xref: /freebsd/contrib/llvm-project/libcxx/src/hash.cpp (revision 5f757f3ff9144b609b3c433dfd370cc6bdc191ad)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <__hash_table>
10 #include <algorithm>
11 #include <stdexcept>
12 #include <type_traits>
13 
14 _LIBCPP_CLANG_DIAGNOSTIC_IGNORED("-Wtautological-constant-out-of-range-compare")
15 
16 _LIBCPP_BEGIN_NAMESPACE_STD
17 
18 namespace {
19 
20 // handle all next_prime(i) for i in [1, 210), special case 0
21 const unsigned small_primes[] =
22 {
23     0,
24     2,
25     3,
26     5,
27     7,
28     11,
29     13,
30     17,
31     19,
32     23,
33     29,
34     31,
35     37,
36     41,
37     43,
38     47,
39     53,
40     59,
41     61,
42     67,
43     71,
44     73,
45     79,
46     83,
47     89,
48     97,
49     101,
50     103,
51     107,
52     109,
53     113,
54     127,
55     131,
56     137,
57     139,
58     149,
59     151,
60     157,
61     163,
62     167,
63     173,
64     179,
65     181,
66     191,
67     193,
68     197,
69     199,
70     211
71 };
72 
73 // potential primes = 210*k + indices[i], k >= 1
74 //   these numbers are not divisible by 2, 3, 5 or 7
75 //   (or any integer 2 <= j <= 10 for that matter).
76 const unsigned indices[] =
77 {
78     1,
79     11,
80     13,
81     17,
82     19,
83     23,
84     29,
85     31,
86     37,
87     41,
88     43,
89     47,
90     53,
91     59,
92     61,
93     67,
94     71,
95     73,
96     79,
97     83,
98     89,
99     97,
100     101,
101     103,
102     107,
103     109,
104     113,
105     121,
106     127,
107     131,
108     137,
109     139,
110     143,
111     149,
112     151,
113     157,
114     163,
115     167,
116     169,
117     173,
118     179,
119     181,
120     187,
121     191,
122     193,
123     197,
124     199,
125     209
126 };
127 
128 }
129 
130 // Returns:  If n == 0, returns 0.  Else returns the lowest prime number that
131 // is greater than or equal to n.
132 //
133 // The algorithm creates a list of small primes, plus an open-ended list of
134 // potential primes.  All prime numbers are potential prime numbers.  However
135 // some potential prime numbers are not prime.  In an ideal world, all potential
136 // prime numbers would be prime.  Candidate prime numbers are chosen as the next
137 // highest potential prime.  Then this number is tested for prime by dividing it
138 // by all potential prime numbers less than the sqrt of the candidate.
139 //
140 // This implementation defines potential primes as those numbers not divisible
141 // by 2, 3, 5, and 7.  Other (common) implementations define potential primes
142 // as those not divisible by 2.  A few other implementations define potential
143 // primes as those not divisible by 2 or 3.  By raising the number of small
144 // primes which the potential prime is not divisible by, the set of potential
145 // primes more closely approximates the set of prime numbers.  And thus there
146 // are fewer potential primes to search, and fewer potential primes to divide
147 // against.
148 
149 template <size_t _Sz = sizeof(size_t)>
150 inline _LIBCPP_HIDE_FROM_ABI
151 typename enable_if<_Sz == 4, void>::type
152 __check_for_overflow(size_t N)
153 {
154     if (N > 0xFFFFFFFB)
155         __throw_overflow_error("__next_prime overflow");
156 }
157 
158 template <size_t _Sz = sizeof(size_t)>
159 inline _LIBCPP_HIDE_FROM_ABI
160 typename enable_if<_Sz == 8, void>::type
161 __check_for_overflow(size_t N)
162 {
163     if (N > 0xFFFFFFFFFFFFFFC5ull)
164         __throw_overflow_error("__next_prime overflow");
165 }
166 
167 size_t
168 __next_prime(size_t n)
169 {
170     const size_t L = 210;
171     const size_t N = sizeof(small_primes) / sizeof(small_primes[0]);
172     // If n is small enough, search in small_primes
173     if (n <= small_primes[N-1])
174         return *std::lower_bound(small_primes, small_primes + N, n);
175     // Else n > largest small_primes
176     // Check for overflow
177     __check_for_overflow(n);
178     // Start searching list of potential primes: L * k0 + indices[in]
179     const size_t M = sizeof(indices) / sizeof(indices[0]);
180     // Select first potential prime >= n
181     //   Known a-priori n >= L
182     size_t k0 = n / L;
183     size_t in = static_cast<size_t>(std::lower_bound(indices, indices + M, n - k0 * L)
184                                     - indices);
185     n = L * k0 + indices[in];
186     while (true)
187     {
188         // Divide n by all primes or potential primes (i) until:
189         //    1.  The division is even, so try next potential prime.
190         //    2.  The i > sqrt(n), in which case n is prime.
191         // It is known a-priori that n is not divisible by 2, 3, 5 or 7,
192         //    so don't test those (j == 5 ->  divide by 11 first).  And the
193         //    potential primes start with 211, so don't test against the last
194         //    small prime.
195         for (size_t j = 5; j < N - 1; ++j)
196         {
197             const std::size_t p = small_primes[j];
198             const std::size_t q = n / p;
199             if (q < p)
200                 return n;
201             if (n == q * p)
202                 goto next;
203         }
204         // n wasn't divisible by small primes, try potential primes
205         {
206             size_t i = 211;
207             while (true)
208             {
209                 std::size_t q = n / i;
210                 if (q < i)
211                     return n;
212                 if (n == q * i)
213                     break;
214 
215                 i += 10;
216                 q = n / i;
217                 if (q < i)
218                     return n;
219                 if (n == q * i)
220                     break;
221 
222                 i += 2;
223                 q = n / i;
224                 if (q < i)
225                     return n;
226                 if (n == q * i)
227                     break;
228 
229                 i += 4;
230                 q = n / i;
231                 if (q < i)
232                     return n;
233                 if (n == q * i)
234                     break;
235 
236                 i += 2;
237                 q = n / i;
238                 if (q < i)
239                     return n;
240                 if (n == q * i)
241                     break;
242 
243                 i += 4;
244                 q = n / i;
245                 if (q < i)
246                     return n;
247                 if (n == q * i)
248                     break;
249 
250                 i += 6;
251                 q = n / i;
252                 if (q < i)
253                     return n;
254                 if (n == q * i)
255                     break;
256 
257                 i += 2;
258                 q = n / i;
259                 if (q < i)
260                     return n;
261                 if (n == q * i)
262                     break;
263 
264                 i += 6;
265                 q = n / i;
266                 if (q < i)
267                     return n;
268                 if (n == q * i)
269                     break;
270 
271                 i += 4;
272                 q = n / i;
273                 if (q < i)
274                     return n;
275                 if (n == q * i)
276                     break;
277 
278                 i += 2;
279                 q = n / i;
280                 if (q < i)
281                     return n;
282                 if (n == q * i)
283                     break;
284 
285                 i += 4;
286                 q = n / i;
287                 if (q < i)
288                     return n;
289                 if (n == q * i)
290                     break;
291 
292                 i += 6;
293                 q = n / i;
294                 if (q < i)
295                     return n;
296                 if (n == q * i)
297                     break;
298 
299                 i += 6;
300                 q = n / i;
301                 if (q < i)
302                     return n;
303                 if (n == q * i)
304                     break;
305 
306                 i += 2;
307                 q = n / i;
308                 if (q < i)
309                     return n;
310                 if (n == q * i)
311                     break;
312 
313                 i += 6;
314                 q = n / i;
315                 if (q < i)
316                     return n;
317                 if (n == q * i)
318                     break;
319 
320                 i += 4;
321                 q = n / i;
322                 if (q < i)
323                     return n;
324                 if (n == q * i)
325                     break;
326 
327                 i += 2;
328                 q = n / i;
329                 if (q < i)
330                     return n;
331                 if (n == q * i)
332                     break;
333 
334                 i += 6;
335                 q = n / i;
336                 if (q < i)
337                     return n;
338                 if (n == q * i)
339                     break;
340 
341                 i += 4;
342                 q = n / i;
343                 if (q < i)
344                     return n;
345                 if (n == q * i)
346                     break;
347 
348                 i += 6;
349                 q = n / i;
350                 if (q < i)
351                     return n;
352                 if (n == q * i)
353                     break;
354 
355                 i += 8;
356                 q = n / i;
357                 if (q < i)
358                     return n;
359                 if (n == q * i)
360                     break;
361 
362                 i += 4;
363                 q = n / i;
364                 if (q < i)
365                     return n;
366                 if (n == q * i)
367                     break;
368 
369                 i += 2;
370                 q = n / i;
371                 if (q < i)
372                     return n;
373                 if (n == q * i)
374                     break;
375 
376                 i += 4;
377                 q = n / i;
378                 if (q < i)
379                     return n;
380                 if (n == q * i)
381                     break;
382 
383                 i += 2;
384                 q = n / i;
385                 if (q < i)
386                     return n;
387                 if (n == q * i)
388                     break;
389 
390                 i += 4;
391                 q = n / i;
392                 if (q < i)
393                     return n;
394                 if (n == q * i)
395                     break;
396 
397                 i += 8;
398                 q = n / i;
399                 if (q < i)
400                     return n;
401                 if (n == q * i)
402                     break;
403 
404                 i += 6;
405                 q = n / i;
406                 if (q < i)
407                     return n;
408                 if (n == q * i)
409                     break;
410 
411                 i += 4;
412                 q = n / i;
413                 if (q < i)
414                     return n;
415                 if (n == q * i)
416                     break;
417 
418                 i += 6;
419                 q = n / i;
420                 if (q < i)
421                     return n;
422                 if (n == q * i)
423                     break;
424 
425                 i += 2;
426                 q = n / i;
427                 if (q < i)
428                     return n;
429                 if (n == q * i)
430                     break;
431 
432                 i += 4;
433                 q = n / i;
434                 if (q < i)
435                     return n;
436                 if (n == q * i)
437                     break;
438 
439                 i += 6;
440                 q = n / i;
441                 if (q < i)
442                     return n;
443                 if (n == q * i)
444                     break;
445 
446                 i += 2;
447                 q = n / i;
448                 if (q < i)
449                     return n;
450                 if (n == q * i)
451                     break;
452 
453                 i += 6;
454                 q = n / i;
455                 if (q < i)
456                     return n;
457                 if (n == q * i)
458                     break;
459 
460                 i += 6;
461                 q = n / i;
462                 if (q < i)
463                     return n;
464                 if (n == q * i)
465                     break;
466 
467                 i += 4;
468                 q = n / i;
469                 if (q < i)
470                     return n;
471                 if (n == q * i)
472                     break;
473 
474                 i += 2;
475                 q = n / i;
476                 if (q < i)
477                     return n;
478                 if (n == q * i)
479                     break;
480 
481                 i += 4;
482                 q = n / i;
483                 if (q < i)
484                     return n;
485                 if (n == q * i)
486                     break;
487 
488                 i += 6;
489                 q = n / i;
490                 if (q < i)
491                     return n;
492                 if (n == q * i)
493                     break;
494 
495                 i += 2;
496                 q = n / i;
497                 if (q < i)
498                     return n;
499                 if (n == q * i)
500                     break;
501 
502                 i += 6;
503                 q = n / i;
504                 if (q < i)
505                     return n;
506                 if (n == q * i)
507                     break;
508 
509                 i += 4;
510                 q = n / i;
511                 if (q < i)
512                     return n;
513                 if (n == q * i)
514                     break;
515 
516                 i += 2;
517                 q = n / i;
518                 if (q < i)
519                     return n;
520                 if (n == q * i)
521                     break;
522 
523                 i += 4;
524                 q = n / i;
525                 if (q < i)
526                     return n;
527                 if (n == q * i)
528                     break;
529 
530                 i += 2;
531                 q = n / i;
532                 if (q < i)
533                     return n;
534                 if (n == q * i)
535                     break;
536 
537                 i += 10;
538                 q = n / i;
539                 if (q < i)
540                     return n;
541                 if (n == q * i)
542                     break;
543 
544                 // This will loop i to the next "plane" of potential primes
545                 i += 2;
546             }
547         }
548 next:
549         // n is not prime.  Increment n to next potential prime.
550         if (++in == M)
551         {
552             ++k0;
553             in = 0;
554         }
555         n = L * k0 + indices[in];
556     }
557 }
558 
559 _LIBCPP_END_NAMESPACE_STD
560