_digits > 0) { // case "17.29"
565       // Performance note: moving digits might not be optimal.
566       _VSTD::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits));
567       _First[_Whole_digits] = '.';
568     } else { // case "0.001729"
569       // Performance note: a larger memset() followed by overwriting '.' might be more efficient.
570       _First[0] = '0';
571       _First[1] = '.';
572       _VSTD::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits));
573     }
574 
575     return { _First + _Total_fixed_length, errc{} };
576   }
577 
578   const uint32_t _Total_scientific_length = __olength + (__olength > 1) // digits + possible decimal point
579     + (-100 < _Scientific_exponent && _Scientific_exponent < 100 ? 4 : 5); // + scientific exponent
580   if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) {
581     return { _Last, errc::value_too_large };
582   }
583   char* const __result = _First;
584 
585   // Print the decimal digits.
586   uint32_t __i = 0;
587   // We prefer 32-bit operations, even on 64-bit platforms.
588   // We have at most 17 digits, and uint32_t can store 9 digits.
589   // If _Output doesn't fit into uint32_t, we cut off 8 digits,
590   // so the rest will fit into uint32_t.
591   if ((_Output >> 32) != 0) {
592     // Expensive 64-bit division.
593     const uint64_t __q = __div1e8(_Output);
594     uint32_t __output2 = static_cast<uint32_t>(_Output) - 100000000 * static_cast<uint32_t>(__q);
595     _Output = __q;
596 
597     const uint32_t __c = __output2 % 10000;
598     __output2 /= 10000;
599     const uint32_t __d = __output2 % 10000;
600     const uint32_t __c0 = (__c % 100) << 1;
601     const uint32_t __c1 = (__c / 100) << 1;
602     const uint32_t __d0 = (__d % 100) << 1;
603     const uint32_t __d1 = (__d / 100) << 1;
604     _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
605     _VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
606     _VSTD::memcpy(__result + __olength - __i - 5, __DIGIT_TABLE + __d0, 2);
607     _VSTD::memcpy(__result + __olength - __i - 7, __DIGIT_TABLE + __d1, 2);
608     __i += 8;
609   }
610   uint32_t __output2 = static_cast<uint32_t>(_Output);
611   while (__output2 >= 10000) {
612 #ifdef __clang__ // TRANSITION, LLVM-38217
613     const uint32_t __c = __output2 - 10000 * (__output2 / 10000);
614 #else
615     const uint32_t __c = __output2 % 10000;
616 #endif
617     __output2 /= 10000;
618     const uint32_t __c0 = (__c % 100) << 1;
619     const uint32_t __c1 = (__c / 100) << 1;
620     _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
621     _VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
622     __i += 4;
623   }
624   if (__output2 >= 100) {
625     const uint32_t __c = (__output2 % 100) << 1;
626     __output2 /= 100;
627     _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2);
628     __i += 2;
629   }
630   if (__output2 >= 10) {
631     const uint32_t __c = __output2 << 1;
632     // We can't use memcpy here: the decimal dot goes between these two digits.
633     __result[2] = __DIGIT_TABLE[__c + 1];
634     __result[0] = __DIGIT_TABLE[__c];
635   } else {
636     __result[0] = static_cast<char>('0' + __output2);
637   }
638 
639   // Print decimal point if needed.
640   uint32_t __index;
641   if (__olength > 1) {
642     __result[1] = '.';
643     __index = __olength + 1;
644   } else {
645     __index = 1;
646   }
647 
648   // Print the exponent.
649   __result[__index++] = 'e';
650   if (_Scientific_exponent < 0) {
651     __result[__index++] = '-';
652     _Scientific_exponent = -_Scientific_exponent;
653   } else {
654     __result[__index++] = '+';
655   }
656 
657   if (_Scientific_exponent >= 100) {
658     const int32_t __c = _Scientific_exponent % 10;
659     _VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * (_Scientific_exponent / 10), 2);
660     __result[__index + 2] = static_cast<char>('0' + __c);
661     __index += 3;
662   } else {
663     _VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2);
664     __index += 2;
665   }
666 
667   return { _First + _Total_scientific_length, errc{} };
668 }
669 
670 [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __d2d_small_int(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent,
671   __floating_decimal_64* const __v) {
672   const uint64_t __m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
673   const int32_t __e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
674 
675   if (__e2 > 0) {
676     // f = __m2 * 2^__e2 >= 2^53 is an integer.
677     // Ignore this case for now.
678     return false;
679   }
680 
681   if (__e2 < -52) {
682     // f < 1.
683     return false;
684   }
685 
686   // Since 2^52 <= __m2 < 2^53 and 0 <= -__e2 <= 52: 1 <= f = __m2 / 2^-__e2 < 2^53.
687   // Test if the lower -__e2 bits of the significand are 0, i.e. whether the fraction is 0.
688   const uint64_t __mask = (1ull << -__e2) - 1;
689   const uint64_t __fraction = __m2 & __mask;
690   if (__fraction != 0) {
691     return false;
692   }
693 
694   // f is an integer in the range [1, 2^53).
695   // Note: __mantissa might contain trailing (decimal) 0's.
696   // Note: since 2^53 < 10^16, there is no need to adjust __decimalLength17().
697   __v->__mantissa = __m2 >> -__e2;
698   __v->__exponent = 0;
699   return true;
700 }
701 
702 [[nodiscard]] to_chars_result __d2s_buffered_n(char* const _First, char* const _Last, const double __f,
703   const chars_format _Fmt) {
704 
705   // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
706   const uint64_t __bits = __double_to_bits(__f);
707 
708   // Case distinction; exit early for the easy cases.
709   if (__bits == 0) {
710     if (_Fmt == chars_format::scientific) {
711       if (_Last - _First < 5) {
712         return { _Last, errc::value_too_large };
713       }
714 
715       _VSTD::memcpy(_First, "0e+00", 5);
716 
717       return { _First + 5, errc{} };
718     }
719 
720     // Print "0" for chars_format::fixed, chars_format::general, and chars_format{}.
721     if (_First == _Last) {
722       return { _Last, errc::value_too_large };
723     }
724 
725     *_First = '0';
726 
727     return { _First + 1, errc{} };
728   }
729 
730   // Decode __bits into mantissa and exponent.
731   const uint64_t __ieeeMantissa = __bits & ((1ull << __DOUBLE_MANTISSA_BITS) - 1);
732   const uint32_t __ieeeExponent = static_cast<uint32_t>(__bits >> __DOUBLE_MANTISSA_BITS);
733 
734   if (_Fmt == chars_format::fixed) {
735     // const uint64_t _Mantissa2 = __ieeeMantissa | (1ull << __DOUBLE_MANTISSA_BITS); // restore implicit bit
736     const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
737       - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS; // bias and normalization
738 
739     // Normal values are equal to _Mantissa2 * 2^_Exponent2.
740     // (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.)
741 
742     // For nonzero integers, _Exponent2 >= -52. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1.
743     // In that case, _Mantissa2 is the implicit 1 bit followed by 52 zeros, so _Exponent2 is -52 to shift away
744     // the zeros.) The dense range of exactly representable integers has negative or zero exponents
745     // (as positive exponents make the range non-dense). For that dense range, Ryu will always be used:
746     // every digit is necessary to uniquely identify the value, so Ryu must print them all.
747 
748     // Positive exponents are the non-dense range of exactly representable integers. This contains all of the values
749     // for which Ryu can't be used (and a few Ryu-friendly values). We can save time by detecting positive
750     // exponents here and skipping Ryu. Calling __d2fixed_buffered_n() with precision 0 is valid for all integers
751     // (so it's okay if we call it with a Ryu-friendly value).
752     if (_Exponent2 > 0) {
753       return __d2fixed_buffered_n(_First, _Last, __f, 0);
754     }
755   }
756 
757   __floating_decimal_64 __v;
758   const bool __isSmallInt = __d2d_small_int(__ieeeMantissa, __ieeeExponent, &__v);
759   if (__isSmallInt) {
760     // For small integers in the range [1, 2^53), __v.__mantissa might contain trailing (decimal) zeros.
761     // For scientific notation we need to move these zeros into the exponent.
762     // (This is not needed for fixed-point notation, so it might be beneficial to trim
763     // trailing zeros in __to_chars only if needed - once fixed-point notation output is implemented.)
764     for (;;) {
765       const uint64_t __q = __div10(__v.__mantissa);
766       const uint32_t __r = static_cast<uint32_t>(__v.__mantissa) - 10 * static_cast<uint32_t>(__q);
767       if (__r != 0) {
768         break;
769       }
770       __v.__mantissa = __q;
771       ++__v.__exponent;
772     }
773   } else {
774     __v = __d2d(__ieeeMantissa, __ieeeExponent);
775   }
776 
777   return __to_chars(_First, _Last, __v, _Fmt, __f);
778 }
779 
780 _LIBCPP_END_NAMESPACE_STD
781 
782 // clang-format on
783