1*0eae32dcSDimitry Andric //===----------------------------------------------------------------------===// 2*0eae32dcSDimitry Andric // 3*0eae32dcSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*0eae32dcSDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5*0eae32dcSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*0eae32dcSDimitry Andric // 7*0eae32dcSDimitry Andric //===----------------------------------------------------------------------===// 8*0eae32dcSDimitry Andric 9*0eae32dcSDimitry Andric // Copyright (c) Microsoft Corporation. 10*0eae32dcSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 11*0eae32dcSDimitry Andric 12*0eae32dcSDimitry Andric // Copyright 2018 Ulf Adams 13*0eae32dcSDimitry Andric // Copyright (c) Microsoft Corporation. All rights reserved. 14*0eae32dcSDimitry Andric 15*0eae32dcSDimitry Andric // Boost Software License - Version 1.0 - August 17th, 2003 16*0eae32dcSDimitry Andric 17*0eae32dcSDimitry Andric // Permission is hereby granted, free of charge, to any person or organization 18*0eae32dcSDimitry Andric // obtaining a copy of the software and accompanying documentation covered by 19*0eae32dcSDimitry Andric // this license (the "Software") to use, reproduce, display, distribute, 20*0eae32dcSDimitry Andric // execute, and transmit the Software, and to prepare derivative works of the 21*0eae32dcSDimitry Andric // Software, and to permit third-parties to whom the Software is furnished to 22*0eae32dcSDimitry Andric // do so, all subject to the following: 23*0eae32dcSDimitry Andric 24*0eae32dcSDimitry Andric // The copyright notices in the Software and this entire statement, including 25*0eae32dcSDimitry Andric // the above license grant, this restriction and the following disclaimer, 26*0eae32dcSDimitry Andric // must be included in all copies of the Software, in whole or in part, and 27*0eae32dcSDimitry Andric // all derivative works of the Software, unless such copies or derivative 28*0eae32dcSDimitry Andric // works are solely in the form of machine-executable object code generated by 29*0eae32dcSDimitry Andric // a source language processor. 30*0eae32dcSDimitry Andric 31*0eae32dcSDimitry Andric // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 32*0eae32dcSDimitry Andric // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 33*0eae32dcSDimitry Andric // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT 34*0eae32dcSDimitry Andric // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE 35*0eae32dcSDimitry Andric // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, 36*0eae32dcSDimitry Andric // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 37*0eae32dcSDimitry Andric // DEALINGS IN THE SOFTWARE. 38*0eae32dcSDimitry Andric 39*0eae32dcSDimitry Andric // Avoid formatting to keep the changes with the original code minimal. 40*0eae32dcSDimitry Andric // clang-format off 41*0eae32dcSDimitry Andric 42*0eae32dcSDimitry Andric #include "__config" 43*0eae32dcSDimitry Andric #include "charconv" 44*0eae32dcSDimitry Andric 45*0eae32dcSDimitry Andric #include "include/ryu/common.h" 46*0eae32dcSDimitry Andric #include "include/ryu/d2fixed.h" 47*0eae32dcSDimitry Andric #include "include/ryu/d2s.h" 48*0eae32dcSDimitry Andric #include "include/ryu/d2s_full_table.h" 49*0eae32dcSDimitry Andric #include "include/ryu/d2s_intrinsics.h" 50*0eae32dcSDimitry Andric #include "include/ryu/digit_table.h" 51*0eae32dcSDimitry Andric #include "include/ryu/ryu.h" 52*0eae32dcSDimitry Andric 53*0eae32dcSDimitry Andric _LIBCPP_BEGIN_NAMESPACE_STD 54*0eae32dcSDimitry Andric 55*0eae32dcSDimitry Andric // We need a 64x128-bit multiplication and a subsequent 128-bit shift. 56*0eae32dcSDimitry Andric // Multiplication: 57*0eae32dcSDimitry Andric // The 64-bit factor is variable and passed in, the 128-bit factor comes 58*0eae32dcSDimitry Andric // from a lookup table. We know that the 64-bit factor only has 55 59*0eae32dcSDimitry Andric // significant bits (i.e., the 9 topmost bits are zeros). The 128-bit 60*0eae32dcSDimitry Andric // factor only has 124 significant bits (i.e., the 4 topmost bits are 61*0eae32dcSDimitry Andric // zeros). 62*0eae32dcSDimitry Andric // Shift: 63*0eae32dcSDimitry Andric // In principle, the multiplication result requires 55 + 124 = 179 bits to 64*0eae32dcSDimitry Andric // represent. However, we then shift this value to the right by __j, which is 65*0eae32dcSDimitry Andric // at least __j >= 115, so the result is guaranteed to fit into 179 - 115 = 64 66*0eae32dcSDimitry Andric // bits. This means that we only need the topmost 64 significant bits of 67*0eae32dcSDimitry Andric // the 64x128-bit multiplication. 68*0eae32dcSDimitry Andric // 69*0eae32dcSDimitry Andric // There are several ways to do this: 70*0eae32dcSDimitry Andric // 1. Best case: the compiler exposes a 128-bit type. 71*0eae32dcSDimitry Andric // We perform two 64x64-bit multiplications, add the higher 64 bits of the 72*0eae32dcSDimitry Andric // lower result to the higher result, and shift by __j - 64 bits. 73*0eae32dcSDimitry Andric // 74*0eae32dcSDimitry Andric // We explicitly cast from 64-bit to 128-bit, so the compiler can tell 75*0eae32dcSDimitry Andric // that these are only 64-bit inputs, and can map these to the best 76*0eae32dcSDimitry Andric // possible sequence of assembly instructions. 77*0eae32dcSDimitry Andric // x64 machines happen to have matching assembly instructions for 78*0eae32dcSDimitry Andric // 64x64-bit multiplications and 128-bit shifts. 79*0eae32dcSDimitry Andric // 80*0eae32dcSDimitry Andric // 2. Second best case: the compiler exposes intrinsics for the x64 assembly 81*0eae32dcSDimitry Andric // instructions mentioned in 1. 82*0eae32dcSDimitry Andric // 83*0eae32dcSDimitry Andric // 3. We only have 64x64 bit instructions that return the lower 64 bits of 84*0eae32dcSDimitry Andric // the result, i.e., we have to use plain C. 85*0eae32dcSDimitry Andric // Our inputs are less than the full width, so we have three options: 86*0eae32dcSDimitry Andric // a. Ignore this fact and just implement the intrinsics manually. 87*0eae32dcSDimitry Andric // b. Split both into 31-bit pieces, which guarantees no internal overflow, 88*0eae32dcSDimitry Andric // but requires extra work upfront (unless we change the lookup table). 89*0eae32dcSDimitry Andric // c. Split only the first factor into 31-bit pieces, which also guarantees 90*0eae32dcSDimitry Andric // no internal overflow, but requires extra work since the intermediate 91*0eae32dcSDimitry Andric // results are not perfectly aligned. 92*0eae32dcSDimitry Andric #ifdef _LIBCPP_INTRINSIC128 93*0eae32dcSDimitry Andric 94*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShift(const uint64_t __m, const uint64_t* const __mul, const int32_t __j) { 95*0eae32dcSDimitry Andric // __m is maximum 55 bits 96*0eae32dcSDimitry Andric uint64_t __high1; // 128 97*0eae32dcSDimitry Andric const uint64_t __low1 = __ryu_umul128(__m, __mul[1], &__high1); // 64 98*0eae32dcSDimitry Andric uint64_t __high0; // 64 99*0eae32dcSDimitry Andric (void) __ryu_umul128(__m, __mul[0], &__high0); // 0 100*0eae32dcSDimitry Andric const uint64_t __sum = __high0 + __low1; 101*0eae32dcSDimitry Andric if (__sum < __high0) { 102*0eae32dcSDimitry Andric ++__high1; // overflow into __high1 103*0eae32dcSDimitry Andric } 104*0eae32dcSDimitry Andric return __ryu_shiftright128(__sum, __high1, static_cast<uint32_t>(__j - 64)); 105*0eae32dcSDimitry Andric } 106*0eae32dcSDimitry Andric 107*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShiftAll(const uint64_t __m, const uint64_t* const __mul, const int32_t __j, 108*0eae32dcSDimitry Andric uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) { 109*0eae32dcSDimitry Andric *__vp = __mulShift(4 * __m + 2, __mul, __j); 110*0eae32dcSDimitry Andric *__vm = __mulShift(4 * __m - 1 - __mmShift, __mul, __j); 111*0eae32dcSDimitry Andric return __mulShift(4 * __m, __mul, __j); 112*0eae32dcSDimitry Andric } 113*0eae32dcSDimitry Andric 114*0eae32dcSDimitry Andric #else // ^^^ intrinsics available ^^^ / vvv intrinsics unavailable vvv 115*0eae32dcSDimitry Andric 116*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline _LIBCPP_ALWAYS_INLINE uint64_t __mulShiftAll(uint64_t __m, const uint64_t* const __mul, const int32_t __j, 117*0eae32dcSDimitry Andric uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) { // TRANSITION, VSO-634761 118*0eae32dcSDimitry Andric __m <<= 1; 119*0eae32dcSDimitry Andric // __m is maximum 55 bits 120*0eae32dcSDimitry Andric uint64_t __tmp; 121*0eae32dcSDimitry Andric const uint64_t __lo = __ryu_umul128(__m, __mul[0], &__tmp); 122*0eae32dcSDimitry Andric uint64_t __hi; 123*0eae32dcSDimitry Andric const uint64_t __mid = __tmp + __ryu_umul128(__m, __mul[1], &__hi); 124*0eae32dcSDimitry Andric __hi += __mid < __tmp; // overflow into __hi 125*0eae32dcSDimitry Andric 126*0eae32dcSDimitry Andric const uint64_t __lo2 = __lo + __mul[0]; 127*0eae32dcSDimitry Andric const uint64_t __mid2 = __mid + __mul[1] + (__lo2 < __lo); 128*0eae32dcSDimitry Andric const uint64_t __hi2 = __hi + (__mid2 < __mid); 129*0eae32dcSDimitry Andric *__vp = __ryu_shiftright128(__mid2, __hi2, static_cast<uint32_t>(__j - 64 - 1)); 130*0eae32dcSDimitry Andric 131*0eae32dcSDimitry Andric if (__mmShift == 1) { 132*0eae32dcSDimitry Andric const uint64_t __lo3 = __lo - __mul[0]; 133*0eae32dcSDimitry Andric const uint64_t __mid3 = __mid - __mul[1] - (__lo3 > __lo); 134*0eae32dcSDimitry Andric const uint64_t __hi3 = __hi - (__mid3 > __mid); 135*0eae32dcSDimitry Andric *__vm = __ryu_shiftright128(__mid3, __hi3, static_cast<uint32_t>(__j - 64 - 1)); 136*0eae32dcSDimitry Andric } else { 137*0eae32dcSDimitry Andric const uint64_t __lo3 = __lo + __lo; 138*0eae32dcSDimitry Andric const uint64_t __mid3 = __mid + __mid + (__lo3 < __lo); 139*0eae32dcSDimitry Andric const uint64_t __hi3 = __hi + __hi + (__mid3 < __mid); 140*0eae32dcSDimitry Andric const uint64_t __lo4 = __lo3 - __mul[0]; 141*0eae32dcSDimitry Andric const uint64_t __mid4 = __mid3 - __mul[1] - (__lo4 > __lo3); 142*0eae32dcSDimitry Andric const uint64_t __hi4 = __hi3 - (__mid4 > __mid3); 143*0eae32dcSDimitry Andric *__vm = __ryu_shiftright128(__mid4, __hi4, static_cast<uint32_t>(__j - 64)); 144*0eae32dcSDimitry Andric } 145*0eae32dcSDimitry Andric 146*0eae32dcSDimitry Andric return __ryu_shiftright128(__mid, __hi, static_cast<uint32_t>(__j - 64 - 1)); 147*0eae32dcSDimitry Andric } 148*0eae32dcSDimitry Andric 149*0eae32dcSDimitry Andric #endif // ^^^ intrinsics unavailable ^^^ 150*0eae32dcSDimitry Andric 151*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __decimalLength17(const uint64_t __v) { 152*0eae32dcSDimitry Andric // This is slightly faster than a loop. 153*0eae32dcSDimitry Andric // The average output length is 16.38 digits, so we check high-to-low. 154*0eae32dcSDimitry Andric // Function precondition: __v is not an 18, 19, or 20-digit number. 155*0eae32dcSDimitry Andric // (17 digits are sufficient for round-tripping.) 156*0eae32dcSDimitry Andric _LIBCPP_ASSERT(__v < 100000000000000000u, ""); 157*0eae32dcSDimitry Andric if (__v >= 10000000000000000u) { return 17; } 158*0eae32dcSDimitry Andric if (__v >= 1000000000000000u) { return 16; } 159*0eae32dcSDimitry Andric if (__v >= 100000000000000u) { return 15; } 160*0eae32dcSDimitry Andric if (__v >= 10000000000000u) { return 14; } 161*0eae32dcSDimitry Andric if (__v >= 1000000000000u) { return 13; } 162*0eae32dcSDimitry Andric if (__v >= 100000000000u) { return 12; } 163*0eae32dcSDimitry Andric if (__v >= 10000000000u) { return 11; } 164*0eae32dcSDimitry Andric if (__v >= 1000000000u) { return 10; } 165*0eae32dcSDimitry Andric if (__v >= 100000000u) { return 9; } 166*0eae32dcSDimitry Andric if (__v >= 10000000u) { return 8; } 167*0eae32dcSDimitry Andric if (__v >= 1000000u) { return 7; } 168*0eae32dcSDimitry Andric if (__v >= 100000u) { return 6; } 169*0eae32dcSDimitry Andric if (__v >= 10000u) { return 5; } 170*0eae32dcSDimitry Andric if (__v >= 1000u) { return 4; } 171*0eae32dcSDimitry Andric if (__v >= 100u) { return 3; } 172*0eae32dcSDimitry Andric if (__v >= 10u) { return 2; } 173*0eae32dcSDimitry Andric return 1; 174*0eae32dcSDimitry Andric } 175*0eae32dcSDimitry Andric 176*0eae32dcSDimitry Andric // A floating decimal representing m * 10^e. 177*0eae32dcSDimitry Andric struct __floating_decimal_64 { 178*0eae32dcSDimitry Andric uint64_t __mantissa; 179*0eae32dcSDimitry Andric int32_t __exponent; 180*0eae32dcSDimitry Andric }; 181*0eae32dcSDimitry Andric 182*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_64 __d2d(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent) { 183*0eae32dcSDimitry Andric int32_t __e2; 184*0eae32dcSDimitry Andric uint64_t __m2; 185*0eae32dcSDimitry Andric if (__ieeeExponent == 0) { 186*0eae32dcSDimitry Andric // We subtract 2 so that the bounds computation has 2 additional bits. 187*0eae32dcSDimitry Andric __e2 = 1 - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2; 188*0eae32dcSDimitry Andric __m2 = __ieeeMantissa; 189*0eae32dcSDimitry Andric } else { 190*0eae32dcSDimitry Andric __e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2; 191*0eae32dcSDimitry Andric __m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa; 192*0eae32dcSDimitry Andric } 193*0eae32dcSDimitry Andric const bool __even = (__m2 & 1) == 0; 194*0eae32dcSDimitry Andric const bool __acceptBounds = __even; 195*0eae32dcSDimitry Andric 196*0eae32dcSDimitry Andric // Step 2: Determine the interval of valid decimal representations. 197*0eae32dcSDimitry Andric const uint64_t __mv = 4 * __m2; 198*0eae32dcSDimitry Andric // Implicit bool -> int conversion. True is 1, false is 0. 199*0eae32dcSDimitry Andric const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1; 200*0eae32dcSDimitry Andric // We would compute __mp and __mm like this: 201*0eae32dcSDimitry Andric // uint64_t __mp = 4 * __m2 + 2; 202*0eae32dcSDimitry Andric // uint64_t __mm = __mv - 1 - __mmShift; 203*0eae32dcSDimitry Andric 204*0eae32dcSDimitry Andric // Step 3: Convert to a decimal power base using 128-bit arithmetic. 205*0eae32dcSDimitry Andric uint64_t __vr, __vp, __vm; 206*0eae32dcSDimitry Andric int32_t __e10; 207*0eae32dcSDimitry Andric bool __vmIsTrailingZeros = false; 208*0eae32dcSDimitry Andric bool __vrIsTrailingZeros = false; 209*0eae32dcSDimitry Andric if (__e2 >= 0) { 210*0eae32dcSDimitry Andric // I tried special-casing __q == 0, but there was no effect on performance. 211*0eae32dcSDimitry Andric // This expression is slightly faster than max(0, __log10Pow2(__e2) - 1). 212*0eae32dcSDimitry Andric const uint32_t __q = __log10Pow2(__e2) - (__e2 > 3); 213*0eae32dcSDimitry Andric __e10 = static_cast<int32_t>(__q); 214*0eae32dcSDimitry Andric const int32_t __k = __DOUBLE_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1; 215*0eae32dcSDimitry Andric const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k; 216*0eae32dcSDimitry Andric __vr = __mulShiftAll(__m2, __DOUBLE_POW5_INV_SPLIT[__q], __i, &__vp, &__vm, __mmShift); 217*0eae32dcSDimitry Andric if (__q <= 21) { 218*0eae32dcSDimitry Andric // This should use __q <= 22, but I think 21 is also safe. Smaller values 219*0eae32dcSDimitry Andric // may still be safe, but it's more difficult to reason about them. 220*0eae32dcSDimitry Andric // Only one of __mp, __mv, and __mm can be a multiple of 5, if any. 221*0eae32dcSDimitry Andric const uint32_t __mvMod5 = static_cast<uint32_t>(__mv) - 5 * static_cast<uint32_t>(__div5(__mv)); 222*0eae32dcSDimitry Andric if (__mvMod5 == 0) { 223*0eae32dcSDimitry Andric __vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q); 224*0eae32dcSDimitry Andric } else if (__acceptBounds) { 225*0eae32dcSDimitry Andric // Same as min(__e2 + (~__mm & 1), __pow5Factor(__mm)) >= __q 226*0eae32dcSDimitry Andric // <=> __e2 + (~__mm & 1) >= __q && __pow5Factor(__mm) >= __q 227*0eae32dcSDimitry Andric // <=> true && __pow5Factor(__mm) >= __q, since __e2 >= __q. 228*0eae32dcSDimitry Andric __vmIsTrailingZeros = __multipleOfPowerOf5(__mv - 1 - __mmShift, __q); 229*0eae32dcSDimitry Andric } else { 230*0eae32dcSDimitry Andric // Same as min(__e2 + 1, __pow5Factor(__mp)) >= __q. 231*0eae32dcSDimitry Andric __vp -= __multipleOfPowerOf5(__mv + 2, __q); 232*0eae32dcSDimitry Andric } 233*0eae32dcSDimitry Andric } 234*0eae32dcSDimitry Andric } else { 235*0eae32dcSDimitry Andric // This expression is slightly faster than max(0, __log10Pow5(-__e2) - 1). 236*0eae32dcSDimitry Andric const uint32_t __q = __log10Pow5(-__e2) - (-__e2 > 1); 237*0eae32dcSDimitry Andric __e10 = static_cast<int32_t>(__q) + __e2; 238*0eae32dcSDimitry Andric const int32_t __i = -__e2 - static_cast<int32_t>(__q); 239*0eae32dcSDimitry Andric const int32_t __k = __pow5bits(__i) - __DOUBLE_POW5_BITCOUNT; 240*0eae32dcSDimitry Andric const int32_t __j = static_cast<int32_t>(__q) - __k; 241*0eae32dcSDimitry Andric __vr = __mulShiftAll(__m2, __DOUBLE_POW5_SPLIT[__i], __j, &__vp, &__vm, __mmShift); 242*0eae32dcSDimitry Andric if (__q <= 1) { 243*0eae32dcSDimitry Andric // {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits. 244*0eae32dcSDimitry Andric // __mv = 4 * __m2, so it always has at least two trailing 0 bits. 245*0eae32dcSDimitry Andric __vrIsTrailingZeros = true; 246*0eae32dcSDimitry Andric if (__acceptBounds) { 247*0eae32dcSDimitry Andric // __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1. 248*0eae32dcSDimitry Andric __vmIsTrailingZeros = __mmShift == 1; 249*0eae32dcSDimitry Andric } else { 250*0eae32dcSDimitry Andric // __mp = __mv + 2, so it always has at least one trailing 0 bit. 251*0eae32dcSDimitry Andric --__vp; 252*0eae32dcSDimitry Andric } 253*0eae32dcSDimitry Andric } else if (__q < 63) { // TRANSITION(ulfjack): Use a tighter bound here. 254*0eae32dcSDimitry Andric // We need to compute min(ntz(__mv), __pow5Factor(__mv) - __e2) >= __q - 1 255*0eae32dcSDimitry Andric // <=> ntz(__mv) >= __q - 1 && __pow5Factor(__mv) - __e2 >= __q - 1 256*0eae32dcSDimitry Andric // <=> ntz(__mv) >= __q - 1 (__e2 is negative and -__e2 >= __q) 257*0eae32dcSDimitry Andric // <=> (__mv & ((1 << (__q - 1)) - 1)) == 0 258*0eae32dcSDimitry Andric // We also need to make sure that the left shift does not overflow. 259*0eae32dcSDimitry Andric __vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1); 260*0eae32dcSDimitry Andric } 261*0eae32dcSDimitry Andric } 262*0eae32dcSDimitry Andric 263*0eae32dcSDimitry Andric // Step 4: Find the shortest decimal representation in the interval of valid representations. 264*0eae32dcSDimitry Andric int32_t __removed = 0; 265*0eae32dcSDimitry Andric uint8_t __lastRemovedDigit = 0; 266*0eae32dcSDimitry Andric uint64_t _Output; 267*0eae32dcSDimitry Andric // On average, we remove ~2 digits. 268*0eae32dcSDimitry Andric if (__vmIsTrailingZeros || __vrIsTrailingZeros) { 269*0eae32dcSDimitry Andric // General case, which happens rarely (~0.7%). 270*0eae32dcSDimitry Andric for (;;) { 271*0eae32dcSDimitry Andric const uint64_t __vpDiv10 = __div10(__vp); 272*0eae32dcSDimitry Andric const uint64_t __vmDiv10 = __div10(__vm); 273*0eae32dcSDimitry Andric if (__vpDiv10 <= __vmDiv10) { 274*0eae32dcSDimitry Andric break; 275*0eae32dcSDimitry Andric } 276*0eae32dcSDimitry Andric const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10); 277*0eae32dcSDimitry Andric const uint64_t __vrDiv10 = __div10(__vr); 278*0eae32dcSDimitry Andric const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10); 279*0eae32dcSDimitry Andric __vmIsTrailingZeros &= __vmMod10 == 0; 280*0eae32dcSDimitry Andric __vrIsTrailingZeros &= __lastRemovedDigit == 0; 281*0eae32dcSDimitry Andric __lastRemovedDigit = static_cast<uint8_t>(__vrMod10); 282*0eae32dcSDimitry Andric __vr = __vrDiv10; 283*0eae32dcSDimitry Andric __vp = __vpDiv10; 284*0eae32dcSDimitry Andric __vm = __vmDiv10; 285*0eae32dcSDimitry Andric ++__removed; 286*0eae32dcSDimitry Andric } 287*0eae32dcSDimitry Andric if (__vmIsTrailingZeros) { 288*0eae32dcSDimitry Andric for (;;) { 289*0eae32dcSDimitry Andric const uint64_t __vmDiv10 = __div10(__vm); 290*0eae32dcSDimitry Andric const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10); 291*0eae32dcSDimitry Andric if (__vmMod10 != 0) { 292*0eae32dcSDimitry Andric break; 293*0eae32dcSDimitry Andric } 294*0eae32dcSDimitry Andric const uint64_t __vpDiv10 = __div10(__vp); 295*0eae32dcSDimitry Andric const uint64_t __vrDiv10 = __div10(__vr); 296*0eae32dcSDimitry Andric const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10); 297*0eae32dcSDimitry Andric __vrIsTrailingZeros &= __lastRemovedDigit == 0; 298*0eae32dcSDimitry Andric __lastRemovedDigit = static_cast<uint8_t>(__vrMod10); 299*0eae32dcSDimitry Andric __vr = __vrDiv10; 300*0eae32dcSDimitry Andric __vp = __vpDiv10; 301*0eae32dcSDimitry Andric __vm = __vmDiv10; 302*0eae32dcSDimitry Andric ++__removed; 303*0eae32dcSDimitry Andric } 304*0eae32dcSDimitry Andric } 305*0eae32dcSDimitry Andric if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) { 306*0eae32dcSDimitry Andric // Round even if the exact number is .....50..0. 307*0eae32dcSDimitry Andric __lastRemovedDigit = 4; 308*0eae32dcSDimitry Andric } 309*0eae32dcSDimitry Andric // We need to take __vr + 1 if __vr is outside bounds or we need to round up. 310*0eae32dcSDimitry Andric _Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5); 311*0eae32dcSDimitry Andric } else { 312*0eae32dcSDimitry Andric // Specialized for the common case (~99.3%). Percentages below are relative to this. 313*0eae32dcSDimitry Andric bool __roundUp = false; 314*0eae32dcSDimitry Andric const uint64_t __vpDiv100 = __div100(__vp); 315*0eae32dcSDimitry Andric const uint64_t __vmDiv100 = __div100(__vm); 316*0eae32dcSDimitry Andric if (__vpDiv100 > __vmDiv100) { // Optimization: remove two digits at a time (~86.2%). 317*0eae32dcSDimitry Andric const uint64_t __vrDiv100 = __div100(__vr); 318*0eae32dcSDimitry Andric const uint32_t __vrMod100 = static_cast<uint32_t>(__vr) - 100 * static_cast<uint32_t>(__vrDiv100); 319*0eae32dcSDimitry Andric __roundUp = __vrMod100 >= 50; 320*0eae32dcSDimitry Andric __vr = __vrDiv100; 321*0eae32dcSDimitry Andric __vp = __vpDiv100; 322*0eae32dcSDimitry Andric __vm = __vmDiv100; 323*0eae32dcSDimitry Andric __removed += 2; 324*0eae32dcSDimitry Andric } 325*0eae32dcSDimitry Andric // Loop iterations below (approximately), without optimization above: 326*0eae32dcSDimitry Andric // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02% 327*0eae32dcSDimitry Andric // Loop iterations below (approximately), with optimization above: 328*0eae32dcSDimitry Andric // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% 329*0eae32dcSDimitry Andric for (;;) { 330*0eae32dcSDimitry Andric const uint64_t __vpDiv10 = __div10(__vp); 331*0eae32dcSDimitry Andric const uint64_t __vmDiv10 = __div10(__vm); 332*0eae32dcSDimitry Andric if (__vpDiv10 <= __vmDiv10) { 333*0eae32dcSDimitry Andric break; 334*0eae32dcSDimitry Andric } 335*0eae32dcSDimitry Andric const uint64_t __vrDiv10 = __div10(__vr); 336*0eae32dcSDimitry Andric const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10); 337*0eae32dcSDimitry Andric __roundUp = __vrMod10 >= 5; 338*0eae32dcSDimitry Andric __vr = __vrDiv10; 339*0eae32dcSDimitry Andric __vp = __vpDiv10; 340*0eae32dcSDimitry Andric __vm = __vmDiv10; 341*0eae32dcSDimitry Andric ++__removed; 342*0eae32dcSDimitry Andric } 343*0eae32dcSDimitry Andric // We need to take __vr + 1 if __vr is outside bounds or we need to round up. 344*0eae32dcSDimitry Andric _Output = __vr + (__vr == __vm || __roundUp); 345*0eae32dcSDimitry Andric } 346*0eae32dcSDimitry Andric const int32_t __exp = __e10 + __removed; 347*0eae32dcSDimitry Andric 348*0eae32dcSDimitry Andric __floating_decimal_64 __fd; 349*0eae32dcSDimitry Andric __fd.__exponent = __exp; 350*0eae32dcSDimitry Andric __fd.__mantissa = _Output; 351*0eae32dcSDimitry Andric return __fd; 352*0eae32dcSDimitry Andric } 353*0eae32dcSDimitry Andric 354*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_64 __v, 355*0eae32dcSDimitry Andric chars_format _Fmt, const double __f) { 356*0eae32dcSDimitry Andric // Step 5: Print the decimal representation. 357*0eae32dcSDimitry Andric uint64_t _Output = __v.__mantissa; 358*0eae32dcSDimitry Andric int32_t _Ryu_exponent = __v.__exponent; 359*0eae32dcSDimitry Andric const uint32_t __olength = __decimalLength17(_Output); 360*0eae32dcSDimitry Andric int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1; 361*0eae32dcSDimitry Andric 362*0eae32dcSDimitry Andric if (_Fmt == chars_format{}) { 363*0eae32dcSDimitry Andric int32_t _Lower; 364*0eae32dcSDimitry Andric int32_t _Upper; 365*0eae32dcSDimitry Andric 366*0eae32dcSDimitry Andric if (__olength == 1) { 367*0eae32dcSDimitry Andric // Value | Fixed | Scientific 368*0eae32dcSDimitry Andric // 1e-3 | "0.001" | "1e-03" 369*0eae32dcSDimitry Andric // 1e4 | "10000" | "1e+04" 370*0eae32dcSDimitry Andric _Lower = -3; 371*0eae32dcSDimitry Andric _Upper = 4; 372*0eae32dcSDimitry Andric } else { 373*0eae32dcSDimitry Andric // Value | Fixed | Scientific 374*0eae32dcSDimitry Andric // 1234e-7 | "0.0001234" | "1.234e-04" 375*0eae32dcSDimitry Andric // 1234e5 | "123400000" | "1.234e+08" 376*0eae32dcSDimitry Andric _Lower = -static_cast<int32_t>(__olength + 3); 377*0eae32dcSDimitry Andric _Upper = 5; 378*0eae32dcSDimitry Andric } 379*0eae32dcSDimitry Andric 380*0eae32dcSDimitry Andric if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) { 381*0eae32dcSDimitry Andric _Fmt = chars_format::fixed; 382*0eae32dcSDimitry Andric } else { 383*0eae32dcSDimitry Andric _Fmt = chars_format::scientific; 384*0eae32dcSDimitry Andric } 385*0eae32dcSDimitry Andric } else if (_Fmt == chars_format::general) { 386*0eae32dcSDimitry Andric // C11 7.21.6.1 "The fprintf function"/8: 387*0eae32dcSDimitry Andric // "Let P equal [...] 6 if the precision is omitted [...]. 388*0eae32dcSDimitry Andric // Then, if a conversion with style E would have an exponent of X: 389*0eae32dcSDimitry Andric // - if P > X >= -4, the conversion is with style f [...]. 390*0eae32dcSDimitry Andric // - otherwise, the conversion is with style e [...]." 391*0eae32dcSDimitry Andric if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) { 392*0eae32dcSDimitry Andric _Fmt = chars_format::fixed; 393*0eae32dcSDimitry Andric } else { 394*0eae32dcSDimitry Andric _Fmt = chars_format::scientific; 395*0eae32dcSDimitry Andric } 396*0eae32dcSDimitry Andric } 397*0eae32dcSDimitry Andric 398*0eae32dcSDimitry Andric if (_Fmt == chars_format::fixed) { 399*0eae32dcSDimitry Andric // Example: _Output == 1729, __olength == 4 400*0eae32dcSDimitry Andric 401*0eae32dcSDimitry Andric // _Ryu_exponent | Printed | _Whole_digits | _Total_fixed_length | Notes 402*0eae32dcSDimitry Andric // --------------|----------|---------------|----------------------|--------------------------------------- 403*0eae32dcSDimitry Andric // 2 | 172900 | 6 | _Whole_digits | Ryu can't be used for printing 404*0eae32dcSDimitry Andric // 1 | 17290 | 5 | (sometimes adjusted) | when the trimmed digits are nonzero. 405*0eae32dcSDimitry Andric // --------------|----------|---------------|----------------------|--------------------------------------- 406*0eae32dcSDimitry Andric // 0 | 1729 | 4 | _Whole_digits | Unified length cases. 407*0eae32dcSDimitry Andric // --------------|----------|---------------|----------------------|--------------------------------------- 408*0eae32dcSDimitry Andric // -1 | 172.9 | 3 | __olength + 1 | This case can't happen for 409*0eae32dcSDimitry Andric // -2 | 17.29 | 2 | | __olength == 1, but no additional 410*0eae32dcSDimitry Andric // -3 | 1.729 | 1 | | code is needed to avoid it. 411*0eae32dcSDimitry Andric // --------------|----------|---------------|----------------------|--------------------------------------- 412*0eae32dcSDimitry Andric // -4 | 0.1729 | 0 | 2 - _Ryu_exponent | C11 7.21.6.1 "The fprintf function"/8: 413*0eae32dcSDimitry Andric // -5 | 0.01729 | -1 | | "If a decimal-point character appears, 414*0eae32dcSDimitry Andric // -6 | 0.001729 | -2 | | at least one digit appears before it." 415*0eae32dcSDimitry Andric 416*0eae32dcSDimitry Andric const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent; 417*0eae32dcSDimitry Andric 418*0eae32dcSDimitry Andric uint32_t _Total_fixed_length; 419*0eae32dcSDimitry Andric if (_Ryu_exponent >= 0) { // cases "172900" and "1729" 420*0eae32dcSDimitry Andric _Total_fixed_length = static_cast<uint32_t>(_Whole_digits); 421*0eae32dcSDimitry Andric if (_Output == 1) { 422*0eae32dcSDimitry Andric // Rounding can affect the number of digits. 423*0eae32dcSDimitry Andric // For example, 1e23 is exactly "99999999999999991611392" which is 23 digits instead of 24. 424*0eae32dcSDimitry Andric // We can use a lookup table to detect this and adjust the total length. 425*0eae32dcSDimitry Andric static constexpr uint8_t _Adjustment[309] = { 426*0eae32dcSDimitry Andric 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0, 427*0eae32dcSDimitry Andric 1,1,0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,1,1, 428*0eae32dcSDimitry Andric 1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,0,1,0,1,1,0,1, 429*0eae32dcSDimitry Andric 1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1, 430*0eae32dcSDimitry Andric 0,1,0,1,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,1,1,1,1,1,0,1,0,1,1,0,0,0,1, 431*0eae32dcSDimitry Andric 1,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0,0,0,0,1,1,0, 432*0eae32dcSDimitry Andric 0,1,0,1,1,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,0,0,0,0,0,1,1,0,1,0 }; 433*0eae32dcSDimitry Andric _Total_fixed_length -= _Adjustment[_Ryu_exponent]; 434*0eae32dcSDimitry Andric // _Whole_digits doesn't need to be adjusted because these cases won't refer to it later. 435*0eae32dcSDimitry Andric } 436*0eae32dcSDimitry Andric } else if (_Whole_digits > 0) { // case "17.29" 437*0eae32dcSDimitry Andric _Total_fixed_length = __olength + 1; 438*0eae32dcSDimitry Andric } else { // case "0.001729" 439*0eae32dcSDimitry Andric _Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent); 440*0eae32dcSDimitry Andric } 441*0eae32dcSDimitry Andric 442*0eae32dcSDimitry Andric if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) { 443*0eae32dcSDimitry Andric return { _Last, errc::value_too_large }; 444*0eae32dcSDimitry Andric } 445*0eae32dcSDimitry Andric 446*0eae32dcSDimitry Andric char* _Mid; 447*0eae32dcSDimitry Andric if (_Ryu_exponent > 0) { // case "172900" 448*0eae32dcSDimitry Andric bool _Can_use_ryu; 449*0eae32dcSDimitry Andric 450*0eae32dcSDimitry Andric if (_Ryu_exponent > 22) { // 10^22 is the largest power of 10 that's exactly representable as a double. 451*0eae32dcSDimitry Andric _Can_use_ryu = false; 452*0eae32dcSDimitry Andric } else { 453*0eae32dcSDimitry Andric // Ryu generated X: __v.__mantissa * 10^_Ryu_exponent 454*0eae32dcSDimitry Andric // __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits) 455*0eae32dcSDimitry Andric // 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent 456*0eae32dcSDimitry Andric 457*0eae32dcSDimitry Andric // _Trailing_zero_bits is [0, 56] (aside: because 2^56 is the largest power of 2 458*0eae32dcSDimitry Andric // with 17 decimal digits, which is double's round-trip limit.) 459*0eae32dcSDimitry Andric // _Ryu_exponent is [1, 22]. 460*0eae32dcSDimitry Andric // Normalization adds [2, 52] (aside: at least 2 because the pre-normalized mantissa is at least 5). 461*0eae32dcSDimitry Andric // This adds up to [3, 130], which is well below double's maximum binary exponent 1023. 462*0eae32dcSDimitry Andric 463*0eae32dcSDimitry Andric // Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent. 464*0eae32dcSDimitry Andric 465*0eae32dcSDimitry Andric // If that product would exceed 53 bits, then X can't be exactly represented as a double. 466*0eae32dcSDimitry Andric // (That's not a problem for round-tripping, because X is close enough to the original double, 467*0eae32dcSDimitry Andric // but X isn't mathematically equal to the original double.) This requires a high-precision fallback. 468*0eae32dcSDimitry Andric 469*0eae32dcSDimitry Andric // If the product is 53 bits or smaller, then X can be exactly represented as a double (and we don't 470*0eae32dcSDimitry Andric // need to re-synthesize it; the original double must have been X, because Ryu wouldn't produce the 471*0eae32dcSDimitry Andric // same output for two different doubles X and Y). This allows Ryu's output to be used (zero-filled). 472*0eae32dcSDimitry Andric 473*0eae32dcSDimitry Andric // (2^53 - 1) / 5^0 (for indexing), (2^53 - 1) / 5^1, ..., (2^53 - 1) / 5^22 474*0eae32dcSDimitry Andric static constexpr uint64_t _Max_shifted_mantissa[23] = { 475*0eae32dcSDimitry Andric 9007199254740991u, 1801439850948198u, 360287970189639u, 72057594037927u, 14411518807585u, 476*0eae32dcSDimitry Andric 2882303761517u, 576460752303u, 115292150460u, 23058430092u, 4611686018u, 922337203u, 184467440u, 477*0eae32dcSDimitry Andric 36893488u, 7378697u, 1475739u, 295147u, 59029u, 11805u, 2361u, 472u, 94u, 18u, 3u }; 478*0eae32dcSDimitry Andric 479*0eae32dcSDimitry Andric unsigned long _Trailing_zero_bits; 480*0eae32dcSDimitry Andric #ifdef _LIBCPP_HAS_BITSCAN64 481*0eae32dcSDimitry Andric (void) _BitScanForward64(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero 482*0eae32dcSDimitry Andric #else // ^^^ 64-bit ^^^ / vvv 32-bit vvv 483*0eae32dcSDimitry Andric const uint32_t _Low_mantissa = static_cast<uint32_t>(__v.__mantissa); 484*0eae32dcSDimitry Andric if (_Low_mantissa != 0) { 485*0eae32dcSDimitry Andric (void) _BitScanForward(&_Trailing_zero_bits, _Low_mantissa); 486*0eae32dcSDimitry Andric } else { 487*0eae32dcSDimitry Andric const uint32_t _High_mantissa = static_cast<uint32_t>(__v.__mantissa >> 32); // nonzero here 488*0eae32dcSDimitry Andric (void) _BitScanForward(&_Trailing_zero_bits, _High_mantissa); 489*0eae32dcSDimitry Andric _Trailing_zero_bits += 32; 490*0eae32dcSDimitry Andric } 491*0eae32dcSDimitry Andric #endif // ^^^ 32-bit ^^^ 492*0eae32dcSDimitry Andric const uint64_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits; 493*0eae32dcSDimitry Andric _Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent]; 494*0eae32dcSDimitry Andric } 495*0eae32dcSDimitry Andric 496*0eae32dcSDimitry Andric if (!_Can_use_ryu) { 497*0eae32dcSDimitry Andric // Print the integer exactly. 498*0eae32dcSDimitry Andric // Performance note: This will redundantly perform bounds checking. 499*0eae32dcSDimitry Andric // Performance note: This will redundantly decompose the IEEE representation. 500*0eae32dcSDimitry Andric return __d2fixed_buffered_n(_First, _Last, __f, 0); 501*0eae32dcSDimitry Andric } 502*0eae32dcSDimitry Andric 503*0eae32dcSDimitry Andric // _Can_use_ryu 504*0eae32dcSDimitry Andric // Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length). 505*0eae32dcSDimitry Andric _Mid = _First + __olength; 506*0eae32dcSDimitry Andric } else { // cases "1729", "17.29", and "0.001729" 507*0eae32dcSDimitry Andric // Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length). 508*0eae32dcSDimitry Andric _Mid = _First + _Total_fixed_length; 509*0eae32dcSDimitry Andric } 510*0eae32dcSDimitry Andric 511*0eae32dcSDimitry Andric // We prefer 32-bit operations, even on 64-bit platforms. 512*0eae32dcSDimitry Andric // We have at most 17 digits, and uint32_t can store 9 digits. 513*0eae32dcSDimitry Andric // If _Output doesn't fit into uint32_t, we cut off 8 digits, 514*0eae32dcSDimitry Andric // so the rest will fit into uint32_t. 515*0eae32dcSDimitry Andric if ((_Output >> 32) != 0) { 516*0eae32dcSDimitry Andric // Expensive 64-bit division. 517*0eae32dcSDimitry Andric const uint64_t __q = __div1e8(_Output); 518*0eae32dcSDimitry Andric uint32_t __output2 = static_cast<uint32_t>(_Output - 100000000 * __q); 519*0eae32dcSDimitry Andric _Output = __q; 520*0eae32dcSDimitry Andric 521*0eae32dcSDimitry Andric const uint32_t __c = __output2 % 10000; 522*0eae32dcSDimitry Andric __output2 /= 10000; 523*0eae32dcSDimitry Andric const uint32_t __d = __output2 % 10000; 524*0eae32dcSDimitry Andric const uint32_t __c0 = (__c % 100) << 1; 525*0eae32dcSDimitry Andric const uint32_t __c1 = (__c / 100) << 1; 526*0eae32dcSDimitry Andric const uint32_t __d0 = (__d % 100) << 1; 527*0eae32dcSDimitry Andric const uint32_t __d1 = (__d / 100) << 1; 528*0eae32dcSDimitry Andric 529*0eae32dcSDimitry Andric _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2); 530*0eae32dcSDimitry Andric _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2); 531*0eae32dcSDimitry Andric _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __d0, 2); 532*0eae32dcSDimitry Andric _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __d1, 2); 533*0eae32dcSDimitry Andric } 534*0eae32dcSDimitry Andric uint32_t __output2 = static_cast<uint32_t>(_Output); 535*0eae32dcSDimitry Andric while (__output2 >= 10000) { 536*0eae32dcSDimitry Andric #ifdef __clang__ // TRANSITION, LLVM-38217 537*0eae32dcSDimitry Andric const uint32_t __c = __output2 - 10000 * (__output2 / 10000); 538*0eae32dcSDimitry Andric #else 539*0eae32dcSDimitry Andric const uint32_t __c = __output2 % 10000; 540*0eae32dcSDimitry Andric #endif 541*0eae32dcSDimitry Andric __output2 /= 10000; 542*0eae32dcSDimitry Andric const uint32_t __c0 = (__c % 100) << 1; 543*0eae32dcSDimitry Andric const uint32_t __c1 = (__c / 100) << 1; 544*0eae32dcSDimitry Andric _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2); 545*0eae32dcSDimitry Andric _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2); 546*0eae32dcSDimitry Andric } 547*0eae32dcSDimitry Andric if (__output2 >= 100) { 548*0eae32dcSDimitry Andric const uint32_t __c = (__output2 % 100) << 1; 549*0eae32dcSDimitry Andric __output2 /= 100; 550*0eae32dcSDimitry Andric _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2); 551*0eae32dcSDimitry Andric } 552*0eae32dcSDimitry Andric if (__output2 >= 10) { 553*0eae32dcSDimitry Andric const uint32_t __c = __output2 << 1; 554*0eae32dcSDimitry Andric _VSTD::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2); 555*0eae32dcSDimitry Andric } else { 556*0eae32dcSDimitry Andric *--_Mid = static_cast<char>('0' + __output2); 557*0eae32dcSDimitry Andric } 558*0eae32dcSDimitry Andric 559*0eae32dcSDimitry Andric if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu 560*0eae32dcSDimitry Andric // Performance note: it might be more efficient to do this immediately after setting _Mid. 561*0eae32dcSDimitry Andric _VSTD::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent)); 562*0eae32dcSDimitry Andric } else if (_Ryu_exponent == 0) { // case "1729" 563*0eae32dcSDimitry Andric // Done! 564*0eae32dcSDimitry Andric } else if (_Whole_digits > 0) { // case "17.29" 565*0eae32dcSDimitry Andric // Performance note: moving digits might not be optimal. 566*0eae32dcSDimitry Andric _VSTD::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits)); 567*0eae32dcSDimitry Andric _First[_Whole_digits] = '.'; 568*0eae32dcSDimitry Andric } else { // case "0.001729" 569*0eae32dcSDimitry Andric // Performance note: a larger memset() followed by overwriting '.' might be more efficient. 570*0eae32dcSDimitry Andric _First[0] = '0'; 571*0eae32dcSDimitry Andric _First[1] = '.'; 572*0eae32dcSDimitry Andric _VSTD::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits)); 573*0eae32dcSDimitry Andric } 574*0eae32dcSDimitry Andric 575*0eae32dcSDimitry Andric return { _First + _Total_fixed_length, errc{} }; 576*0eae32dcSDimitry Andric } 577*0eae32dcSDimitry Andric 578*0eae32dcSDimitry Andric const uint32_t _Total_scientific_length = __olength + (__olength > 1) // digits + possible decimal point 579*0eae32dcSDimitry Andric + (-100 < _Scientific_exponent && _Scientific_exponent < 100 ? 4 : 5); // + scientific exponent 580*0eae32dcSDimitry Andric if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) { 581*0eae32dcSDimitry Andric return { _Last, errc::value_too_large }; 582*0eae32dcSDimitry Andric } 583*0eae32dcSDimitry Andric char* const __result = _First; 584*0eae32dcSDimitry Andric 585*0eae32dcSDimitry Andric // Print the decimal digits. 586*0eae32dcSDimitry Andric uint32_t __i = 0; 587*0eae32dcSDimitry Andric // We prefer 32-bit operations, even on 64-bit platforms. 588*0eae32dcSDimitry Andric // We have at most 17 digits, and uint32_t can store 9 digits. 589*0eae32dcSDimitry Andric // If _Output doesn't fit into uint32_t, we cut off 8 digits, 590*0eae32dcSDimitry Andric // so the rest will fit into uint32_t. 591*0eae32dcSDimitry Andric if ((_Output >> 32) != 0) { 592*0eae32dcSDimitry Andric // Expensive 64-bit division. 593*0eae32dcSDimitry Andric const uint64_t __q = __div1e8(_Output); 594*0eae32dcSDimitry Andric uint32_t __output2 = static_cast<uint32_t>(_Output) - 100000000 * static_cast<uint32_t>(__q); 595*0eae32dcSDimitry Andric _Output = __q; 596*0eae32dcSDimitry Andric 597*0eae32dcSDimitry Andric const uint32_t __c = __output2 % 10000; 598*0eae32dcSDimitry Andric __output2 /= 10000; 599*0eae32dcSDimitry Andric const uint32_t __d = __output2 % 10000; 600*0eae32dcSDimitry Andric const uint32_t __c0 = (__c % 100) << 1; 601*0eae32dcSDimitry Andric const uint32_t __c1 = (__c / 100) << 1; 602*0eae32dcSDimitry Andric const uint32_t __d0 = (__d % 100) << 1; 603*0eae32dcSDimitry Andric const uint32_t __d1 = (__d / 100) << 1; 604*0eae32dcSDimitry Andric _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2); 605*0eae32dcSDimitry Andric _VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2); 606*0eae32dcSDimitry Andric _VSTD::memcpy(__result + __olength - __i - 5, __DIGIT_TABLE + __d0, 2); 607*0eae32dcSDimitry Andric _VSTD::memcpy(__result + __olength - __i - 7, __DIGIT_TABLE + __d1, 2); 608*0eae32dcSDimitry Andric __i += 8; 609*0eae32dcSDimitry Andric } 610*0eae32dcSDimitry Andric uint32_t __output2 = static_cast<uint32_t>(_Output); 611*0eae32dcSDimitry Andric while (__output2 >= 10000) { 612*0eae32dcSDimitry Andric #ifdef __clang__ // TRANSITION, LLVM-38217 613*0eae32dcSDimitry Andric const uint32_t __c = __output2 - 10000 * (__output2 / 10000); 614*0eae32dcSDimitry Andric #else 615*0eae32dcSDimitry Andric const uint32_t __c = __output2 % 10000; 616*0eae32dcSDimitry Andric #endif 617*0eae32dcSDimitry Andric __output2 /= 10000; 618*0eae32dcSDimitry Andric const uint32_t __c0 = (__c % 100) << 1; 619*0eae32dcSDimitry Andric const uint32_t __c1 = (__c / 100) << 1; 620*0eae32dcSDimitry Andric _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2); 621*0eae32dcSDimitry Andric _VSTD::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2); 622*0eae32dcSDimitry Andric __i += 4; 623*0eae32dcSDimitry Andric } 624*0eae32dcSDimitry Andric if (__output2 >= 100) { 625*0eae32dcSDimitry Andric const uint32_t __c = (__output2 % 100) << 1; 626*0eae32dcSDimitry Andric __output2 /= 100; 627*0eae32dcSDimitry Andric _VSTD::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2); 628*0eae32dcSDimitry Andric __i += 2; 629*0eae32dcSDimitry Andric } 630*0eae32dcSDimitry Andric if (__output2 >= 10) { 631*0eae32dcSDimitry Andric const uint32_t __c = __output2 << 1; 632*0eae32dcSDimitry Andric // We can't use memcpy here: the decimal dot goes between these two digits. 633*0eae32dcSDimitry Andric __result[2] = __DIGIT_TABLE[__c + 1]; 634*0eae32dcSDimitry Andric __result[0] = __DIGIT_TABLE[__c]; 635*0eae32dcSDimitry Andric } else { 636*0eae32dcSDimitry Andric __result[0] = static_cast<char>('0' + __output2); 637*0eae32dcSDimitry Andric } 638*0eae32dcSDimitry Andric 639*0eae32dcSDimitry Andric // Print decimal point if needed. 640*0eae32dcSDimitry Andric uint32_t __index; 641*0eae32dcSDimitry Andric if (__olength > 1) { 642*0eae32dcSDimitry Andric __result[1] = '.'; 643*0eae32dcSDimitry Andric __index = __olength + 1; 644*0eae32dcSDimitry Andric } else { 645*0eae32dcSDimitry Andric __index = 1; 646*0eae32dcSDimitry Andric } 647*0eae32dcSDimitry Andric 648*0eae32dcSDimitry Andric // Print the exponent. 649*0eae32dcSDimitry Andric __result[__index++] = 'e'; 650*0eae32dcSDimitry Andric if (_Scientific_exponent < 0) { 651*0eae32dcSDimitry Andric __result[__index++] = '-'; 652*0eae32dcSDimitry Andric _Scientific_exponent = -_Scientific_exponent; 653*0eae32dcSDimitry Andric } else { 654*0eae32dcSDimitry Andric __result[__index++] = '+'; 655*0eae32dcSDimitry Andric } 656*0eae32dcSDimitry Andric 657*0eae32dcSDimitry Andric if (_Scientific_exponent >= 100) { 658*0eae32dcSDimitry Andric const int32_t __c = _Scientific_exponent % 10; 659*0eae32dcSDimitry Andric _VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * (_Scientific_exponent / 10), 2); 660*0eae32dcSDimitry Andric __result[__index + 2] = static_cast<char>('0' + __c); 661*0eae32dcSDimitry Andric __index += 3; 662*0eae32dcSDimitry Andric } else { 663*0eae32dcSDimitry Andric _VSTD::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2); 664*0eae32dcSDimitry Andric __index += 2; 665*0eae32dcSDimitry Andric } 666*0eae32dcSDimitry Andric 667*0eae32dcSDimitry Andric return { _First + _Total_scientific_length, errc{} }; 668*0eae32dcSDimitry Andric } 669*0eae32dcSDimitry Andric 670*0eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __d2d_small_int(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent, 671*0eae32dcSDimitry Andric __floating_decimal_64* const __v) { 672*0eae32dcSDimitry Andric const uint64_t __m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa; 673*0eae32dcSDimitry Andric const int32_t __e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS; 674*0eae32dcSDimitry Andric 675*0eae32dcSDimitry Andric if (__e2 > 0) { 676*0eae32dcSDimitry Andric // f = __m2 * 2^__e2 >= 2^53 is an integer. 677*0eae32dcSDimitry Andric // Ignore this case for now. 678*0eae32dcSDimitry Andric return false; 679*0eae32dcSDimitry Andric } 680*0eae32dcSDimitry Andric 681*0eae32dcSDimitry Andric if (__e2 < -52) { 682*0eae32dcSDimitry Andric // f < 1. 683*0eae32dcSDimitry Andric return false; 684*0eae32dcSDimitry Andric } 685*0eae32dcSDimitry Andric 686*0eae32dcSDimitry Andric // Since 2^52 <= __m2 < 2^53 and 0 <= -__e2 <= 52: 1 <= f = __m2 / 2^-__e2 < 2^53. 687*0eae32dcSDimitry Andric // Test if the lower -__e2 bits of the significand are 0, i.e. whether the fraction is 0. 688*0eae32dcSDimitry Andric const uint64_t __mask = (1ull << -__e2) - 1; 689*0eae32dcSDimitry Andric const uint64_t __fraction = __m2 & __mask; 690*0eae32dcSDimitry Andric if (__fraction != 0) { 691*0eae32dcSDimitry Andric return false; 692*0eae32dcSDimitry Andric } 693*0eae32dcSDimitry Andric 694*0eae32dcSDimitry Andric // f is an integer in the range [1, 2^53). 695*0eae32dcSDimitry Andric // Note: __mantissa might contain trailing (decimal) 0's. 696*0eae32dcSDimitry Andric // Note: since 2^53 < 10^16, there is no need to adjust __decimalLength17(). 697*0eae32dcSDimitry Andric __v->__mantissa = __m2 >> -__e2; 698*0eae32dcSDimitry Andric __v->__exponent = 0; 699*0eae32dcSDimitry Andric return true; 700*0eae32dcSDimitry Andric } 701*0eae32dcSDimitry Andric 702*0eae32dcSDimitry Andric [[nodiscard]] to_chars_result __d2s_buffered_n(char* const _First, char* const _Last, const double __f, 703*0eae32dcSDimitry Andric const chars_format _Fmt) { 704*0eae32dcSDimitry Andric 705*0eae32dcSDimitry Andric // Step 1: Decode the floating-point number, and unify normalized and subnormal cases. 706*0eae32dcSDimitry Andric const uint64_t __bits = __double_to_bits(__f); 707*0eae32dcSDimitry Andric 708*0eae32dcSDimitry Andric // Case distinction; exit early for the easy cases. 709*0eae32dcSDimitry Andric if (__bits == 0) { 710*0eae32dcSDimitry Andric if (_Fmt == chars_format::scientific) { 711*0eae32dcSDimitry Andric if (_Last - _First < 5) { 712*0eae32dcSDimitry Andric return { _Last, errc::value_too_large }; 713*0eae32dcSDimitry Andric } 714*0eae32dcSDimitry Andric 715*0eae32dcSDimitry Andric _VSTD::memcpy(_First, "0e+00", 5); 716*0eae32dcSDimitry Andric 717*0eae32dcSDimitry Andric return { _First + 5, errc{} }; 718*0eae32dcSDimitry Andric } 719*0eae32dcSDimitry Andric 720*0eae32dcSDimitry Andric // Print "0" for chars_format::fixed, chars_format::general, and chars_format{}. 721*0eae32dcSDimitry Andric if (_First == _Last) { 722*0eae32dcSDimitry Andric return { _Last, errc::value_too_large }; 723*0eae32dcSDimitry Andric } 724*0eae32dcSDimitry Andric 725*0eae32dcSDimitry Andric *_First = '0'; 726*0eae32dcSDimitry Andric 727*0eae32dcSDimitry Andric return { _First + 1, errc{} }; 728*0eae32dcSDimitry Andric } 729*0eae32dcSDimitry Andric 730*0eae32dcSDimitry Andric // Decode __bits into mantissa and exponent. 731*0eae32dcSDimitry Andric const uint64_t __ieeeMantissa = __bits & ((1ull << __DOUBLE_MANTISSA_BITS) - 1); 732*0eae32dcSDimitry Andric const uint32_t __ieeeExponent = static_cast<uint32_t>(__bits >> __DOUBLE_MANTISSA_BITS); 733*0eae32dcSDimitry Andric 734*0eae32dcSDimitry Andric if (_Fmt == chars_format::fixed) { 735*0eae32dcSDimitry Andric // const uint64_t _Mantissa2 = __ieeeMantissa | (1ull << __DOUBLE_MANTISSA_BITS); // restore implicit bit 736*0eae32dcSDimitry Andric const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent) 737*0eae32dcSDimitry Andric - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS; // bias and normalization 738*0eae32dcSDimitry Andric 739*0eae32dcSDimitry Andric // Normal values are equal to _Mantissa2 * 2^_Exponent2. 740*0eae32dcSDimitry Andric // (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.) 741*0eae32dcSDimitry Andric 742*0eae32dcSDimitry Andric // For nonzero integers, _Exponent2 >= -52. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1. 743*0eae32dcSDimitry Andric // In that case, _Mantissa2 is the implicit 1 bit followed by 52 zeros, so _Exponent2 is -52 to shift away 744*0eae32dcSDimitry Andric // the zeros.) The dense range of exactly representable integers has negative or zero exponents 745*0eae32dcSDimitry Andric // (as positive exponents make the range non-dense). For that dense range, Ryu will always be used: 746*0eae32dcSDimitry Andric // every digit is necessary to uniquely identify the value, so Ryu must print them all. 747*0eae32dcSDimitry Andric 748*0eae32dcSDimitry Andric // Positive exponents are the non-dense range of exactly representable integers. This contains all of the values 749*0eae32dcSDimitry Andric // for which Ryu can't be used (and a few Ryu-friendly values). We can save time by detecting positive 750*0eae32dcSDimitry Andric // exponents here and skipping Ryu. Calling __d2fixed_buffered_n() with precision 0 is valid for all integers 751*0eae32dcSDimitry Andric // (so it's okay if we call it with a Ryu-friendly value). 752*0eae32dcSDimitry Andric if (_Exponent2 > 0) { 753*0eae32dcSDimitry Andric return __d2fixed_buffered_n(_First, _Last, __f, 0); 754*0eae32dcSDimitry Andric } 755*0eae32dcSDimitry Andric } 756*0eae32dcSDimitry Andric 757*0eae32dcSDimitry Andric __floating_decimal_64 __v; 758*0eae32dcSDimitry Andric const bool __isSmallInt = __d2d_small_int(__ieeeMantissa, __ieeeExponent, &__v); 759*0eae32dcSDimitry Andric if (__isSmallInt) { 760*0eae32dcSDimitry Andric // For small integers in the range [1, 2^53), __v.__mantissa might contain trailing (decimal) zeros. 761*0eae32dcSDimitry Andric // For scientific notation we need to move these zeros into the exponent. 762*0eae32dcSDimitry Andric // (This is not needed for fixed-point notation, so it might be beneficial to trim 763*0eae32dcSDimitry Andric // trailing zeros in __to_chars only if needed - once fixed-point notation output is implemented.) 764*0eae32dcSDimitry Andric for (;;) { 765*0eae32dcSDimitry Andric const uint64_t __q = __div10(__v.__mantissa); 766*0eae32dcSDimitry Andric const uint32_t __r = static_cast<uint32_t>(__v.__mantissa) - 10 * static_cast<uint32_t>(__q); 767*0eae32dcSDimitry Andric if (__r != 0) { 768*0eae32dcSDimitry Andric break; 769*0eae32dcSDimitry Andric } 770*0eae32dcSDimitry Andric __v.__mantissa = __q; 771*0eae32dcSDimitry Andric ++__v.__exponent; 772*0eae32dcSDimitry Andric } 773*0eae32dcSDimitry Andric } else { 774*0eae32dcSDimitry Andric __v = __d2d(__ieeeMantissa, __ieeeExponent); 775*0eae32dcSDimitry Andric } 776*0eae32dcSDimitry Andric 777*0eae32dcSDimitry Andric return __to_chars(_First, _Last, __v, _Fmt, __f); 778*0eae32dcSDimitry Andric } 779*0eae32dcSDimitry Andric 780*0eae32dcSDimitry Andric _LIBCPP_END_NAMESPACE_STD 781*0eae32dcSDimitry Andric 782*0eae32dcSDimitry Andric // clang-format on 783