xref: /freebsd/contrib/llvm-project/libcxx/src/memory_resource.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <memory>
10 #include <memory_resource>
11 
12 #ifndef _LIBCPP_HAS_NO_ATOMIC_HEADER
13 #  include <atomic>
14 #elif !defined(_LIBCPP_HAS_NO_THREADS)
15 #  include <mutex>
16 #  if defined(__ELF__) && defined(_LIBCPP_LINK_PTHREAD_LIB)
17 #    pragma comment(lib, "pthread")
18 #  endif
19 #endif
20 
21 _LIBCPP_BEGIN_NAMESPACE_STD
22 
23 namespace pmr {
24 
25 // memory_resource
26 
27 memory_resource::~memory_resource() = default;
28 
29 // new_delete_resource()
30 
31 #ifdef _LIBCPP_HAS_NO_ALIGNED_ALLOCATION
32 static bool is_aligned_to(void* ptr, size_t align) {
33   void* p2     = ptr;
34   size_t space = 1;
35   void* result = std::align(align, 1, p2, space);
36   return (result == ptr);
37 }
38 #endif
39 
40 class _LIBCPP_EXPORTED_FROM_ABI __new_delete_memory_resource_imp : public memory_resource {
41   void* do_allocate(size_t bytes, size_t align) override {
42 #ifndef _LIBCPP_HAS_NO_ALIGNED_ALLOCATION
43     return std::__libcpp_allocate(bytes, align);
44 #else
45     if (bytes == 0)
46       bytes = 1;
47     void* result = std::__libcpp_allocate(bytes, align);
48     if (!is_aligned_to(result, align)) {
49       std::__libcpp_deallocate(result, bytes, align);
50       __throw_bad_alloc();
51     }
52     return result;
53 #endif
54   }
55 
56   void do_deallocate(void* p, size_t bytes, size_t align) override { std::__libcpp_deallocate(p, bytes, align); }
57 
58   bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; }
59 };
60 
61 // null_memory_resource()
62 
63 class _LIBCPP_EXPORTED_FROM_ABI __null_memory_resource_imp : public memory_resource {
64   void* do_allocate(size_t, size_t) override { __throw_bad_alloc(); }
65   void do_deallocate(void*, size_t, size_t) override {}
66   bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; }
67 };
68 
69 namespace {
70 
71 union ResourceInitHelper {
72   struct {
73     __new_delete_memory_resource_imp new_delete_res;
74     __null_memory_resource_imp null_res;
75   } resources;
76   char dummy;
77   constexpr ResourceInitHelper() : resources() {}
78   ~ResourceInitHelper() {}
79 };
80 
81 // Pretend we're inside a system header so the compiler doesn't flag the use of the init_priority
82 // attribute with a value that's reserved for the implementation (we're the implementation).
83 #include "memory_resource_init_helper.h"
84 
85 } // end namespace
86 
87 memory_resource* new_delete_resource() noexcept { return &res_init.resources.new_delete_res; }
88 
89 memory_resource* null_memory_resource() noexcept { return &res_init.resources.null_res; }
90 
91 // default_memory_resource()
92 
93 static memory_resource* __default_memory_resource(bool set = false, memory_resource* new_res = nullptr) noexcept {
94 #ifndef _LIBCPP_HAS_NO_ATOMIC_HEADER
95   static constinit atomic<memory_resource*> __res{&res_init.resources.new_delete_res};
96   if (set) {
97     new_res = new_res ? new_res : new_delete_resource();
98     // TODO: Can a weaker ordering be used?
99     return std::atomic_exchange_explicit(&__res, new_res, memory_order_acq_rel);
100   } else {
101     return std::atomic_load_explicit(&__res, memory_order_acquire);
102   }
103 #elif !defined(_LIBCPP_HAS_NO_THREADS)
104   static constinit memory_resource* res = &res_init.resources.new_delete_res;
105   static mutex res_lock;
106   if (set) {
107     new_res = new_res ? new_res : new_delete_resource();
108     lock_guard<mutex> guard(res_lock);
109     memory_resource* old_res = res;
110     res                      = new_res;
111     return old_res;
112   } else {
113     lock_guard<mutex> guard(res_lock);
114     return res;
115   }
116 #else
117   static constinit memory_resource* res = &res_init.resources.new_delete_res;
118   if (set) {
119     new_res                  = new_res ? new_res : new_delete_resource();
120     memory_resource* old_res = res;
121     res                      = new_res;
122     return old_res;
123   } else {
124     return res;
125   }
126 #endif
127 }
128 
129 memory_resource* get_default_resource() noexcept { return __default_memory_resource(); }
130 
131 memory_resource* set_default_resource(memory_resource* __new_res) noexcept {
132   return __default_memory_resource(true, __new_res);
133 }
134 
135 // 23.12.5, mem.res.pool
136 
137 static size_t roundup(size_t count, size_t alignment) {
138   size_t mask = alignment - 1;
139   return (count + mask) & ~mask;
140 }
141 
142 struct unsynchronized_pool_resource::__adhoc_pool::__chunk_footer {
143   __chunk_footer* __next_;
144   char* __start_;
145   size_t __align_;
146   size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); }
147 };
148 
149 void unsynchronized_pool_resource::__adhoc_pool::__release_ptr(memory_resource* upstream) {
150   while (__first_ != nullptr) {
151     __chunk_footer* next = __first_->__next_;
152     upstream->deallocate(__first_->__start_, __first_->__allocation_size(), __first_->__align_);
153     __first_ = next;
154   }
155 }
156 
157 void* unsynchronized_pool_resource::__adhoc_pool::__do_allocate(memory_resource* upstream, size_t bytes, size_t align) {
158   const size_t footer_size  = sizeof(__chunk_footer);
159   const size_t footer_align = alignof(__chunk_footer);
160 
161   if (align < footer_align)
162     align = footer_align;
163 
164   size_t aligned_capacity = roundup(bytes, footer_align) + footer_size;
165 
166   void* result = upstream->allocate(aligned_capacity, align);
167 
168   __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size);
169   h->__next_        = __first_;
170   h->__start_       = (char*)result;
171   h->__align_       = align;
172   __first_          = h;
173   return result;
174 }
175 
176 void unsynchronized_pool_resource::__adhoc_pool::__do_deallocate(
177     memory_resource* upstream, void* p, size_t bytes, size_t align) {
178   _LIBCPP_ASSERT_NON_NULL(__first_ != nullptr, "deallocating a block that was not allocated with this allocator");
179   if (__first_->__start_ == p) {
180     __chunk_footer* next = __first_->__next_;
181     upstream->deallocate(p, __first_->__allocation_size(), __first_->__align_);
182     __first_ = next;
183   } else {
184     for (__chunk_footer* h = __first_; h->__next_ != nullptr; h = h->__next_) {
185       if (h->__next_->__start_ == p) {
186         __chunk_footer* next = h->__next_->__next_;
187         upstream->deallocate(p, h->__next_->__allocation_size(), h->__next_->__align_);
188         h->__next_ = next;
189         return;
190       }
191     }
192     _LIBCPP_ASSERT_UNCATEGORIZED(false, "deallocating a block that was not allocated with this allocator");
193   }
194 }
195 
196 class unsynchronized_pool_resource::__fixed_pool {
197   struct __chunk_footer {
198     __chunk_footer* __next_;
199     char* __start_;
200     size_t __align_;
201     size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); }
202   };
203 
204   struct __vacancy_header {
205     __vacancy_header* __next_vacancy_;
206   };
207 
208   __chunk_footer* __first_chunk_     = nullptr;
209   __vacancy_header* __first_vacancy_ = nullptr;
210 
211 public:
212   explicit __fixed_pool() = default;
213 
214   void __release_ptr(memory_resource* upstream) {
215     __first_vacancy_ = nullptr;
216     while (__first_chunk_ != nullptr) {
217       __chunk_footer* next = __first_chunk_->__next_;
218       upstream->deallocate(__first_chunk_->__start_, __first_chunk_->__allocation_size(), __first_chunk_->__align_);
219       __first_chunk_ = next;
220     }
221   }
222 
223   void* __try_allocate_from_vacancies() {
224     if (__first_vacancy_ != nullptr) {
225       void* result     = __first_vacancy_;
226       __first_vacancy_ = __first_vacancy_->__next_vacancy_;
227       return result;
228     }
229     return nullptr;
230   }
231 
232   void* __allocate_in_new_chunk(memory_resource* upstream, size_t block_size, size_t chunk_size) {
233     _LIBCPP_ASSERT_INTERNAL(chunk_size % block_size == 0, "");
234     static_assert(__default_alignment >= alignof(std::max_align_t), "");
235     static_assert(__default_alignment >= alignof(__chunk_footer), "");
236     static_assert(__default_alignment >= alignof(__vacancy_header), "");
237 
238     const size_t footer_size  = sizeof(__chunk_footer);
239     const size_t footer_align = alignof(__chunk_footer);
240 
241     size_t aligned_capacity = roundup(chunk_size, footer_align) + footer_size;
242 
243     void* result = upstream->allocate(aligned_capacity, __default_alignment);
244 
245     __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size);
246     h->__next_        = __first_chunk_;
247     h->__start_       = (char*)result;
248     h->__align_       = __default_alignment;
249     __first_chunk_    = h;
250 
251     if (chunk_size > block_size) {
252       __vacancy_header* last_vh = this->__first_vacancy_;
253       for (size_t i = block_size; i != chunk_size; i += block_size) {
254         __vacancy_header* vh = (__vacancy_header*)((char*)result + i);
255         vh->__next_vacancy_  = last_vh;
256         last_vh              = vh;
257       }
258       this->__first_vacancy_ = last_vh;
259     }
260     return result;
261   }
262 
263   void __evacuate(void* p) {
264     __vacancy_header* vh = (__vacancy_header*)(p);
265     vh->__next_vacancy_  = __first_vacancy_;
266     __first_vacancy_     = vh;
267   }
268 
269   size_t __previous_chunk_size_in_bytes() const { return __first_chunk_ ? __first_chunk_->__allocation_size() : 0; }
270 
271   static const size_t __default_alignment = alignof(max_align_t);
272 };
273 
274 size_t unsynchronized_pool_resource::__pool_block_size(int i) const { return size_t(1) << __log2_pool_block_size(i); }
275 
276 int unsynchronized_pool_resource::__log2_pool_block_size(int i) const { return (i + __log2_smallest_block_size); }
277 
278 int unsynchronized_pool_resource::__pool_index(size_t bytes, size_t align) const {
279   if (align > alignof(std::max_align_t) || bytes > (size_t(1) << __num_fixed_pools_))
280     return __num_fixed_pools_;
281   else {
282     int i = 0;
283     bytes = (bytes > align) ? bytes : align;
284     bytes -= 1;
285     bytes >>= __log2_smallest_block_size;
286     while (bytes != 0) {
287       bytes >>= 1;
288       i += 1;
289     }
290     return i;
291   }
292 }
293 
294 unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream)
295     : __res_(upstream), __fixed_pools_(nullptr) {
296   size_t largest_block_size;
297   if (opts.largest_required_pool_block == 0)
298     largest_block_size = __default_largest_block_size;
299   else if (opts.largest_required_pool_block < __smallest_block_size)
300     largest_block_size = __smallest_block_size;
301   else if (opts.largest_required_pool_block > __max_largest_block_size)
302     largest_block_size = __max_largest_block_size;
303   else
304     largest_block_size = opts.largest_required_pool_block;
305 
306   if (opts.max_blocks_per_chunk == 0)
307     __options_max_blocks_per_chunk_ = __max_blocks_per_chunk;
308   else if (opts.max_blocks_per_chunk < __min_blocks_per_chunk)
309     __options_max_blocks_per_chunk_ = __min_blocks_per_chunk;
310   else if (opts.max_blocks_per_chunk > __max_blocks_per_chunk)
311     __options_max_blocks_per_chunk_ = __max_blocks_per_chunk;
312   else
313     __options_max_blocks_per_chunk_ = opts.max_blocks_per_chunk;
314 
315   __num_fixed_pools_ = 1;
316   size_t capacity    = __smallest_block_size;
317   while (capacity < largest_block_size) {
318     capacity <<= 1;
319     __num_fixed_pools_ += 1;
320   }
321 }
322 
323 pool_options unsynchronized_pool_resource::options() const {
324   pool_options p;
325   p.max_blocks_per_chunk        = __options_max_blocks_per_chunk_;
326   p.largest_required_pool_block = __pool_block_size(__num_fixed_pools_ - 1);
327   return p;
328 }
329 
330 void unsynchronized_pool_resource::release() {
331   __adhoc_pool_.__release_ptr(__res_);
332   if (__fixed_pools_ != nullptr) {
333     const int n = __num_fixed_pools_;
334     for (int i = 0; i < n; ++i)
335       __fixed_pools_[i].__release_ptr(__res_);
336     __res_->deallocate(__fixed_pools_, __num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool));
337     __fixed_pools_ = nullptr;
338   }
339 }
340 
341 void* unsynchronized_pool_resource::do_allocate(size_t bytes, size_t align) {
342   // A pointer to allocated storage (6.6.4.4.1) with a size of at least bytes.
343   // The size and alignment of the allocated memory shall meet the requirements for
344   // a class derived from memory_resource (23.12).
345   // If the pool selected for a block of size bytes is unable to satisfy the memory request
346   // from its own internal data structures, it will call upstream_resource()->allocate()
347   // to obtain more memory. If bytes is larger than that which the largest pool can handle,
348   // then memory will be allocated using upstream_resource()->allocate().
349 
350   int i = __pool_index(bytes, align);
351   if (i == __num_fixed_pools_)
352     return __adhoc_pool_.__do_allocate(__res_, bytes, align);
353   else {
354     if (__fixed_pools_ == nullptr) {
355       __fixed_pools_ =
356           (__fixed_pool*)__res_->allocate(__num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool));
357       __fixed_pool* first = __fixed_pools_;
358       __fixed_pool* last  = __fixed_pools_ + __num_fixed_pools_;
359       for (__fixed_pool* pool = first; pool != last; ++pool)
360         ::new ((void*)pool) __fixed_pool;
361     }
362     void* result = __fixed_pools_[i].__try_allocate_from_vacancies();
363     if (result == nullptr) {
364       auto min = [](size_t a, size_t b) { return a < b ? a : b; };
365       auto max = [](size_t a, size_t b) { return a < b ? b : a; };
366 
367       size_t prev_chunk_size_in_bytes  = __fixed_pools_[i].__previous_chunk_size_in_bytes();
368       size_t prev_chunk_size_in_blocks = prev_chunk_size_in_bytes >> __log2_pool_block_size(i);
369 
370       size_t chunk_size_in_blocks;
371 
372       if (prev_chunk_size_in_blocks == 0) {
373         size_t min_blocks_per_chunk = max(__min_bytes_per_chunk >> __log2_pool_block_size(i), __min_blocks_per_chunk);
374         chunk_size_in_blocks        = min_blocks_per_chunk;
375       } else {
376         static_assert(__max_bytes_per_chunk <= SIZE_MAX - (__max_bytes_per_chunk / 4), "unsigned overflow is possible");
377         chunk_size_in_blocks = prev_chunk_size_in_blocks + (prev_chunk_size_in_blocks / 4);
378       }
379 
380       size_t max_blocks_per_chunk =
381           min((__max_bytes_per_chunk >> __log2_pool_block_size(i)),
382               min(__max_blocks_per_chunk, __options_max_blocks_per_chunk_));
383       if (chunk_size_in_blocks > max_blocks_per_chunk)
384         chunk_size_in_blocks = max_blocks_per_chunk;
385 
386       size_t block_size = __pool_block_size(i);
387 
388       size_t chunk_size_in_bytes = (chunk_size_in_blocks << __log2_pool_block_size(i));
389       result                     = __fixed_pools_[i].__allocate_in_new_chunk(__res_, block_size, chunk_size_in_bytes);
390     }
391     return result;
392   }
393 }
394 
395 void unsynchronized_pool_resource::do_deallocate(void* p, size_t bytes, size_t align) {
396   // Returns the memory at p to the pool. It is unspecified if,
397   // or under what circumstances, this operation will result in
398   // a call to upstream_resource()->deallocate().
399 
400   int i = __pool_index(bytes, align);
401   if (i == __num_fixed_pools_)
402     return __adhoc_pool_.__do_deallocate(__res_, p, bytes, align);
403   else {
404     _LIBCPP_ASSERT_NON_NULL(
405         __fixed_pools_ != nullptr, "deallocating a block that was not allocated with this allocator");
406     __fixed_pools_[i].__evacuate(p);
407   }
408 }
409 
410 bool synchronized_pool_resource::do_is_equal(const memory_resource& other) const noexcept { return &other == this; }
411 
412 // 23.12.6, mem.res.monotonic.buffer
413 
414 static void* align_down(size_t align, size_t size, void*& ptr, size_t& space) {
415   if (size > space)
416     return nullptr;
417 
418   char* p1      = static_cast<char*>(ptr);
419   char* new_ptr = reinterpret_cast<char*>(reinterpret_cast<uintptr_t>(p1 - size) & ~(align - 1));
420 
421   if (new_ptr < (p1 - space))
422     return nullptr;
423 
424   ptr = new_ptr;
425   space -= p1 - new_ptr;
426 
427   return ptr;
428 }
429 
430 void* monotonic_buffer_resource::__initial_descriptor::__try_allocate_from_chunk(size_t bytes, size_t align) {
431   if (!__cur_)
432     return nullptr;
433   void* new_ptr       = static_cast<void*>(__cur_);
434   size_t new_capacity = (__cur_ - __start_);
435   void* aligned_ptr   = align_down(align, bytes, new_ptr, new_capacity);
436   if (aligned_ptr != nullptr)
437     __cur_ = static_cast<char*>(new_ptr);
438   return aligned_ptr;
439 }
440 
441 void* monotonic_buffer_resource::__chunk_footer::__try_allocate_from_chunk(size_t bytes, size_t align) {
442   void* new_ptr       = static_cast<void*>(__cur_);
443   size_t new_capacity = (__cur_ - __start_);
444   void* aligned_ptr   = align_down(align, bytes, new_ptr, new_capacity);
445   if (aligned_ptr != nullptr)
446     __cur_ = static_cast<char*>(new_ptr);
447   return aligned_ptr;
448 }
449 
450 void* monotonic_buffer_resource::do_allocate(size_t bytes, size_t align) {
451   const size_t footer_size  = sizeof(__chunk_footer);
452   const size_t footer_align = alignof(__chunk_footer);
453 
454   auto previous_allocation_size = [&]() {
455     if (__chunks_ != nullptr)
456       return __chunks_->__allocation_size();
457 
458     size_t newsize = (__initial_.__start_ != nullptr) ? (__initial_.__end_ - __initial_.__start_) : __initial_.__size_;
459 
460     return roundup(newsize, footer_align) + footer_size;
461   };
462 
463   if (void* result = __initial_.__try_allocate_from_chunk(bytes, align))
464     return result;
465   if (__chunks_ != nullptr) {
466     if (void* result = __chunks_->__try_allocate_from_chunk(bytes, align))
467       return result;
468   }
469 
470   // Allocate a brand-new chunk.
471 
472   if (align < footer_align)
473     align = footer_align;
474 
475   size_t aligned_capacity  = roundup(bytes, footer_align) + footer_size;
476   size_t previous_capacity = previous_allocation_size();
477 
478   if (aligned_capacity <= previous_capacity) {
479     size_t newsize   = 2 * (previous_capacity - footer_size);
480     aligned_capacity = roundup(newsize, footer_align) + footer_size;
481   }
482 
483   char* start            = (char*)__res_->allocate(aligned_capacity, align);
484   auto end               = start + aligned_capacity - footer_size;
485   __chunk_footer* footer = (__chunk_footer*)(end);
486   footer->__next_        = __chunks_;
487   footer->__start_       = start;
488   footer->__cur_         = end;
489   footer->__align_       = align;
490   __chunks_              = footer;
491 
492   return __chunks_->__try_allocate_from_chunk(bytes, align);
493 }
494 
495 } // namespace pmr
496 
497 _LIBCPP_END_NAMESPACE_STD
498