xref: /freebsd/contrib/llvm-project/libcxx/src/hash.cpp (revision 96190b4fef3b4a0cc3ca0606b0c4e3e69a5e6717)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <__hash_table>
10 #include <algorithm>
11 #include <stdexcept>
12 #include <type_traits>
13 
14 _LIBCPP_CLANG_DIAGNOSTIC_IGNORED("-Wtautological-constant-out-of-range-compare")
15 
16 _LIBCPP_BEGIN_NAMESPACE_STD
17 
18 namespace {
19 
20 // handle all next_prime(i) for i in [1, 210), special case 0
21 const unsigned small_primes[] = {
22     0,   2,   3,   5,   7,   11,  13,  17,  19,  23,  29,  31,  37,  41,  43,  47,
23     53,  59,  61,  67,  71,  73,  79,  83,  89,  97,  101, 103, 107, 109, 113, 127,
24     131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211};
25 
26 // potential primes = 210*k + indices[i], k >= 1
27 //   these numbers are not divisible by 2, 3, 5 or 7
28 //   (or any integer 2 <= j <= 10 for that matter).
29 const unsigned indices[] = {
30     1,   11,  13,  17,  19,  23,  29,  31,  37,  41,  43,  47,  53,  59,  61,  67,
31     71,  73,  79,  83,  89,  97,  101, 103, 107, 109, 113, 121, 127, 131, 137, 139,
32     143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209};
33 
34 } // namespace
35 
36 // Returns:  If n == 0, returns 0.  Else returns the lowest prime number that
37 // is greater than or equal to n.
38 //
39 // The algorithm creates a list of small primes, plus an open-ended list of
40 // potential primes.  All prime numbers are potential prime numbers.  However
41 // some potential prime numbers are not prime.  In an ideal world, all potential
42 // prime numbers would be prime.  Candidate prime numbers are chosen as the next
43 // highest potential prime.  Then this number is tested for prime by dividing it
44 // by all potential prime numbers less than the sqrt of the candidate.
45 //
46 // This implementation defines potential primes as those numbers not divisible
47 // by 2, 3, 5, and 7.  Other (common) implementations define potential primes
48 // as those not divisible by 2.  A few other implementations define potential
49 // primes as those not divisible by 2 or 3.  By raising the number of small
50 // primes which the potential prime is not divisible by, the set of potential
51 // primes more closely approximates the set of prime numbers.  And thus there
52 // are fewer potential primes to search, and fewer potential primes to divide
53 // against.
54 
55 template <size_t _Sz = sizeof(size_t)>
56 inline _LIBCPP_HIDE_FROM_ABI typename enable_if<_Sz == 4, void>::type __check_for_overflow(size_t N) {
57   if (N > 0xFFFFFFFB)
58     __throw_overflow_error("__next_prime overflow");
59 }
60 
61 template <size_t _Sz = sizeof(size_t)>
62 inline _LIBCPP_HIDE_FROM_ABI typename enable_if<_Sz == 8, void>::type __check_for_overflow(size_t N) {
63   if (N > 0xFFFFFFFFFFFFFFC5ull)
64     __throw_overflow_error("__next_prime overflow");
65 }
66 
67 size_t __next_prime(size_t n) {
68   const size_t L = 210;
69   const size_t N = sizeof(small_primes) / sizeof(small_primes[0]);
70   // If n is small enough, search in small_primes
71   if (n <= small_primes[N - 1])
72     return *std::lower_bound(small_primes, small_primes + N, n);
73   // Else n > largest small_primes
74   // Check for overflow
75   __check_for_overflow(n);
76   // Start searching list of potential primes: L * k0 + indices[in]
77   const size_t M = sizeof(indices) / sizeof(indices[0]);
78   // Select first potential prime >= n
79   //   Known a-priori n >= L
80   size_t k0 = n / L;
81   size_t in = static_cast<size_t>(std::lower_bound(indices, indices + M, n - k0 * L) - indices);
82   n         = L * k0 + indices[in];
83   while (true) {
84     // Divide n by all primes or potential primes (i) until:
85     //    1.  The division is even, so try next potential prime.
86     //    2.  The i > sqrt(n), in which case n is prime.
87     // It is known a-priori that n is not divisible by 2, 3, 5 or 7,
88     //    so don't test those (j == 5 ->  divide by 11 first).  And the
89     //    potential primes start with 211, so don't test against the last
90     //    small prime.
91     for (size_t j = 5; j < N - 1; ++j) {
92       const std::size_t p = small_primes[j];
93       const std::size_t q = n / p;
94       if (q < p)
95         return n;
96       if (n == q * p)
97         goto next;
98     }
99     // n wasn't divisible by small primes, try potential primes
100     {
101       size_t i = 211;
102       while (true) {
103         std::size_t q = n / i;
104         if (q < i)
105           return n;
106         if (n == q * i)
107           break;
108 
109         i += 10;
110         q = n / i;
111         if (q < i)
112           return n;
113         if (n == q * i)
114           break;
115 
116         i += 2;
117         q = n / i;
118         if (q < i)
119           return n;
120         if (n == q * i)
121           break;
122 
123         i += 4;
124         q = n / i;
125         if (q < i)
126           return n;
127         if (n == q * i)
128           break;
129 
130         i += 2;
131         q = n / i;
132         if (q < i)
133           return n;
134         if (n == q * i)
135           break;
136 
137         i += 4;
138         q = n / i;
139         if (q < i)
140           return n;
141         if (n == q * i)
142           break;
143 
144         i += 6;
145         q = n / i;
146         if (q < i)
147           return n;
148         if (n == q * i)
149           break;
150 
151         i += 2;
152         q = n / i;
153         if (q < i)
154           return n;
155         if (n == q * i)
156           break;
157 
158         i += 6;
159         q = n / i;
160         if (q < i)
161           return n;
162         if (n == q * i)
163           break;
164 
165         i += 4;
166         q = n / i;
167         if (q < i)
168           return n;
169         if (n == q * i)
170           break;
171 
172         i += 2;
173         q = n / i;
174         if (q < i)
175           return n;
176         if (n == q * i)
177           break;
178 
179         i += 4;
180         q = n / i;
181         if (q < i)
182           return n;
183         if (n == q * i)
184           break;
185 
186         i += 6;
187         q = n / i;
188         if (q < i)
189           return n;
190         if (n == q * i)
191           break;
192 
193         i += 6;
194         q = n / i;
195         if (q < i)
196           return n;
197         if (n == q * i)
198           break;
199 
200         i += 2;
201         q = n / i;
202         if (q < i)
203           return n;
204         if (n == q * i)
205           break;
206 
207         i += 6;
208         q = n / i;
209         if (q < i)
210           return n;
211         if (n == q * i)
212           break;
213 
214         i += 4;
215         q = n / i;
216         if (q < i)
217           return n;
218         if (n == q * i)
219           break;
220 
221         i += 2;
222         q = n / i;
223         if (q < i)
224           return n;
225         if (n == q * i)
226           break;
227 
228         i += 6;
229         q = n / i;
230         if (q < i)
231           return n;
232         if (n == q * i)
233           break;
234 
235         i += 4;
236         q = n / i;
237         if (q < i)
238           return n;
239         if (n == q * i)
240           break;
241 
242         i += 6;
243         q = n / i;
244         if (q < i)
245           return n;
246         if (n == q * i)
247           break;
248 
249         i += 8;
250         q = n / i;
251         if (q < i)
252           return n;
253         if (n == q * i)
254           break;
255 
256         i += 4;
257         q = n / i;
258         if (q < i)
259           return n;
260         if (n == q * i)
261           break;
262 
263         i += 2;
264         q = n / i;
265         if (q < i)
266           return n;
267         if (n == q * i)
268           break;
269 
270         i += 4;
271         q = n / i;
272         if (q < i)
273           return n;
274         if (n == q * i)
275           break;
276 
277         i += 2;
278         q = n / i;
279         if (q < i)
280           return n;
281         if (n == q * i)
282           break;
283 
284         i += 4;
285         q = n / i;
286         if (q < i)
287           return n;
288         if (n == q * i)
289           break;
290 
291         i += 8;
292         q = n / i;
293         if (q < i)
294           return n;
295         if (n == q * i)
296           break;
297 
298         i += 6;
299         q = n / i;
300         if (q < i)
301           return n;
302         if (n == q * i)
303           break;
304 
305         i += 4;
306         q = n / i;
307         if (q < i)
308           return n;
309         if (n == q * i)
310           break;
311 
312         i += 6;
313         q = n / i;
314         if (q < i)
315           return n;
316         if (n == q * i)
317           break;
318 
319         i += 2;
320         q = n / i;
321         if (q < i)
322           return n;
323         if (n == q * i)
324           break;
325 
326         i += 4;
327         q = n / i;
328         if (q < i)
329           return n;
330         if (n == q * i)
331           break;
332 
333         i += 6;
334         q = n / i;
335         if (q < i)
336           return n;
337         if (n == q * i)
338           break;
339 
340         i += 2;
341         q = n / i;
342         if (q < i)
343           return n;
344         if (n == q * i)
345           break;
346 
347         i += 6;
348         q = n / i;
349         if (q < i)
350           return n;
351         if (n == q * i)
352           break;
353 
354         i += 6;
355         q = n / i;
356         if (q < i)
357           return n;
358         if (n == q * i)
359           break;
360 
361         i += 4;
362         q = n / i;
363         if (q < i)
364           return n;
365         if (n == q * i)
366           break;
367 
368         i += 2;
369         q = n / i;
370         if (q < i)
371           return n;
372         if (n == q * i)
373           break;
374 
375         i += 4;
376         q = n / i;
377         if (q < i)
378           return n;
379         if (n == q * i)
380           break;
381 
382         i += 6;
383         q = n / i;
384         if (q < i)
385           return n;
386         if (n == q * i)
387           break;
388 
389         i += 2;
390         q = n / i;
391         if (q < i)
392           return n;
393         if (n == q * i)
394           break;
395 
396         i += 6;
397         q = n / i;
398         if (q < i)
399           return n;
400         if (n == q * i)
401           break;
402 
403         i += 4;
404         q = n / i;
405         if (q < i)
406           return n;
407         if (n == q * i)
408           break;
409 
410         i += 2;
411         q = n / i;
412         if (q < i)
413           return n;
414         if (n == q * i)
415           break;
416 
417         i += 4;
418         q = n / i;
419         if (q < i)
420           return n;
421         if (n == q * i)
422           break;
423 
424         i += 2;
425         q = n / i;
426         if (q < i)
427           return n;
428         if (n == q * i)
429           break;
430 
431         i += 10;
432         q = n / i;
433         if (q < i)
434           return n;
435         if (n == q * i)
436           break;
437 
438         // This will loop i to the next "plane" of potential primes
439         i += 2;
440       }
441     }
442   next:
443     // n is not prime.  Increment n to next potential prime.
444     if (++in == M) {
445       ++k0;
446       in = 0;
447     }
448     n = L * k0 + indices[in];
449   }
450 }
451 
452 _LIBCPP_END_NAMESPACE_STD
453