xref: /freebsd/contrib/llvm-project/libcxx/src/memory_resource.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <memory>
10 #include <memory_resource>
11 
12 #ifndef _LIBCPP_HAS_NO_ATOMIC_HEADER
13 #  include <atomic>
14 #elif !defined(_LIBCPP_HAS_NO_THREADS)
15 #  include <mutex>
16 #  if defined(__ELF__) && defined(_LIBCPP_LINK_PTHREAD_LIB)
17 #    pragma comment(lib, "pthread")
18 #  endif
19 #endif
20 
21 _LIBCPP_BEGIN_NAMESPACE_STD
22 
23 namespace pmr {
24 
25 // memory_resource
26 
27 memory_resource::~memory_resource() = default;
28 
29 // new_delete_resource()
30 
31 #ifdef _LIBCPP_HAS_NO_ALIGNED_ALLOCATION
32 static bool is_aligned_to(void* ptr, size_t align) {
33   void* p2     = ptr;
34   size_t space = 1;
35   void* result = std::align(align, 1, p2, space);
36   return (result == ptr);
37 }
38 #endif
39 
40 class _LIBCPP_EXPORTED_FROM_ABI __new_delete_memory_resource_imp : public memory_resource {
41   void* do_allocate(size_t bytes, size_t align) override {
42 #ifndef _LIBCPP_HAS_NO_ALIGNED_ALLOCATION
43     return std::__libcpp_allocate(bytes, align);
44 #else
45     if (bytes == 0)
46       bytes = 1;
47     void* result = std::__libcpp_allocate(bytes, align);
48     if (!is_aligned_to(result, align)) {
49       std::__libcpp_deallocate(result, bytes, align);
50       __throw_bad_alloc();
51     }
52     return result;
53 #endif
54   }
55 
56   void do_deallocate(void* p, size_t bytes, size_t align) override { std::__libcpp_deallocate(p, bytes, align); }
57 
58   bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; }
59 };
60 
61 // null_memory_resource()
62 
63 class _LIBCPP_EXPORTED_FROM_ABI __null_memory_resource_imp : public memory_resource {
64   void* do_allocate(size_t, size_t) override { __throw_bad_alloc(); }
65   void do_deallocate(void*, size_t, size_t) override {}
66   bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; }
67 };
68 
69 namespace {
70 
71 union ResourceInitHelper {
72   struct {
73     __new_delete_memory_resource_imp new_delete_res;
74     __null_memory_resource_imp null_res;
75   } resources;
76   char dummy;
77   constexpr ResourceInitHelper() : resources() {}
78   ~ResourceInitHelper() {}
79 };
80 
81 // Pretend we're inside a system header so the compiler doesn't flag the use of the init_priority
82 // attribute with a value that's reserved for the implementation (we're the implementation).
83 #include "memory_resource_init_helper.h"
84 
85 } // end namespace
86 
87 memory_resource* new_delete_resource() noexcept { return &res_init.resources.new_delete_res; }
88 
89 memory_resource* null_memory_resource() noexcept { return &res_init.resources.null_res; }
90 
91 // default_memory_resource()
92 
93 static memory_resource* __default_memory_resource(bool set = false, memory_resource* new_res = nullptr) noexcept {
94 #ifndef _LIBCPP_HAS_NO_ATOMIC_HEADER
95   static constinit atomic<memory_resource*> __res{&res_init.resources.new_delete_res};
96   if (set) {
97     new_res = new_res ? new_res : new_delete_resource();
98     // TODO: Can a weaker ordering be used?
99     return std::atomic_exchange_explicit(&__res, new_res, memory_order_acq_rel);
100   } else {
101     return std::atomic_load_explicit(&__res, memory_order_acquire);
102   }
103 #elif !defined(_LIBCPP_HAS_NO_THREADS)
104   static constinit memory_resource* res = &res_init.resources.new_delete_res;
105   static mutex res_lock;
106   if (set) {
107     new_res = new_res ? new_res : new_delete_resource();
108     lock_guard<mutex> guard(res_lock);
109     memory_resource* old_res = res;
110     res                      = new_res;
111     return old_res;
112   } else {
113     lock_guard<mutex> guard(res_lock);
114     return res;
115   }
116 #else
117   static constinit memory_resource* res = &res_init.resources.new_delete_res;
118   if (set) {
119     new_res                  = new_res ? new_res : new_delete_resource();
120     memory_resource* old_res = res;
121     res                      = new_res;
122     return old_res;
123   } else {
124     return res;
125   }
126 #endif
127 }
128 
129 memory_resource* get_default_resource() noexcept { return __default_memory_resource(); }
130 
131 memory_resource* set_default_resource(memory_resource* __new_res) noexcept {
132   return __default_memory_resource(true, __new_res);
133 }
134 
135 // 23.12.5, mem.res.pool
136 
137 static size_t roundup(size_t count, size_t alignment) {
138   size_t mask = alignment - 1;
139   return (count + mask) & ~mask;
140 }
141 
142 struct unsynchronized_pool_resource::__adhoc_pool::__chunk_footer {
143   __chunk_footer* __next_;
144   char* __start_;
145   size_t __align_;
146   size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); }
147 };
148 
149 void unsynchronized_pool_resource::__adhoc_pool::__release_ptr(memory_resource* upstream) {
150   while (__first_ != nullptr) {
151     __chunk_footer* next = __first_->__next_;
152     upstream->deallocate(__first_->__start_, __first_->__allocation_size(), __first_->__align_);
153     __first_ = next;
154   }
155 }
156 
157 void* unsynchronized_pool_resource::__adhoc_pool::__do_allocate(memory_resource* upstream, size_t bytes, size_t align) {
158   const size_t footer_size  = sizeof(__chunk_footer);
159   const size_t footer_align = alignof(__chunk_footer);
160 
161   if (align < footer_align)
162     align = footer_align;
163 
164   size_t aligned_capacity = roundup(bytes, footer_align) + footer_size;
165 
166   void* result = upstream->allocate(aligned_capacity, align);
167 
168   __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size);
169   h->__next_        = __first_;
170   h->__start_       = (char*)result;
171   h->__align_       = align;
172   __first_          = h;
173   return result;
174 }
175 
176 void unsynchronized_pool_resource::__adhoc_pool::__do_deallocate(
177     memory_resource* upstream, void* p, size_t bytes, size_t align) {
178   _LIBCPP_ASSERT_NON_NULL(__first_ != nullptr, "deallocating a block that was not allocated with this allocator");
179   if (__first_->__start_ == p) {
180     __chunk_footer* next = __first_->__next_;
181     upstream->deallocate(p, __first_->__allocation_size(), __first_->__align_);
182     __first_ = next;
183   } else {
184     for (__chunk_footer* h = __first_; h->__next_ != nullptr; h = h->__next_) {
185       if (h->__next_->__start_ == p) {
186         __chunk_footer* next = h->__next_->__next_;
187         upstream->deallocate(p, h->__next_->__allocation_size(), h->__next_->__align_);
188         h->__next_ = next;
189         return;
190       }
191     }
192     // The request to deallocate memory ends up being a no-op, likely resulting in a memory leak.
193     _LIBCPP_ASSERT_VALID_DEALLOCATION(false, "deallocating a block that was not allocated with this allocator");
194   }
195 }
196 
197 class unsynchronized_pool_resource::__fixed_pool {
198   struct __chunk_footer {
199     __chunk_footer* __next_;
200     char* __start_;
201     size_t __align_;
202     size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); }
203   };
204 
205   struct __vacancy_header {
206     __vacancy_header* __next_vacancy_;
207   };
208 
209   __chunk_footer* __first_chunk_     = nullptr;
210   __vacancy_header* __first_vacancy_ = nullptr;
211 
212 public:
213   explicit __fixed_pool() = default;
214 
215   void __release_ptr(memory_resource* upstream) {
216     __first_vacancy_ = nullptr;
217     while (__first_chunk_ != nullptr) {
218       __chunk_footer* next = __first_chunk_->__next_;
219       upstream->deallocate(__first_chunk_->__start_, __first_chunk_->__allocation_size(), __first_chunk_->__align_);
220       __first_chunk_ = next;
221     }
222   }
223 
224   void* __try_allocate_from_vacancies() {
225     if (__first_vacancy_ != nullptr) {
226       void* result     = __first_vacancy_;
227       __first_vacancy_ = __first_vacancy_->__next_vacancy_;
228       return result;
229     }
230     return nullptr;
231   }
232 
233   void* __allocate_in_new_chunk(memory_resource* upstream, size_t block_size, size_t chunk_size) {
234     _LIBCPP_ASSERT_INTERNAL(chunk_size % block_size == 0, "");
235     static_assert(__default_alignment >= alignof(std::max_align_t), "");
236     static_assert(__default_alignment >= alignof(__chunk_footer), "");
237     static_assert(__default_alignment >= alignof(__vacancy_header), "");
238 
239     const size_t footer_size  = sizeof(__chunk_footer);
240     const size_t footer_align = alignof(__chunk_footer);
241 
242     size_t aligned_capacity = roundup(chunk_size, footer_align) + footer_size;
243 
244     void* result = upstream->allocate(aligned_capacity, __default_alignment);
245 
246     __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size);
247     h->__next_        = __first_chunk_;
248     h->__start_       = (char*)result;
249     h->__align_       = __default_alignment;
250     __first_chunk_    = h;
251 
252     if (chunk_size > block_size) {
253       __vacancy_header* last_vh = this->__first_vacancy_;
254       for (size_t i = block_size; i != chunk_size; i += block_size) {
255         __vacancy_header* vh = (__vacancy_header*)((char*)result + i);
256         vh->__next_vacancy_  = last_vh;
257         last_vh              = vh;
258       }
259       this->__first_vacancy_ = last_vh;
260     }
261     return result;
262   }
263 
264   void __evacuate(void* p) {
265     __vacancy_header* vh = (__vacancy_header*)(p);
266     vh->__next_vacancy_  = __first_vacancy_;
267     __first_vacancy_     = vh;
268   }
269 
270   size_t __previous_chunk_size_in_bytes() const { return __first_chunk_ ? __first_chunk_->__allocation_size() : 0; }
271 
272   static const size_t __default_alignment = alignof(max_align_t);
273 };
274 
275 size_t unsynchronized_pool_resource::__pool_block_size(int i) const { return size_t(1) << __log2_pool_block_size(i); }
276 
277 int unsynchronized_pool_resource::__log2_pool_block_size(int i) const { return (i + __log2_smallest_block_size); }
278 
279 int unsynchronized_pool_resource::__pool_index(size_t bytes, size_t align) const {
280   if (align > alignof(std::max_align_t) || bytes > (size_t(1) << __num_fixed_pools_))
281     return __num_fixed_pools_;
282   else {
283     int i = 0;
284     bytes = (bytes > align) ? bytes : align;
285     bytes -= 1;
286     bytes >>= __log2_smallest_block_size;
287     while (bytes != 0) {
288       bytes >>= 1;
289       i += 1;
290     }
291     return i;
292   }
293 }
294 
295 unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream)
296     : __res_(upstream), __fixed_pools_(nullptr) {
297   size_t largest_block_size;
298   if (opts.largest_required_pool_block == 0)
299     largest_block_size = __default_largest_block_size;
300   else if (opts.largest_required_pool_block < __smallest_block_size)
301     largest_block_size = __smallest_block_size;
302   else if (opts.largest_required_pool_block > __max_largest_block_size)
303     largest_block_size = __max_largest_block_size;
304   else
305     largest_block_size = opts.largest_required_pool_block;
306 
307   if (opts.max_blocks_per_chunk == 0)
308     __options_max_blocks_per_chunk_ = __max_blocks_per_chunk;
309   else if (opts.max_blocks_per_chunk < __min_blocks_per_chunk)
310     __options_max_blocks_per_chunk_ = __min_blocks_per_chunk;
311   else if (opts.max_blocks_per_chunk > __max_blocks_per_chunk)
312     __options_max_blocks_per_chunk_ = __max_blocks_per_chunk;
313   else
314     __options_max_blocks_per_chunk_ = opts.max_blocks_per_chunk;
315 
316   __num_fixed_pools_ = 1;
317   size_t capacity    = __smallest_block_size;
318   while (capacity < largest_block_size) {
319     capacity <<= 1;
320     __num_fixed_pools_ += 1;
321   }
322 }
323 
324 pool_options unsynchronized_pool_resource::options() const {
325   pool_options p;
326   p.max_blocks_per_chunk        = __options_max_blocks_per_chunk_;
327   p.largest_required_pool_block = __pool_block_size(__num_fixed_pools_ - 1);
328   return p;
329 }
330 
331 void unsynchronized_pool_resource::release() {
332   __adhoc_pool_.__release_ptr(__res_);
333   if (__fixed_pools_ != nullptr) {
334     const int n = __num_fixed_pools_;
335     for (int i = 0; i < n; ++i)
336       __fixed_pools_[i].__release_ptr(__res_);
337     __res_->deallocate(__fixed_pools_, __num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool));
338     __fixed_pools_ = nullptr;
339   }
340 }
341 
342 void* unsynchronized_pool_resource::do_allocate(size_t bytes, size_t align) {
343   // A pointer to allocated storage (6.6.4.4.1) with a size of at least bytes.
344   // The size and alignment of the allocated memory shall meet the requirements for
345   // a class derived from memory_resource (23.12).
346   // If the pool selected for a block of size bytes is unable to satisfy the memory request
347   // from its own internal data structures, it will call upstream_resource()->allocate()
348   // to obtain more memory. If bytes is larger than that which the largest pool can handle,
349   // then memory will be allocated using upstream_resource()->allocate().
350 
351   int i = __pool_index(bytes, align);
352   if (i == __num_fixed_pools_)
353     return __adhoc_pool_.__do_allocate(__res_, bytes, align);
354   else {
355     if (__fixed_pools_ == nullptr) {
356       __fixed_pools_ =
357           (__fixed_pool*)__res_->allocate(__num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool));
358       __fixed_pool* first = __fixed_pools_;
359       __fixed_pool* last  = __fixed_pools_ + __num_fixed_pools_;
360       for (__fixed_pool* pool = first; pool != last; ++pool)
361         ::new ((void*)pool) __fixed_pool;
362     }
363     void* result = __fixed_pools_[i].__try_allocate_from_vacancies();
364     if (result == nullptr) {
365       auto min = [](size_t a, size_t b) { return a < b ? a : b; };
366       auto max = [](size_t a, size_t b) { return a < b ? b : a; };
367 
368       size_t prev_chunk_size_in_bytes  = __fixed_pools_[i].__previous_chunk_size_in_bytes();
369       size_t prev_chunk_size_in_blocks = prev_chunk_size_in_bytes >> __log2_pool_block_size(i);
370 
371       size_t chunk_size_in_blocks;
372 
373       if (prev_chunk_size_in_blocks == 0) {
374         size_t min_blocks_per_chunk = max(__min_bytes_per_chunk >> __log2_pool_block_size(i), __min_blocks_per_chunk);
375         chunk_size_in_blocks        = min_blocks_per_chunk;
376       } else {
377         static_assert(__max_bytes_per_chunk <= SIZE_MAX - (__max_bytes_per_chunk / 4), "unsigned overflow is possible");
378         chunk_size_in_blocks = prev_chunk_size_in_blocks + (prev_chunk_size_in_blocks / 4);
379       }
380 
381       size_t max_blocks_per_chunk =
382           min((__max_bytes_per_chunk >> __log2_pool_block_size(i)),
383               min(__max_blocks_per_chunk, __options_max_blocks_per_chunk_));
384       if (chunk_size_in_blocks > max_blocks_per_chunk)
385         chunk_size_in_blocks = max_blocks_per_chunk;
386 
387       size_t block_size = __pool_block_size(i);
388 
389       size_t chunk_size_in_bytes = (chunk_size_in_blocks << __log2_pool_block_size(i));
390       result                     = __fixed_pools_[i].__allocate_in_new_chunk(__res_, block_size, chunk_size_in_bytes);
391     }
392     return result;
393   }
394 }
395 
396 void unsynchronized_pool_resource::do_deallocate(void* p, size_t bytes, size_t align) {
397   // Returns the memory at p to the pool. It is unspecified if,
398   // or under what circumstances, this operation will result in
399   // a call to upstream_resource()->deallocate().
400 
401   int i = __pool_index(bytes, align);
402   if (i == __num_fixed_pools_)
403     return __adhoc_pool_.__do_deallocate(__res_, p, bytes, align);
404   else {
405     _LIBCPP_ASSERT_NON_NULL(
406         __fixed_pools_ != nullptr, "deallocating a block that was not allocated with this allocator");
407     __fixed_pools_[i].__evacuate(p);
408   }
409 }
410 
411 bool synchronized_pool_resource::do_is_equal(const memory_resource& other) const noexcept { return &other == this; }
412 
413 // 23.12.6, mem.res.monotonic.buffer
414 
415 static void* align_down(size_t align, size_t size, void*& ptr, size_t& space) {
416   if (size > space)
417     return nullptr;
418 
419   char* p1      = static_cast<char*>(ptr);
420   char* new_ptr = reinterpret_cast<char*>(reinterpret_cast<uintptr_t>(p1 - size) & ~(align - 1));
421 
422   if (new_ptr < (p1 - space))
423     return nullptr;
424 
425   ptr = new_ptr;
426   space -= p1 - new_ptr;
427 
428   return ptr;
429 }
430 
431 void* monotonic_buffer_resource::__initial_descriptor::__try_allocate_from_chunk(size_t bytes, size_t align) {
432   if (!__cur_)
433     return nullptr;
434   void* new_ptr       = static_cast<void*>(__cur_);
435   size_t new_capacity = (__cur_ - __start_);
436   void* aligned_ptr   = align_down(align, bytes, new_ptr, new_capacity);
437   if (aligned_ptr != nullptr)
438     __cur_ = static_cast<char*>(new_ptr);
439   return aligned_ptr;
440 }
441 
442 void* monotonic_buffer_resource::__chunk_footer::__try_allocate_from_chunk(size_t bytes, size_t align) {
443   void* new_ptr       = static_cast<void*>(__cur_);
444   size_t new_capacity = (__cur_ - __start_);
445   void* aligned_ptr   = align_down(align, bytes, new_ptr, new_capacity);
446   if (aligned_ptr != nullptr)
447     __cur_ = static_cast<char*>(new_ptr);
448   return aligned_ptr;
449 }
450 
451 void* monotonic_buffer_resource::do_allocate(size_t bytes, size_t align) {
452   const size_t footer_size  = sizeof(__chunk_footer);
453   const size_t footer_align = alignof(__chunk_footer);
454 
455   auto previous_allocation_size = [&]() {
456     if (__chunks_ != nullptr)
457       return __chunks_->__allocation_size();
458 
459     size_t newsize = (__initial_.__start_ != nullptr) ? (__initial_.__end_ - __initial_.__start_) : __initial_.__size_;
460 
461     return roundup(newsize, footer_align) + footer_size;
462   };
463 
464   if (void* result = __initial_.__try_allocate_from_chunk(bytes, align))
465     return result;
466   if (__chunks_ != nullptr) {
467     if (void* result = __chunks_->__try_allocate_from_chunk(bytes, align))
468       return result;
469   }
470 
471   // Allocate a brand-new chunk.
472 
473   if (align < footer_align)
474     align = footer_align;
475 
476   size_t aligned_capacity  = roundup(bytes, footer_align) + footer_size;
477   size_t previous_capacity = previous_allocation_size();
478 
479   if (aligned_capacity <= previous_capacity) {
480     size_t newsize   = 2 * (previous_capacity - footer_size);
481     aligned_capacity = roundup(newsize, footer_align) + footer_size;
482   }
483 
484   char* start            = (char*)__res_->allocate(aligned_capacity, align);
485   auto end               = start + aligned_capacity - footer_size;
486   __chunk_footer* footer = (__chunk_footer*)(end);
487   footer->__next_        = __chunks_;
488   footer->__start_       = start;
489   footer->__cur_         = end;
490   footer->__align_       = align;
491   __chunks_              = footer;
492 
493   return __chunks_->__try_allocate_from_chunk(bytes, align);
494 }
495 
496 } // namespace pmr
497 
498 _LIBCPP_END_NAMESPACE_STD
499