10eae32dcSDimitry Andric //===----------------------------------------------------------------------===// 20eae32dcSDimitry Andric // 30eae32dcSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40eae32dcSDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50eae32dcSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60eae32dcSDimitry Andric // 70eae32dcSDimitry Andric //===----------------------------------------------------------------------===// 80eae32dcSDimitry Andric 90eae32dcSDimitry Andric // Copyright (c) Microsoft Corporation. 100eae32dcSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 110eae32dcSDimitry Andric 120eae32dcSDimitry Andric // Copyright 2018 Ulf Adams 130eae32dcSDimitry Andric // Copyright (c) Microsoft Corporation. All rights reserved. 140eae32dcSDimitry Andric 150eae32dcSDimitry Andric // Boost Software License - Version 1.0 - August 17th, 2003 160eae32dcSDimitry Andric 170eae32dcSDimitry Andric // Permission is hereby granted, free of charge, to any person or organization 180eae32dcSDimitry Andric // obtaining a copy of the software and accompanying documentation covered by 190eae32dcSDimitry Andric // this license (the "Software") to use, reproduce, display, distribute, 200eae32dcSDimitry Andric // execute, and transmit the Software, and to prepare derivative works of the 210eae32dcSDimitry Andric // Software, and to permit third-parties to whom the Software is furnished to 220eae32dcSDimitry Andric // do so, all subject to the following: 230eae32dcSDimitry Andric 240eae32dcSDimitry Andric // The copyright notices in the Software and this entire statement, including 250eae32dcSDimitry Andric // the above license grant, this restriction and the following disclaimer, 260eae32dcSDimitry Andric // must be included in all copies of the Software, in whole or in part, and 270eae32dcSDimitry Andric // all derivative works of the Software, unless such copies or derivative 280eae32dcSDimitry Andric // works are solely in the form of machine-executable object code generated by 290eae32dcSDimitry Andric // a source language processor. 300eae32dcSDimitry Andric 310eae32dcSDimitry Andric // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 320eae32dcSDimitry Andric // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 330eae32dcSDimitry Andric // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT 340eae32dcSDimitry Andric // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE 350eae32dcSDimitry Andric // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, 360eae32dcSDimitry Andric // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 370eae32dcSDimitry Andric // DEALINGS IN THE SOFTWARE. 380eae32dcSDimitry Andric 390eae32dcSDimitry Andric // Avoid formatting to keep the changes with the original code minimal. 400eae32dcSDimitry Andric // clang-format off 410eae32dcSDimitry Andric 4281ad6265SDimitry Andric #include <__assert> 4381ad6265SDimitry Andric #include <__config> 4481ad6265SDimitry Andric #include <charconv> 450eae32dcSDimitry Andric 460eae32dcSDimitry Andric #include "include/ryu/common.h" 470eae32dcSDimitry Andric #include "include/ryu/d2fixed.h" 480eae32dcSDimitry Andric #include "include/ryu/d2s.h" 490eae32dcSDimitry Andric #include "include/ryu/d2s_full_table.h" 500eae32dcSDimitry Andric #include "include/ryu/d2s_intrinsics.h" 510eae32dcSDimitry Andric #include "include/ryu/digit_table.h" 520eae32dcSDimitry Andric #include "include/ryu/ryu.h" 530eae32dcSDimitry Andric 540eae32dcSDimitry Andric _LIBCPP_BEGIN_NAMESPACE_STD 550eae32dcSDimitry Andric 560eae32dcSDimitry Andric // We need a 64x128-bit multiplication and a subsequent 128-bit shift. 570eae32dcSDimitry Andric // Multiplication: 580eae32dcSDimitry Andric // The 64-bit factor is variable and passed in, the 128-bit factor comes 590eae32dcSDimitry Andric // from a lookup table. We know that the 64-bit factor only has 55 600eae32dcSDimitry Andric // significant bits (i.e., the 9 topmost bits are zeros). The 128-bit 610eae32dcSDimitry Andric // factor only has 124 significant bits (i.e., the 4 topmost bits are 620eae32dcSDimitry Andric // zeros). 630eae32dcSDimitry Andric // Shift: 640eae32dcSDimitry Andric // In principle, the multiplication result requires 55 + 124 = 179 bits to 650eae32dcSDimitry Andric // represent. However, we then shift this value to the right by __j, which is 660eae32dcSDimitry Andric // at least __j >= 115, so the result is guaranteed to fit into 179 - 115 = 64 670eae32dcSDimitry Andric // bits. This means that we only need the topmost 64 significant bits of 680eae32dcSDimitry Andric // the 64x128-bit multiplication. 690eae32dcSDimitry Andric // 700eae32dcSDimitry Andric // There are several ways to do this: 710eae32dcSDimitry Andric // 1. Best case: the compiler exposes a 128-bit type. 720eae32dcSDimitry Andric // We perform two 64x64-bit multiplications, add the higher 64 bits of the 730eae32dcSDimitry Andric // lower result to the higher result, and shift by __j - 64 bits. 740eae32dcSDimitry Andric // 750eae32dcSDimitry Andric // We explicitly cast from 64-bit to 128-bit, so the compiler can tell 760eae32dcSDimitry Andric // that these are only 64-bit inputs, and can map these to the best 770eae32dcSDimitry Andric // possible sequence of assembly instructions. 780eae32dcSDimitry Andric // x64 machines happen to have matching assembly instructions for 790eae32dcSDimitry Andric // 64x64-bit multiplications and 128-bit shifts. 800eae32dcSDimitry Andric // 810eae32dcSDimitry Andric // 2. Second best case: the compiler exposes intrinsics for the x64 assembly 820eae32dcSDimitry Andric // instructions mentioned in 1. 830eae32dcSDimitry Andric // 840eae32dcSDimitry Andric // 3. We only have 64x64 bit instructions that return the lower 64 bits of 850eae32dcSDimitry Andric // the result, i.e., we have to use plain C. 860eae32dcSDimitry Andric // Our inputs are less than the full width, so we have three options: 870eae32dcSDimitry Andric // a. Ignore this fact and just implement the intrinsics manually. 880eae32dcSDimitry Andric // b. Split both into 31-bit pieces, which guarantees no internal overflow, 890eae32dcSDimitry Andric // but requires extra work upfront (unless we change the lookup table). 900eae32dcSDimitry Andric // c. Split only the first factor into 31-bit pieces, which also guarantees 910eae32dcSDimitry Andric // no internal overflow, but requires extra work since the intermediate 920eae32dcSDimitry Andric // results are not perfectly aligned. 930eae32dcSDimitry Andric #ifdef _LIBCPP_INTRINSIC128 940eae32dcSDimitry Andric 950eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShift(const uint64_t __m, const uint64_t* const __mul, const int32_t __j) { 960eae32dcSDimitry Andric // __m is maximum 55 bits 970eae32dcSDimitry Andric uint64_t __high1; // 128 980eae32dcSDimitry Andric const uint64_t __low1 = __ryu_umul128(__m, __mul[1], &__high1); // 64 990eae32dcSDimitry Andric uint64_t __high0; // 64 1000eae32dcSDimitry Andric (void) __ryu_umul128(__m, __mul[0], &__high0); // 0 1010eae32dcSDimitry Andric const uint64_t __sum = __high0 + __low1; 1020eae32dcSDimitry Andric if (__sum < __high0) { 1030eae32dcSDimitry Andric ++__high1; // overflow into __high1 1040eae32dcSDimitry Andric } 1050eae32dcSDimitry Andric return __ryu_shiftright128(__sum, __high1, static_cast<uint32_t>(__j - 64)); 1060eae32dcSDimitry Andric } 1070eae32dcSDimitry Andric 1080eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __mulShiftAll(const uint64_t __m, const uint64_t* const __mul, const int32_t __j, 1090eae32dcSDimitry Andric uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) { 1100eae32dcSDimitry Andric *__vp = __mulShift(4 * __m + 2, __mul, __j); 1110eae32dcSDimitry Andric *__vm = __mulShift(4 * __m - 1 - __mmShift, __mul, __j); 1120eae32dcSDimitry Andric return __mulShift(4 * __m, __mul, __j); 1130eae32dcSDimitry Andric } 1140eae32dcSDimitry Andric 1150eae32dcSDimitry Andric #else // ^^^ intrinsics available ^^^ / vvv intrinsics unavailable vvv 1160eae32dcSDimitry Andric 1170eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline _LIBCPP_ALWAYS_INLINE uint64_t __mulShiftAll(uint64_t __m, const uint64_t* const __mul, const int32_t __j, 1180eae32dcSDimitry Andric uint64_t* const __vp, uint64_t* const __vm, const uint32_t __mmShift) { // TRANSITION, VSO-634761 1190eae32dcSDimitry Andric __m <<= 1; 1200eae32dcSDimitry Andric // __m is maximum 55 bits 1210eae32dcSDimitry Andric uint64_t __tmp; 1220eae32dcSDimitry Andric const uint64_t __lo = __ryu_umul128(__m, __mul[0], &__tmp); 1230eae32dcSDimitry Andric uint64_t __hi; 1240eae32dcSDimitry Andric const uint64_t __mid = __tmp + __ryu_umul128(__m, __mul[1], &__hi); 1250eae32dcSDimitry Andric __hi += __mid < __tmp; // overflow into __hi 1260eae32dcSDimitry Andric 1270eae32dcSDimitry Andric const uint64_t __lo2 = __lo + __mul[0]; 1280eae32dcSDimitry Andric const uint64_t __mid2 = __mid + __mul[1] + (__lo2 < __lo); 1290eae32dcSDimitry Andric const uint64_t __hi2 = __hi + (__mid2 < __mid); 1300eae32dcSDimitry Andric *__vp = __ryu_shiftright128(__mid2, __hi2, static_cast<uint32_t>(__j - 64 - 1)); 1310eae32dcSDimitry Andric 1320eae32dcSDimitry Andric if (__mmShift == 1) { 1330eae32dcSDimitry Andric const uint64_t __lo3 = __lo - __mul[0]; 1340eae32dcSDimitry Andric const uint64_t __mid3 = __mid - __mul[1] - (__lo3 > __lo); 1350eae32dcSDimitry Andric const uint64_t __hi3 = __hi - (__mid3 > __mid); 1360eae32dcSDimitry Andric *__vm = __ryu_shiftright128(__mid3, __hi3, static_cast<uint32_t>(__j - 64 - 1)); 1370eae32dcSDimitry Andric } else { 1380eae32dcSDimitry Andric const uint64_t __lo3 = __lo + __lo; 1390eae32dcSDimitry Andric const uint64_t __mid3 = __mid + __mid + (__lo3 < __lo); 1400eae32dcSDimitry Andric const uint64_t __hi3 = __hi + __hi + (__mid3 < __mid); 1410eae32dcSDimitry Andric const uint64_t __lo4 = __lo3 - __mul[0]; 1420eae32dcSDimitry Andric const uint64_t __mid4 = __mid3 - __mul[1] - (__lo4 > __lo3); 1430eae32dcSDimitry Andric const uint64_t __hi4 = __hi3 - (__mid4 > __mid3); 1440eae32dcSDimitry Andric *__vm = __ryu_shiftright128(__mid4, __hi4, static_cast<uint32_t>(__j - 64)); 1450eae32dcSDimitry Andric } 1460eae32dcSDimitry Andric 1470eae32dcSDimitry Andric return __ryu_shiftright128(__mid, __hi, static_cast<uint32_t>(__j - 64 - 1)); 1480eae32dcSDimitry Andric } 1490eae32dcSDimitry Andric 1500eae32dcSDimitry Andric #endif // ^^^ intrinsics unavailable ^^^ 1510eae32dcSDimitry Andric 1520eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __decimalLength17(const uint64_t __v) { 1530eae32dcSDimitry Andric // This is slightly faster than a loop. 1540eae32dcSDimitry Andric // The average output length is 16.38 digits, so we check high-to-low. 1550eae32dcSDimitry Andric // Function precondition: __v is not an 18, 19, or 20-digit number. 1560eae32dcSDimitry Andric // (17 digits are sufficient for round-tripping.) 157*5f757f3fSDimitry Andric _LIBCPP_ASSERT_INTERNAL(__v < 100000000000000000u, ""); 1580eae32dcSDimitry Andric if (__v >= 10000000000000000u) { return 17; } 1590eae32dcSDimitry Andric if (__v >= 1000000000000000u) { return 16; } 1600eae32dcSDimitry Andric if (__v >= 100000000000000u) { return 15; } 1610eae32dcSDimitry Andric if (__v >= 10000000000000u) { return 14; } 1620eae32dcSDimitry Andric if (__v >= 1000000000000u) { return 13; } 1630eae32dcSDimitry Andric if (__v >= 100000000000u) { return 12; } 1640eae32dcSDimitry Andric if (__v >= 10000000000u) { return 11; } 1650eae32dcSDimitry Andric if (__v >= 1000000000u) { return 10; } 1660eae32dcSDimitry Andric if (__v >= 100000000u) { return 9; } 1670eae32dcSDimitry Andric if (__v >= 10000000u) { return 8; } 1680eae32dcSDimitry Andric if (__v >= 1000000u) { return 7; } 1690eae32dcSDimitry Andric if (__v >= 100000u) { return 6; } 1700eae32dcSDimitry Andric if (__v >= 10000u) { return 5; } 1710eae32dcSDimitry Andric if (__v >= 1000u) { return 4; } 1720eae32dcSDimitry Andric if (__v >= 100u) { return 3; } 1730eae32dcSDimitry Andric if (__v >= 10u) { return 2; } 1740eae32dcSDimitry Andric return 1; 1750eae32dcSDimitry Andric } 1760eae32dcSDimitry Andric 1770eae32dcSDimitry Andric // A floating decimal representing m * 10^e. 1780eae32dcSDimitry Andric struct __floating_decimal_64 { 1790eae32dcSDimitry Andric uint64_t __mantissa; 1800eae32dcSDimitry Andric int32_t __exponent; 1810eae32dcSDimitry Andric }; 1820eae32dcSDimitry Andric 1830eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_64 __d2d(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent) { 1840eae32dcSDimitry Andric int32_t __e2; 1850eae32dcSDimitry Andric uint64_t __m2; 1860eae32dcSDimitry Andric if (__ieeeExponent == 0) { 1870eae32dcSDimitry Andric // We subtract 2 so that the bounds computation has 2 additional bits. 1880eae32dcSDimitry Andric __e2 = 1 - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2; 1890eae32dcSDimitry Andric __m2 = __ieeeMantissa; 1900eae32dcSDimitry Andric } else { 1910eae32dcSDimitry Andric __e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS - 2; 1920eae32dcSDimitry Andric __m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa; 1930eae32dcSDimitry Andric } 1940eae32dcSDimitry Andric const bool __even = (__m2 & 1) == 0; 1950eae32dcSDimitry Andric const bool __acceptBounds = __even; 1960eae32dcSDimitry Andric 1970eae32dcSDimitry Andric // Step 2: Determine the interval of valid decimal representations. 1980eae32dcSDimitry Andric const uint64_t __mv = 4 * __m2; 1990eae32dcSDimitry Andric // Implicit bool -> int conversion. True is 1, false is 0. 2000eae32dcSDimitry Andric const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1; 2010eae32dcSDimitry Andric // We would compute __mp and __mm like this: 2020eae32dcSDimitry Andric // uint64_t __mp = 4 * __m2 + 2; 2030eae32dcSDimitry Andric // uint64_t __mm = __mv - 1 - __mmShift; 2040eae32dcSDimitry Andric 2050eae32dcSDimitry Andric // Step 3: Convert to a decimal power base using 128-bit arithmetic. 2060eae32dcSDimitry Andric uint64_t __vr, __vp, __vm; 2070eae32dcSDimitry Andric int32_t __e10; 2080eae32dcSDimitry Andric bool __vmIsTrailingZeros = false; 2090eae32dcSDimitry Andric bool __vrIsTrailingZeros = false; 2100eae32dcSDimitry Andric if (__e2 >= 0) { 2110eae32dcSDimitry Andric // I tried special-casing __q == 0, but there was no effect on performance. 2120eae32dcSDimitry Andric // This expression is slightly faster than max(0, __log10Pow2(__e2) - 1). 2130eae32dcSDimitry Andric const uint32_t __q = __log10Pow2(__e2) - (__e2 > 3); 2140eae32dcSDimitry Andric __e10 = static_cast<int32_t>(__q); 2150eae32dcSDimitry Andric const int32_t __k = __DOUBLE_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1; 2160eae32dcSDimitry Andric const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k; 2170eae32dcSDimitry Andric __vr = __mulShiftAll(__m2, __DOUBLE_POW5_INV_SPLIT[__q], __i, &__vp, &__vm, __mmShift); 2180eae32dcSDimitry Andric if (__q <= 21) { 2190eae32dcSDimitry Andric // This should use __q <= 22, but I think 21 is also safe. Smaller values 2200eae32dcSDimitry Andric // may still be safe, but it's more difficult to reason about them. 2210eae32dcSDimitry Andric // Only one of __mp, __mv, and __mm can be a multiple of 5, if any. 2220eae32dcSDimitry Andric const uint32_t __mvMod5 = static_cast<uint32_t>(__mv) - 5 * static_cast<uint32_t>(__div5(__mv)); 2230eae32dcSDimitry Andric if (__mvMod5 == 0) { 2240eae32dcSDimitry Andric __vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q); 2250eae32dcSDimitry Andric } else if (__acceptBounds) { 2260eae32dcSDimitry Andric // Same as min(__e2 + (~__mm & 1), __pow5Factor(__mm)) >= __q 2270eae32dcSDimitry Andric // <=> __e2 + (~__mm & 1) >= __q && __pow5Factor(__mm) >= __q 2280eae32dcSDimitry Andric // <=> true && __pow5Factor(__mm) >= __q, since __e2 >= __q. 2290eae32dcSDimitry Andric __vmIsTrailingZeros = __multipleOfPowerOf5(__mv - 1 - __mmShift, __q); 2300eae32dcSDimitry Andric } else { 2310eae32dcSDimitry Andric // Same as min(__e2 + 1, __pow5Factor(__mp)) >= __q. 2320eae32dcSDimitry Andric __vp -= __multipleOfPowerOf5(__mv + 2, __q); 2330eae32dcSDimitry Andric } 2340eae32dcSDimitry Andric } 2350eae32dcSDimitry Andric } else { 2360eae32dcSDimitry Andric // This expression is slightly faster than max(0, __log10Pow5(-__e2) - 1). 2370eae32dcSDimitry Andric const uint32_t __q = __log10Pow5(-__e2) - (-__e2 > 1); 2380eae32dcSDimitry Andric __e10 = static_cast<int32_t>(__q) + __e2; 2390eae32dcSDimitry Andric const int32_t __i = -__e2 - static_cast<int32_t>(__q); 2400eae32dcSDimitry Andric const int32_t __k = __pow5bits(__i) - __DOUBLE_POW5_BITCOUNT; 2410eae32dcSDimitry Andric const int32_t __j = static_cast<int32_t>(__q) - __k; 2420eae32dcSDimitry Andric __vr = __mulShiftAll(__m2, __DOUBLE_POW5_SPLIT[__i], __j, &__vp, &__vm, __mmShift); 2430eae32dcSDimitry Andric if (__q <= 1) { 2440eae32dcSDimitry Andric // {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits. 2450eae32dcSDimitry Andric // __mv = 4 * __m2, so it always has at least two trailing 0 bits. 2460eae32dcSDimitry Andric __vrIsTrailingZeros = true; 2470eae32dcSDimitry Andric if (__acceptBounds) { 2480eae32dcSDimitry Andric // __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1. 2490eae32dcSDimitry Andric __vmIsTrailingZeros = __mmShift == 1; 2500eae32dcSDimitry Andric } else { 2510eae32dcSDimitry Andric // __mp = __mv + 2, so it always has at least one trailing 0 bit. 2520eae32dcSDimitry Andric --__vp; 2530eae32dcSDimitry Andric } 2540eae32dcSDimitry Andric } else if (__q < 63) { // TRANSITION(ulfjack): Use a tighter bound here. 2550eae32dcSDimitry Andric // We need to compute min(ntz(__mv), __pow5Factor(__mv) - __e2) >= __q - 1 2560eae32dcSDimitry Andric // <=> ntz(__mv) >= __q - 1 && __pow5Factor(__mv) - __e2 >= __q - 1 2570eae32dcSDimitry Andric // <=> ntz(__mv) >= __q - 1 (__e2 is negative and -__e2 >= __q) 2580eae32dcSDimitry Andric // <=> (__mv & ((1 << (__q - 1)) - 1)) == 0 2590eae32dcSDimitry Andric // We also need to make sure that the left shift does not overflow. 2600eae32dcSDimitry Andric __vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1); 2610eae32dcSDimitry Andric } 2620eae32dcSDimitry Andric } 2630eae32dcSDimitry Andric 2640eae32dcSDimitry Andric // Step 4: Find the shortest decimal representation in the interval of valid representations. 2650eae32dcSDimitry Andric int32_t __removed = 0; 2660eae32dcSDimitry Andric uint8_t __lastRemovedDigit = 0; 2670eae32dcSDimitry Andric uint64_t _Output; 2680eae32dcSDimitry Andric // On average, we remove ~2 digits. 2690eae32dcSDimitry Andric if (__vmIsTrailingZeros || __vrIsTrailingZeros) { 2700eae32dcSDimitry Andric // General case, which happens rarely (~0.7%). 2710eae32dcSDimitry Andric for (;;) { 2720eae32dcSDimitry Andric const uint64_t __vpDiv10 = __div10(__vp); 2730eae32dcSDimitry Andric const uint64_t __vmDiv10 = __div10(__vm); 2740eae32dcSDimitry Andric if (__vpDiv10 <= __vmDiv10) { 2750eae32dcSDimitry Andric break; 2760eae32dcSDimitry Andric } 2770eae32dcSDimitry Andric const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10); 2780eae32dcSDimitry Andric const uint64_t __vrDiv10 = __div10(__vr); 2790eae32dcSDimitry Andric const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10); 2800eae32dcSDimitry Andric __vmIsTrailingZeros &= __vmMod10 == 0; 2810eae32dcSDimitry Andric __vrIsTrailingZeros &= __lastRemovedDigit == 0; 2820eae32dcSDimitry Andric __lastRemovedDigit = static_cast<uint8_t>(__vrMod10); 2830eae32dcSDimitry Andric __vr = __vrDiv10; 2840eae32dcSDimitry Andric __vp = __vpDiv10; 2850eae32dcSDimitry Andric __vm = __vmDiv10; 2860eae32dcSDimitry Andric ++__removed; 2870eae32dcSDimitry Andric } 2880eae32dcSDimitry Andric if (__vmIsTrailingZeros) { 2890eae32dcSDimitry Andric for (;;) { 2900eae32dcSDimitry Andric const uint64_t __vmDiv10 = __div10(__vm); 2910eae32dcSDimitry Andric const uint32_t __vmMod10 = static_cast<uint32_t>(__vm) - 10 * static_cast<uint32_t>(__vmDiv10); 2920eae32dcSDimitry Andric if (__vmMod10 != 0) { 2930eae32dcSDimitry Andric break; 2940eae32dcSDimitry Andric } 2950eae32dcSDimitry Andric const uint64_t __vpDiv10 = __div10(__vp); 2960eae32dcSDimitry Andric const uint64_t __vrDiv10 = __div10(__vr); 2970eae32dcSDimitry Andric const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10); 2980eae32dcSDimitry Andric __vrIsTrailingZeros &= __lastRemovedDigit == 0; 2990eae32dcSDimitry Andric __lastRemovedDigit = static_cast<uint8_t>(__vrMod10); 3000eae32dcSDimitry Andric __vr = __vrDiv10; 3010eae32dcSDimitry Andric __vp = __vpDiv10; 3020eae32dcSDimitry Andric __vm = __vmDiv10; 3030eae32dcSDimitry Andric ++__removed; 3040eae32dcSDimitry Andric } 3050eae32dcSDimitry Andric } 3060eae32dcSDimitry Andric if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) { 3070eae32dcSDimitry Andric // Round even if the exact number is .....50..0. 3080eae32dcSDimitry Andric __lastRemovedDigit = 4; 3090eae32dcSDimitry Andric } 3100eae32dcSDimitry Andric // We need to take __vr + 1 if __vr is outside bounds or we need to round up. 3110eae32dcSDimitry Andric _Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5); 3120eae32dcSDimitry Andric } else { 3130eae32dcSDimitry Andric // Specialized for the common case (~99.3%). Percentages below are relative to this. 3140eae32dcSDimitry Andric bool __roundUp = false; 3150eae32dcSDimitry Andric const uint64_t __vpDiv100 = __div100(__vp); 3160eae32dcSDimitry Andric const uint64_t __vmDiv100 = __div100(__vm); 3170eae32dcSDimitry Andric if (__vpDiv100 > __vmDiv100) { // Optimization: remove two digits at a time (~86.2%). 3180eae32dcSDimitry Andric const uint64_t __vrDiv100 = __div100(__vr); 3190eae32dcSDimitry Andric const uint32_t __vrMod100 = static_cast<uint32_t>(__vr) - 100 * static_cast<uint32_t>(__vrDiv100); 3200eae32dcSDimitry Andric __roundUp = __vrMod100 >= 50; 3210eae32dcSDimitry Andric __vr = __vrDiv100; 3220eae32dcSDimitry Andric __vp = __vpDiv100; 3230eae32dcSDimitry Andric __vm = __vmDiv100; 3240eae32dcSDimitry Andric __removed += 2; 3250eae32dcSDimitry Andric } 3260eae32dcSDimitry Andric // Loop iterations below (approximately), without optimization above: 3270eae32dcSDimitry Andric // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02% 3280eae32dcSDimitry Andric // Loop iterations below (approximately), with optimization above: 3290eae32dcSDimitry Andric // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% 3300eae32dcSDimitry Andric for (;;) { 3310eae32dcSDimitry Andric const uint64_t __vpDiv10 = __div10(__vp); 3320eae32dcSDimitry Andric const uint64_t __vmDiv10 = __div10(__vm); 3330eae32dcSDimitry Andric if (__vpDiv10 <= __vmDiv10) { 3340eae32dcSDimitry Andric break; 3350eae32dcSDimitry Andric } 3360eae32dcSDimitry Andric const uint64_t __vrDiv10 = __div10(__vr); 3370eae32dcSDimitry Andric const uint32_t __vrMod10 = static_cast<uint32_t>(__vr) - 10 * static_cast<uint32_t>(__vrDiv10); 3380eae32dcSDimitry Andric __roundUp = __vrMod10 >= 5; 3390eae32dcSDimitry Andric __vr = __vrDiv10; 3400eae32dcSDimitry Andric __vp = __vpDiv10; 3410eae32dcSDimitry Andric __vm = __vmDiv10; 3420eae32dcSDimitry Andric ++__removed; 3430eae32dcSDimitry Andric } 3440eae32dcSDimitry Andric // We need to take __vr + 1 if __vr is outside bounds or we need to round up. 3450eae32dcSDimitry Andric _Output = __vr + (__vr == __vm || __roundUp); 3460eae32dcSDimitry Andric } 3470eae32dcSDimitry Andric const int32_t __exp = __e10 + __removed; 3480eae32dcSDimitry Andric 3490eae32dcSDimitry Andric __floating_decimal_64 __fd; 3500eae32dcSDimitry Andric __fd.__exponent = __exp; 3510eae32dcSDimitry Andric __fd.__mantissa = _Output; 3520eae32dcSDimitry Andric return __fd; 3530eae32dcSDimitry Andric } 3540eae32dcSDimitry Andric 3550eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_64 __v, 3560eae32dcSDimitry Andric chars_format _Fmt, const double __f) { 3570eae32dcSDimitry Andric // Step 5: Print the decimal representation. 3580eae32dcSDimitry Andric uint64_t _Output = __v.__mantissa; 3590eae32dcSDimitry Andric int32_t _Ryu_exponent = __v.__exponent; 3600eae32dcSDimitry Andric const uint32_t __olength = __decimalLength17(_Output); 3610eae32dcSDimitry Andric int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1; 3620eae32dcSDimitry Andric 3630eae32dcSDimitry Andric if (_Fmt == chars_format{}) { 3640eae32dcSDimitry Andric int32_t _Lower; 3650eae32dcSDimitry Andric int32_t _Upper; 3660eae32dcSDimitry Andric 3670eae32dcSDimitry Andric if (__olength == 1) { 3680eae32dcSDimitry Andric // Value | Fixed | Scientific 3690eae32dcSDimitry Andric // 1e-3 | "0.001" | "1e-03" 3700eae32dcSDimitry Andric // 1e4 | "10000" | "1e+04" 3710eae32dcSDimitry Andric _Lower = -3; 3720eae32dcSDimitry Andric _Upper = 4; 3730eae32dcSDimitry Andric } else { 3740eae32dcSDimitry Andric // Value | Fixed | Scientific 3750eae32dcSDimitry Andric // 1234e-7 | "0.0001234" | "1.234e-04" 3760eae32dcSDimitry Andric // 1234e5 | "123400000" | "1.234e+08" 3770eae32dcSDimitry Andric _Lower = -static_cast<int32_t>(__olength + 3); 3780eae32dcSDimitry Andric _Upper = 5; 3790eae32dcSDimitry Andric } 3800eae32dcSDimitry Andric 3810eae32dcSDimitry Andric if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) { 3820eae32dcSDimitry Andric _Fmt = chars_format::fixed; 3830eae32dcSDimitry Andric } else { 3840eae32dcSDimitry Andric _Fmt = chars_format::scientific; 3850eae32dcSDimitry Andric } 3860eae32dcSDimitry Andric } else if (_Fmt == chars_format::general) { 3870eae32dcSDimitry Andric // C11 7.21.6.1 "The fprintf function"/8: 3880eae32dcSDimitry Andric // "Let P equal [...] 6 if the precision is omitted [...]. 3890eae32dcSDimitry Andric // Then, if a conversion with style E would have an exponent of X: 3900eae32dcSDimitry Andric // - if P > X >= -4, the conversion is with style f [...]. 3910eae32dcSDimitry Andric // - otherwise, the conversion is with style e [...]." 3920eae32dcSDimitry Andric if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) { 3930eae32dcSDimitry Andric _Fmt = chars_format::fixed; 3940eae32dcSDimitry Andric } else { 3950eae32dcSDimitry Andric _Fmt = chars_format::scientific; 3960eae32dcSDimitry Andric } 3970eae32dcSDimitry Andric } 3980eae32dcSDimitry Andric 3990eae32dcSDimitry Andric if (_Fmt == chars_format::fixed) { 4000eae32dcSDimitry Andric // Example: _Output == 1729, __olength == 4 4010eae32dcSDimitry Andric 4020eae32dcSDimitry Andric // _Ryu_exponent | Printed | _Whole_digits | _Total_fixed_length | Notes 4030eae32dcSDimitry Andric // --------------|----------|---------------|----------------------|--------------------------------------- 4040eae32dcSDimitry Andric // 2 | 172900 | 6 | _Whole_digits | Ryu can't be used for printing 4050eae32dcSDimitry Andric // 1 | 17290 | 5 | (sometimes adjusted) | when the trimmed digits are nonzero. 4060eae32dcSDimitry Andric // --------------|----------|---------------|----------------------|--------------------------------------- 4070eae32dcSDimitry Andric // 0 | 1729 | 4 | _Whole_digits | Unified length cases. 4080eae32dcSDimitry Andric // --------------|----------|---------------|----------------------|--------------------------------------- 4090eae32dcSDimitry Andric // -1 | 172.9 | 3 | __olength + 1 | This case can't happen for 4100eae32dcSDimitry Andric // -2 | 17.29 | 2 | | __olength == 1, but no additional 4110eae32dcSDimitry Andric // -3 | 1.729 | 1 | | code is needed to avoid it. 4120eae32dcSDimitry Andric // --------------|----------|---------------|----------------------|--------------------------------------- 4130eae32dcSDimitry Andric // -4 | 0.1729 | 0 | 2 - _Ryu_exponent | C11 7.21.6.1 "The fprintf function"/8: 4140eae32dcSDimitry Andric // -5 | 0.01729 | -1 | | "If a decimal-point character appears, 4150eae32dcSDimitry Andric // -6 | 0.001729 | -2 | | at least one digit appears before it." 4160eae32dcSDimitry Andric 4170eae32dcSDimitry Andric const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent; 4180eae32dcSDimitry Andric 4190eae32dcSDimitry Andric uint32_t _Total_fixed_length; 4200eae32dcSDimitry Andric if (_Ryu_exponent >= 0) { // cases "172900" and "1729" 4210eae32dcSDimitry Andric _Total_fixed_length = static_cast<uint32_t>(_Whole_digits); 4220eae32dcSDimitry Andric if (_Output == 1) { 4230eae32dcSDimitry Andric // Rounding can affect the number of digits. 4240eae32dcSDimitry Andric // For example, 1e23 is exactly "99999999999999991611392" which is 23 digits instead of 24. 4250eae32dcSDimitry Andric // We can use a lookup table to detect this and adjust the total length. 4260eae32dcSDimitry Andric static constexpr uint8_t _Adjustment[309] = { 4270eae32dcSDimitry Andric 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0, 4280eae32dcSDimitry Andric 1,1,0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,1,1, 4290eae32dcSDimitry Andric 1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,0,1,0,1,1,0,1, 4300eae32dcSDimitry Andric 1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1, 4310eae32dcSDimitry Andric 0,1,0,1,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,1,1,1,1,1,0,1,0,1,1,0,0,0,1, 4320eae32dcSDimitry Andric 1,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0,0,0,0,1,1,0, 4330eae32dcSDimitry Andric 0,1,0,1,1,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,0,0,0,0,0,1,1,0,1,0 }; 4340eae32dcSDimitry Andric _Total_fixed_length -= _Adjustment[_Ryu_exponent]; 4350eae32dcSDimitry Andric // _Whole_digits doesn't need to be adjusted because these cases won't refer to it later. 4360eae32dcSDimitry Andric } 4370eae32dcSDimitry Andric } else if (_Whole_digits > 0) { // case "17.29" 4380eae32dcSDimitry Andric _Total_fixed_length = __olength + 1; 4390eae32dcSDimitry Andric } else { // case "0.001729" 4400eae32dcSDimitry Andric _Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent); 4410eae32dcSDimitry Andric } 4420eae32dcSDimitry Andric 4430eae32dcSDimitry Andric if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) { 4440eae32dcSDimitry Andric return { _Last, errc::value_too_large }; 4450eae32dcSDimitry Andric } 4460eae32dcSDimitry Andric 4470eae32dcSDimitry Andric char* _Mid; 4480eae32dcSDimitry Andric if (_Ryu_exponent > 0) { // case "172900" 4490eae32dcSDimitry Andric bool _Can_use_ryu; 4500eae32dcSDimitry Andric 4510eae32dcSDimitry Andric if (_Ryu_exponent > 22) { // 10^22 is the largest power of 10 that's exactly representable as a double. 4520eae32dcSDimitry Andric _Can_use_ryu = false; 4530eae32dcSDimitry Andric } else { 4540eae32dcSDimitry Andric // Ryu generated X: __v.__mantissa * 10^_Ryu_exponent 4550eae32dcSDimitry Andric // __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits) 4560eae32dcSDimitry Andric // 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent 4570eae32dcSDimitry Andric 4580eae32dcSDimitry Andric // _Trailing_zero_bits is [0, 56] (aside: because 2^56 is the largest power of 2 4590eae32dcSDimitry Andric // with 17 decimal digits, which is double's round-trip limit.) 4600eae32dcSDimitry Andric // _Ryu_exponent is [1, 22]. 4610eae32dcSDimitry Andric // Normalization adds [2, 52] (aside: at least 2 because the pre-normalized mantissa is at least 5). 4620eae32dcSDimitry Andric // This adds up to [3, 130], which is well below double's maximum binary exponent 1023. 4630eae32dcSDimitry Andric 4640eae32dcSDimitry Andric // Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent. 4650eae32dcSDimitry Andric 4660eae32dcSDimitry Andric // If that product would exceed 53 bits, then X can't be exactly represented as a double. 4670eae32dcSDimitry Andric // (That's not a problem for round-tripping, because X is close enough to the original double, 4680eae32dcSDimitry Andric // but X isn't mathematically equal to the original double.) This requires a high-precision fallback. 4690eae32dcSDimitry Andric 4700eae32dcSDimitry Andric // If the product is 53 bits or smaller, then X can be exactly represented as a double (and we don't 4710eae32dcSDimitry Andric // need to re-synthesize it; the original double must have been X, because Ryu wouldn't produce the 4720eae32dcSDimitry Andric // same output for two different doubles X and Y). This allows Ryu's output to be used (zero-filled). 4730eae32dcSDimitry Andric 4740eae32dcSDimitry Andric // (2^53 - 1) / 5^0 (for indexing), (2^53 - 1) / 5^1, ..., (2^53 - 1) / 5^22 4750eae32dcSDimitry Andric static constexpr uint64_t _Max_shifted_mantissa[23] = { 4760eae32dcSDimitry Andric 9007199254740991u, 1801439850948198u, 360287970189639u, 72057594037927u, 14411518807585u, 4770eae32dcSDimitry Andric 2882303761517u, 576460752303u, 115292150460u, 23058430092u, 4611686018u, 922337203u, 184467440u, 4780eae32dcSDimitry Andric 36893488u, 7378697u, 1475739u, 295147u, 59029u, 11805u, 2361u, 472u, 94u, 18u, 3u }; 4790eae32dcSDimitry Andric 4800eae32dcSDimitry Andric unsigned long _Trailing_zero_bits; 4810eae32dcSDimitry Andric #ifdef _LIBCPP_HAS_BITSCAN64 4820eae32dcSDimitry Andric (void) _BitScanForward64(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero 4830eae32dcSDimitry Andric #else // ^^^ 64-bit ^^^ / vvv 32-bit vvv 4840eae32dcSDimitry Andric const uint32_t _Low_mantissa = static_cast<uint32_t>(__v.__mantissa); 4850eae32dcSDimitry Andric if (_Low_mantissa != 0) { 4860eae32dcSDimitry Andric (void) _BitScanForward(&_Trailing_zero_bits, _Low_mantissa); 4870eae32dcSDimitry Andric } else { 4880eae32dcSDimitry Andric const uint32_t _High_mantissa = static_cast<uint32_t>(__v.__mantissa >> 32); // nonzero here 4890eae32dcSDimitry Andric (void) _BitScanForward(&_Trailing_zero_bits, _High_mantissa); 4900eae32dcSDimitry Andric _Trailing_zero_bits += 32; 4910eae32dcSDimitry Andric } 4920eae32dcSDimitry Andric #endif // ^^^ 32-bit ^^^ 4930eae32dcSDimitry Andric const uint64_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits; 4940eae32dcSDimitry Andric _Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent]; 4950eae32dcSDimitry Andric } 4960eae32dcSDimitry Andric 4970eae32dcSDimitry Andric if (!_Can_use_ryu) { 4980eae32dcSDimitry Andric // Print the integer exactly. 4990eae32dcSDimitry Andric // Performance note: This will redundantly perform bounds checking. 5000eae32dcSDimitry Andric // Performance note: This will redundantly decompose the IEEE representation. 5010eae32dcSDimitry Andric return __d2fixed_buffered_n(_First, _Last, __f, 0); 5020eae32dcSDimitry Andric } 5030eae32dcSDimitry Andric 5040eae32dcSDimitry Andric // _Can_use_ryu 5050eae32dcSDimitry Andric // Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length). 5060eae32dcSDimitry Andric _Mid = _First + __olength; 5070eae32dcSDimitry Andric } else { // cases "1729", "17.29", and "0.001729" 5080eae32dcSDimitry Andric // Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length). 5090eae32dcSDimitry Andric _Mid = _First + _Total_fixed_length; 5100eae32dcSDimitry Andric } 5110eae32dcSDimitry Andric 5120eae32dcSDimitry Andric // We prefer 32-bit operations, even on 64-bit platforms. 5130eae32dcSDimitry Andric // We have at most 17 digits, and uint32_t can store 9 digits. 5140eae32dcSDimitry Andric // If _Output doesn't fit into uint32_t, we cut off 8 digits, 5150eae32dcSDimitry Andric // so the rest will fit into uint32_t. 5160eae32dcSDimitry Andric if ((_Output >> 32) != 0) { 5170eae32dcSDimitry Andric // Expensive 64-bit division. 5180eae32dcSDimitry Andric const uint64_t __q = __div1e8(_Output); 5190eae32dcSDimitry Andric uint32_t __output2 = static_cast<uint32_t>(_Output - 100000000 * __q); 5200eae32dcSDimitry Andric _Output = __q; 5210eae32dcSDimitry Andric 5220eae32dcSDimitry Andric const uint32_t __c = __output2 % 10000; 5230eae32dcSDimitry Andric __output2 /= 10000; 5240eae32dcSDimitry Andric const uint32_t __d = __output2 % 10000; 5250eae32dcSDimitry Andric const uint32_t __c0 = (__c % 100) << 1; 5260eae32dcSDimitry Andric const uint32_t __c1 = (__c / 100) << 1; 5270eae32dcSDimitry Andric const uint32_t __d0 = (__d % 100) << 1; 5280eae32dcSDimitry Andric const uint32_t __d1 = (__d / 100) << 1; 5290eae32dcSDimitry Andric 53006c3fb27SDimitry Andric std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2); 53106c3fb27SDimitry Andric std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2); 53206c3fb27SDimitry Andric std::memcpy(_Mid -= 2, __DIGIT_TABLE + __d0, 2); 53306c3fb27SDimitry Andric std::memcpy(_Mid -= 2, __DIGIT_TABLE + __d1, 2); 5340eae32dcSDimitry Andric } 5350eae32dcSDimitry Andric uint32_t __output2 = static_cast<uint32_t>(_Output); 5360eae32dcSDimitry Andric while (__output2 >= 10000) { 5370eae32dcSDimitry Andric #ifdef __clang__ // TRANSITION, LLVM-38217 5380eae32dcSDimitry Andric const uint32_t __c = __output2 - 10000 * (__output2 / 10000); 5390eae32dcSDimitry Andric #else 5400eae32dcSDimitry Andric const uint32_t __c = __output2 % 10000; 5410eae32dcSDimitry Andric #endif 5420eae32dcSDimitry Andric __output2 /= 10000; 5430eae32dcSDimitry Andric const uint32_t __c0 = (__c % 100) << 1; 5440eae32dcSDimitry Andric const uint32_t __c1 = (__c / 100) << 1; 54506c3fb27SDimitry Andric std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2); 54606c3fb27SDimitry Andric std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2); 5470eae32dcSDimitry Andric } 5480eae32dcSDimitry Andric if (__output2 >= 100) { 5490eae32dcSDimitry Andric const uint32_t __c = (__output2 % 100) << 1; 5500eae32dcSDimitry Andric __output2 /= 100; 55106c3fb27SDimitry Andric std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2); 5520eae32dcSDimitry Andric } 5530eae32dcSDimitry Andric if (__output2 >= 10) { 5540eae32dcSDimitry Andric const uint32_t __c = __output2 << 1; 55506c3fb27SDimitry Andric std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2); 5560eae32dcSDimitry Andric } else { 5570eae32dcSDimitry Andric *--_Mid = static_cast<char>('0' + __output2); 5580eae32dcSDimitry Andric } 5590eae32dcSDimitry Andric 5600eae32dcSDimitry Andric if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu 5610eae32dcSDimitry Andric // Performance note: it might be more efficient to do this immediately after setting _Mid. 56206c3fb27SDimitry Andric std::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent)); 5630eae32dcSDimitry Andric } else if (_Ryu_exponent == 0) { // case "1729" 5640eae32dcSDimitry Andric // Done! 5650eae32dcSDimitry Andric } else if (_Whole_digits > 0) { // case "17.29" 5660eae32dcSDimitry Andric // Performance note: moving digits might not be optimal. 56706c3fb27SDimitry Andric std::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits)); 5680eae32dcSDimitry Andric _First[_Whole_digits] = '.'; 5690eae32dcSDimitry Andric } else { // case "0.001729" 5700eae32dcSDimitry Andric // Performance note: a larger memset() followed by overwriting '.' might be more efficient. 5710eae32dcSDimitry Andric _First[0] = '0'; 5720eae32dcSDimitry Andric _First[1] = '.'; 57306c3fb27SDimitry Andric std::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits)); 5740eae32dcSDimitry Andric } 5750eae32dcSDimitry Andric 5760eae32dcSDimitry Andric return { _First + _Total_fixed_length, errc{} }; 5770eae32dcSDimitry Andric } 5780eae32dcSDimitry Andric 5790eae32dcSDimitry Andric const uint32_t _Total_scientific_length = __olength + (__olength > 1) // digits + possible decimal point 5800eae32dcSDimitry Andric + (-100 < _Scientific_exponent && _Scientific_exponent < 100 ? 4 : 5); // + scientific exponent 5810eae32dcSDimitry Andric if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) { 5820eae32dcSDimitry Andric return { _Last, errc::value_too_large }; 5830eae32dcSDimitry Andric } 5840eae32dcSDimitry Andric char* const __result = _First; 5850eae32dcSDimitry Andric 5860eae32dcSDimitry Andric // Print the decimal digits. 5870eae32dcSDimitry Andric uint32_t __i = 0; 5880eae32dcSDimitry Andric // We prefer 32-bit operations, even on 64-bit platforms. 5890eae32dcSDimitry Andric // We have at most 17 digits, and uint32_t can store 9 digits. 5900eae32dcSDimitry Andric // If _Output doesn't fit into uint32_t, we cut off 8 digits, 5910eae32dcSDimitry Andric // so the rest will fit into uint32_t. 5920eae32dcSDimitry Andric if ((_Output >> 32) != 0) { 5930eae32dcSDimitry Andric // Expensive 64-bit division. 5940eae32dcSDimitry Andric const uint64_t __q = __div1e8(_Output); 5950eae32dcSDimitry Andric uint32_t __output2 = static_cast<uint32_t>(_Output) - 100000000 * static_cast<uint32_t>(__q); 5960eae32dcSDimitry Andric _Output = __q; 5970eae32dcSDimitry Andric 5980eae32dcSDimitry Andric const uint32_t __c = __output2 % 10000; 5990eae32dcSDimitry Andric __output2 /= 10000; 6000eae32dcSDimitry Andric const uint32_t __d = __output2 % 10000; 6010eae32dcSDimitry Andric const uint32_t __c0 = (__c % 100) << 1; 6020eae32dcSDimitry Andric const uint32_t __c1 = (__c / 100) << 1; 6030eae32dcSDimitry Andric const uint32_t __d0 = (__d % 100) << 1; 6040eae32dcSDimitry Andric const uint32_t __d1 = (__d / 100) << 1; 60506c3fb27SDimitry Andric std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2); 60606c3fb27SDimitry Andric std::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2); 60706c3fb27SDimitry Andric std::memcpy(__result + __olength - __i - 5, __DIGIT_TABLE + __d0, 2); 60806c3fb27SDimitry Andric std::memcpy(__result + __olength - __i - 7, __DIGIT_TABLE + __d1, 2); 6090eae32dcSDimitry Andric __i += 8; 6100eae32dcSDimitry Andric } 6110eae32dcSDimitry Andric uint32_t __output2 = static_cast<uint32_t>(_Output); 6120eae32dcSDimitry Andric while (__output2 >= 10000) { 6130eae32dcSDimitry Andric #ifdef __clang__ // TRANSITION, LLVM-38217 6140eae32dcSDimitry Andric const uint32_t __c = __output2 - 10000 * (__output2 / 10000); 6150eae32dcSDimitry Andric #else 6160eae32dcSDimitry Andric const uint32_t __c = __output2 % 10000; 6170eae32dcSDimitry Andric #endif 6180eae32dcSDimitry Andric __output2 /= 10000; 6190eae32dcSDimitry Andric const uint32_t __c0 = (__c % 100) << 1; 6200eae32dcSDimitry Andric const uint32_t __c1 = (__c / 100) << 1; 62106c3fb27SDimitry Andric std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2); 62206c3fb27SDimitry Andric std::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2); 6230eae32dcSDimitry Andric __i += 4; 6240eae32dcSDimitry Andric } 6250eae32dcSDimitry Andric if (__output2 >= 100) { 6260eae32dcSDimitry Andric const uint32_t __c = (__output2 % 100) << 1; 6270eae32dcSDimitry Andric __output2 /= 100; 62806c3fb27SDimitry Andric std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2); 6290eae32dcSDimitry Andric __i += 2; 6300eae32dcSDimitry Andric } 6310eae32dcSDimitry Andric if (__output2 >= 10) { 6320eae32dcSDimitry Andric const uint32_t __c = __output2 << 1; 6330eae32dcSDimitry Andric // We can't use memcpy here: the decimal dot goes between these two digits. 6340eae32dcSDimitry Andric __result[2] = __DIGIT_TABLE[__c + 1]; 6350eae32dcSDimitry Andric __result[0] = __DIGIT_TABLE[__c]; 6360eae32dcSDimitry Andric } else { 6370eae32dcSDimitry Andric __result[0] = static_cast<char>('0' + __output2); 6380eae32dcSDimitry Andric } 6390eae32dcSDimitry Andric 6400eae32dcSDimitry Andric // Print decimal point if needed. 6410eae32dcSDimitry Andric uint32_t __index; 6420eae32dcSDimitry Andric if (__olength > 1) { 6430eae32dcSDimitry Andric __result[1] = '.'; 6440eae32dcSDimitry Andric __index = __olength + 1; 6450eae32dcSDimitry Andric } else { 6460eae32dcSDimitry Andric __index = 1; 6470eae32dcSDimitry Andric } 6480eae32dcSDimitry Andric 6490eae32dcSDimitry Andric // Print the exponent. 6500eae32dcSDimitry Andric __result[__index++] = 'e'; 6510eae32dcSDimitry Andric if (_Scientific_exponent < 0) { 6520eae32dcSDimitry Andric __result[__index++] = '-'; 6530eae32dcSDimitry Andric _Scientific_exponent = -_Scientific_exponent; 6540eae32dcSDimitry Andric } else { 6550eae32dcSDimitry Andric __result[__index++] = '+'; 6560eae32dcSDimitry Andric } 6570eae32dcSDimitry Andric 6580eae32dcSDimitry Andric if (_Scientific_exponent >= 100) { 6590eae32dcSDimitry Andric const int32_t __c = _Scientific_exponent % 10; 66006c3fb27SDimitry Andric std::memcpy(__result + __index, __DIGIT_TABLE + 2 * (_Scientific_exponent / 10), 2); 6610eae32dcSDimitry Andric __result[__index + 2] = static_cast<char>('0' + __c); 6620eae32dcSDimitry Andric __index += 3; 6630eae32dcSDimitry Andric } else { 66406c3fb27SDimitry Andric std::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2); 6650eae32dcSDimitry Andric __index += 2; 6660eae32dcSDimitry Andric } 6670eae32dcSDimitry Andric 6680eae32dcSDimitry Andric return { _First + _Total_scientific_length, errc{} }; 6690eae32dcSDimitry Andric } 6700eae32dcSDimitry Andric 6710eae32dcSDimitry Andric [[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __d2d_small_int(const uint64_t __ieeeMantissa, const uint32_t __ieeeExponent, 6720eae32dcSDimitry Andric __floating_decimal_64* const __v) { 6730eae32dcSDimitry Andric const uint64_t __m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa; 6740eae32dcSDimitry Andric const int32_t __e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS; 6750eae32dcSDimitry Andric 6760eae32dcSDimitry Andric if (__e2 > 0) { 6770eae32dcSDimitry Andric // f = __m2 * 2^__e2 >= 2^53 is an integer. 6780eae32dcSDimitry Andric // Ignore this case for now. 6790eae32dcSDimitry Andric return false; 6800eae32dcSDimitry Andric } 6810eae32dcSDimitry Andric 6820eae32dcSDimitry Andric if (__e2 < -52) { 6830eae32dcSDimitry Andric // f < 1. 6840eae32dcSDimitry Andric return false; 6850eae32dcSDimitry Andric } 6860eae32dcSDimitry Andric 6870eae32dcSDimitry Andric // Since 2^52 <= __m2 < 2^53 and 0 <= -__e2 <= 52: 1 <= f = __m2 / 2^-__e2 < 2^53. 6880eae32dcSDimitry Andric // Test if the lower -__e2 bits of the significand are 0, i.e. whether the fraction is 0. 6890eae32dcSDimitry Andric const uint64_t __mask = (1ull << -__e2) - 1; 6900eae32dcSDimitry Andric const uint64_t __fraction = __m2 & __mask; 6910eae32dcSDimitry Andric if (__fraction != 0) { 6920eae32dcSDimitry Andric return false; 6930eae32dcSDimitry Andric } 6940eae32dcSDimitry Andric 6950eae32dcSDimitry Andric // f is an integer in the range [1, 2^53). 6960eae32dcSDimitry Andric // Note: __mantissa might contain trailing (decimal) 0's. 6970eae32dcSDimitry Andric // Note: since 2^53 < 10^16, there is no need to adjust __decimalLength17(). 6980eae32dcSDimitry Andric __v->__mantissa = __m2 >> -__e2; 6990eae32dcSDimitry Andric __v->__exponent = 0; 7000eae32dcSDimitry Andric return true; 7010eae32dcSDimitry Andric } 7020eae32dcSDimitry Andric 7030eae32dcSDimitry Andric [[nodiscard]] to_chars_result __d2s_buffered_n(char* const _First, char* const _Last, const double __f, 7040eae32dcSDimitry Andric const chars_format _Fmt) { 7050eae32dcSDimitry Andric 7060eae32dcSDimitry Andric // Step 1: Decode the floating-point number, and unify normalized and subnormal cases. 7070eae32dcSDimitry Andric const uint64_t __bits = __double_to_bits(__f); 7080eae32dcSDimitry Andric 7090eae32dcSDimitry Andric // Case distinction; exit early for the easy cases. 7100eae32dcSDimitry Andric if (__bits == 0) { 7110eae32dcSDimitry Andric if (_Fmt == chars_format::scientific) { 7120eae32dcSDimitry Andric if (_Last - _First < 5) { 7130eae32dcSDimitry Andric return { _Last, errc::value_too_large }; 7140eae32dcSDimitry Andric } 7150eae32dcSDimitry Andric 71606c3fb27SDimitry Andric std::memcpy(_First, "0e+00", 5); 7170eae32dcSDimitry Andric 7180eae32dcSDimitry Andric return { _First + 5, errc{} }; 7190eae32dcSDimitry Andric } 7200eae32dcSDimitry Andric 7210eae32dcSDimitry Andric // Print "0" for chars_format::fixed, chars_format::general, and chars_format{}. 7220eae32dcSDimitry Andric if (_First == _Last) { 7230eae32dcSDimitry Andric return { _Last, errc::value_too_large }; 7240eae32dcSDimitry Andric } 7250eae32dcSDimitry Andric 7260eae32dcSDimitry Andric *_First = '0'; 7270eae32dcSDimitry Andric 7280eae32dcSDimitry Andric return { _First + 1, errc{} }; 7290eae32dcSDimitry Andric } 7300eae32dcSDimitry Andric 7310eae32dcSDimitry Andric // Decode __bits into mantissa and exponent. 7320eae32dcSDimitry Andric const uint64_t __ieeeMantissa = __bits & ((1ull << __DOUBLE_MANTISSA_BITS) - 1); 7330eae32dcSDimitry Andric const uint32_t __ieeeExponent = static_cast<uint32_t>(__bits >> __DOUBLE_MANTISSA_BITS); 7340eae32dcSDimitry Andric 7350eae32dcSDimitry Andric if (_Fmt == chars_format::fixed) { 7360eae32dcSDimitry Andric // const uint64_t _Mantissa2 = __ieeeMantissa | (1ull << __DOUBLE_MANTISSA_BITS); // restore implicit bit 7370eae32dcSDimitry Andric const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent) 7380eae32dcSDimitry Andric - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS; // bias and normalization 7390eae32dcSDimitry Andric 7400eae32dcSDimitry Andric // Normal values are equal to _Mantissa2 * 2^_Exponent2. 7410eae32dcSDimitry Andric // (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.) 7420eae32dcSDimitry Andric 7430eae32dcSDimitry Andric // For nonzero integers, _Exponent2 >= -52. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1. 7440eae32dcSDimitry Andric // In that case, _Mantissa2 is the implicit 1 bit followed by 52 zeros, so _Exponent2 is -52 to shift away 7450eae32dcSDimitry Andric // the zeros.) The dense range of exactly representable integers has negative or zero exponents 7460eae32dcSDimitry Andric // (as positive exponents make the range non-dense). For that dense range, Ryu will always be used: 7470eae32dcSDimitry Andric // every digit is necessary to uniquely identify the value, so Ryu must print them all. 7480eae32dcSDimitry Andric 7490eae32dcSDimitry Andric // Positive exponents are the non-dense range of exactly representable integers. This contains all of the values 7500eae32dcSDimitry Andric // for which Ryu can't be used (and a few Ryu-friendly values). We can save time by detecting positive 7510eae32dcSDimitry Andric // exponents here and skipping Ryu. Calling __d2fixed_buffered_n() with precision 0 is valid for all integers 7520eae32dcSDimitry Andric // (so it's okay if we call it with a Ryu-friendly value). 7530eae32dcSDimitry Andric if (_Exponent2 > 0) { 7540eae32dcSDimitry Andric return __d2fixed_buffered_n(_First, _Last, __f, 0); 7550eae32dcSDimitry Andric } 7560eae32dcSDimitry Andric } 7570eae32dcSDimitry Andric 7580eae32dcSDimitry Andric __floating_decimal_64 __v; 7590eae32dcSDimitry Andric const bool __isSmallInt = __d2d_small_int(__ieeeMantissa, __ieeeExponent, &__v); 7600eae32dcSDimitry Andric if (__isSmallInt) { 7610eae32dcSDimitry Andric // For small integers in the range [1, 2^53), __v.__mantissa might contain trailing (decimal) zeros. 7620eae32dcSDimitry Andric // For scientific notation we need to move these zeros into the exponent. 7630eae32dcSDimitry Andric // (This is not needed for fixed-point notation, so it might be beneficial to trim 7640eae32dcSDimitry Andric // trailing zeros in __to_chars only if needed - once fixed-point notation output is implemented.) 7650eae32dcSDimitry Andric for (;;) { 7660eae32dcSDimitry Andric const uint64_t __q = __div10(__v.__mantissa); 7670eae32dcSDimitry Andric const uint32_t __r = static_cast<uint32_t>(__v.__mantissa) - 10 * static_cast<uint32_t>(__q); 7680eae32dcSDimitry Andric if (__r != 0) { 7690eae32dcSDimitry Andric break; 7700eae32dcSDimitry Andric } 7710eae32dcSDimitry Andric __v.__mantissa = __q; 7720eae32dcSDimitry Andric ++__v.__exponent; 7730eae32dcSDimitry Andric } 7740eae32dcSDimitry Andric } else { 7750eae32dcSDimitry Andric __v = __d2d(__ieeeMantissa, __ieeeExponent); 7760eae32dcSDimitry Andric } 7770eae32dcSDimitry Andric 7780eae32dcSDimitry Andric return __to_chars(_First, _Last, __v, _Fmt, __f); 7790eae32dcSDimitry Andric } 7800eae32dcSDimitry Andric 7810eae32dcSDimitry Andric _LIBCPP_END_NAMESPACE_STD 7820eae32dcSDimitry Andric 7830eae32dcSDimitry Andric // clang-format on 784