xref: /freebsd/contrib/llvm-project/libcxx/src/experimental/time_zone.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 // For information see https://libcxx.llvm.org/DesignDocs/TimeZone.html
10 
11 // TODO TZDB look at optimizations
12 //
13 // The current algorithm is correct but not efficient. For example, in a named
14 // rule based continuation finding the next rule does quite a bit of work,
15 // returns the next rule and "forgets" its state. This could be better.
16 //
17 // It would be possible to cache lookups. If a time for a zone is calculated its
18 // sys_info could be kept and the next lookup could test whether the time is in
19 // a "known" sys_info. The wording in the Standard hints at this slowness by
20 // "suggesting" this could be implemented on the user's side.
21 
22 // TODO TZDB look at removing quirks
23 //
24 // The code has some special rules to adjust the timing at the continuation
25 // switches. This works correctly, but some of the places feel odd. It would be
26 // good to investigate this further and see whether all quirks are needed or
27 // that there are better fixes.
28 //
29 // These quirks often use a 12h interval; this is the scan interval of zdump,
30 // which implies there are no sys_info objects with a duration of less than 12h.
31 
32 #include <algorithm>
33 #include <cctype>
34 #include <chrono>
35 #include <expected>
36 #include <map>
37 #include <numeric>
38 #include <ranges>
39 
40 #include "include/tzdb/time_zone_private.h"
41 #include "include/tzdb/tzdb_list_private.h"
42 
43 // TODO TZDB remove debug printing
44 #ifdef PRINT
45 #  include <print>
46 #endif
47 
48 _LIBCPP_BEGIN_NAMESPACE_STD
49 
50 #ifdef PRINT
51 template <>
52 struct formatter<chrono::sys_info, char> {
53   template <class ParseContext>
54   constexpr typename ParseContext::iterator parse(ParseContext& ctx) {
55     return ctx.begin();
56   }
57 
58   template <class FormatContext>
59   typename FormatContext::iterator format(const chrono::sys_info& info, FormatContext& ctx) const {
60     return std::format_to(
61         ctx.out(), "[{}, {}) {:%Q%q} {:%Q%q} {}", info.begin, info.end, info.offset, info.save, info.abbrev);
62   }
63 };
64 #endif
65 
66 namespace chrono {
67 
68 //===----------------------------------------------------------------------===//
69 //                           Details
70 //===----------------------------------------------------------------------===//
71 
72 struct __sys_info {
73   sys_info __info;
74   bool __can_merge; // Can the returned sys_info object be merged with
75 };
76 
77 // Return type for helper function to get a sys_info.
78 // - The expected result returns the "best" sys_info object. This object can be
79 //   before the requested time. Sometimes sys_info objects from different
80 //   continuations share their offset, save, and abbrev and these objects are
81 //   merged to one sys_info object. The __can_merge flag determines whether the
82 //   current result can be merged with the next result.
83 // - The unexpected result means no sys_info object was found and the time is
84 //   the time to be used for the next search iteration.
85 using __sys_info_result = expected<__sys_info, sys_seconds>;
86 
87 template <ranges::forward_range _Range,
88           class _Type,
89           class _Proj                                                                                  = identity,
90           indirect_strict_weak_order<const _Type*, projected<ranges::iterator_t<_Range>, _Proj>> _Comp = ranges::less>
91 [[nodiscard]] static ranges::borrowed_iterator_t<_Range>
92 __binary_find(_Range&& __r, const _Type& __value, _Comp __comp = {}, _Proj __proj = {}) {
93   auto __end = ranges::end(__r);
94   auto __ret = ranges::lower_bound(ranges::begin(__r), __end, __value, __comp, __proj);
95   if (__ret == __end)
96     return __end;
97 
98   // When the value does not match the predicate it's equal and a valid result
99   // was found.
100   return !std::invoke(__comp, __value, std::invoke(__proj, *__ret)) ? __ret : __end;
101 }
102 
103 // Format based on https://data.iana.org/time-zones/tz-how-to.html
104 //
105 // 1  a time zone abbreviation that is a string of three or more characters that
106 //    are either ASCII alphanumerics, "+", or "-"
107 // 2  the string "%z", in which case the "%z" will be replaced by a numeric time
108 //    zone abbreviation
109 // 3  a pair of time zone abbreviations separated by a slash ('/'), in which
110 //    case the first string is the abbreviation for the standard time name and
111 //    the second string is the abbreviation for the daylight saving time name
112 // 4  a string containing "%s", in which case the "%s" will be replaced by the
113 //    text in the appropriate Rule's LETTER column, and the resulting string
114 //    should be a time zone abbreviation
115 //
116 // Rule 1 is not strictly validated since America/Barbados uses a two letter
117 // abbreviation AT.
118 [[nodiscard]] static string
119 __format(const __tz::__continuation& __continuation, const string& __letters, seconds __save) {
120   bool __shift = false;
121   string __result;
122   for (char __c : __continuation.__format) {
123     if (__shift) {
124       switch (__c) {
125       case 's':
126         std::ranges::copy(__letters, std::back_inserter(__result));
127         break;
128 
129       case 'z': {
130         if (__continuation.__format.size() != 2)
131           std::__throw_runtime_error(
132               std::format("corrupt tzdb FORMAT field: %z should be the entire contents, instead contains '{}'",
133                           __continuation.__format)
134                   .c_str());
135         chrono::hh_mm_ss __offset{__continuation.__stdoff + __save};
136         if (__offset.is_negative()) {
137           __result += '-';
138           __offset = chrono::hh_mm_ss{-(__continuation.__stdoff + __save)};
139         } else
140           __result += '+';
141 
142         if (__offset.minutes() != 0min)
143           std::format_to(std::back_inserter(__result), "{:%H%M}", __offset);
144         else
145           std::format_to(std::back_inserter(__result), "{:%H}", __offset);
146       } break;
147 
148       default:
149         std::__throw_runtime_error(
150             std::format("corrupt tzdb FORMAT field: invalid sequence '%{}' found, expected %s or %z", __c).c_str());
151       }
152       __shift = false;
153 
154     } else if (__c == '/') {
155       if (__save != 0s)
156         __result.clear();
157       else
158         break;
159 
160     } else if (__c == '%') {
161       __shift = true;
162     } else if (__c == '+' || __c == '-' || std::isalnum(__c)) {
163       __result.push_back(__c);
164     } else {
165       std::__throw_runtime_error(
166           std::format(
167               "corrupt tzdb FORMAT field: invalid character '{}' found, expected +, -, or an alphanumeric value", __c)
168               .c_str());
169     }
170   }
171 
172   if (__shift)
173     std::__throw_runtime_error("corrupt tzdb FORMAT field: input ended with the start of the escape sequence '%'");
174 
175   if (__result.empty())
176     std::__throw_runtime_error("corrupt tzdb FORMAT field: result is empty");
177 
178   return __result;
179 }
180 
181 [[nodiscard]] static sys_seconds __to_sys_seconds(year_month_day __ymd, seconds __seconds) {
182   seconds __result = static_cast<sys_days>(__ymd).time_since_epoch() + __seconds;
183   return sys_seconds{__result};
184 }
185 
186 [[nodiscard]] static seconds __at_to_sys_seconds(const __tz::__continuation& __continuation) {
187   switch (__continuation.__at.__clock) {
188   case __tz::__clock::__local:
189     return __continuation.__at.__time - __continuation.__stdoff -
190            std::visit(
191                [](const auto& __value) {
192                  using _Tp = decay_t<decltype(__value)>;
193                  if constexpr (same_as<_Tp, monostate>)
194                    return chrono::seconds{0};
195                  else if constexpr (same_as<_Tp, __tz::__save>)
196                    return chrono::duration_cast<seconds>(__value.__time);
197                  else if constexpr (same_as<_Tp, std::string>)
198                    // For a named rule based continuation the SAVE depends on the RULE
199                    // active at the end. This should be determined separately.
200                    return chrono::seconds{0};
201                  else
202                    static_assert(sizeof(_Tp) == 0); // TODO TZDB static_assert(false); after droping clang-16 support
203 
204                  std::__libcpp_unreachable();
205                },
206                __continuation.__rules);
207 
208   case __tz::__clock::__universal:
209     return __continuation.__at.__time;
210 
211   case __tz::__clock::__standard:
212     return __continuation.__at.__time - __continuation.__stdoff;
213   }
214   std::__libcpp_unreachable();
215 }
216 
217 [[nodiscard]] static year_month_day __to_year_month_day(year __year, month __month, __tz::__on __on) {
218   return std::visit(
219       [&](const auto& __value) {
220         using _Tp = decay_t<decltype(__value)>;
221         if constexpr (same_as<_Tp, chrono::day>)
222           return year_month_day{__year, __month, __value};
223         else if constexpr (same_as<_Tp, weekday_last>)
224           return year_month_day{static_cast<sys_days>(year_month_weekday_last{__year, __month, __value})};
225         else if constexpr (same_as<_Tp, __tz::__constrained_weekday>)
226           return __value(__year, __month);
227         else
228           static_assert(sizeof(_Tp) == 0); // TODO TZDB static_assert(false); after droping clang-16 support
229 
230         std::__libcpp_unreachable();
231       },
232       __on);
233 }
234 
235 [[nodiscard]] static sys_seconds __until_to_sys_seconds(const __tz::__continuation& __continuation) {
236   // Does UNTIL contain the magic value for the last continuation?
237   if (__continuation.__year == chrono::year::min())
238     return sys_seconds::max();
239 
240   year_month_day __ymd = chrono::__to_year_month_day(__continuation.__year, __continuation.__in, __continuation.__on);
241   return chrono::__to_sys_seconds(__ymd, chrono::__at_to_sys_seconds(__continuation));
242 }
243 
244 // Holds the UNTIL time for a continuation with a named rule.
245 //
246 // Unlike continuations with an fixed SAVE named rules have a variable SAVE.
247 // This means when the UNTIL uses the local wall time the actual UNTIL value can
248 // only be determined when the SAVE is known. This class holds that abstraction.
249 class __named_rule_until {
250 public:
251   explicit __named_rule_until(const __tz::__continuation& __continuation)
252       : __until_{chrono::__until_to_sys_seconds(__continuation)},
253         __needs_adjustment_{
254             // The last continuation of a ZONE has no UNTIL which basically is
255             // until the end of _local_ time. This value is expressed by
256             // sys_seconds::max(). Subtracting the SAVE leaves large value.
257             // However SAVE can be negative, which would add a value to maximum
258             // leading to undefined behaviour. In practice this often results in
259             // an overflow to a very small value.
260             __until_ != sys_seconds::max() && __continuation.__at.__clock == __tz::__clock::__local} {}
261 
262   // Gives the unadjusted until value, this is useful when the SAVE is not known
263   // at all.
264   sys_seconds __until() const noexcept { return __until_; }
265 
266   bool __needs_adjustment() const noexcept { return __needs_adjustment_; }
267 
268   // Returns the UNTIL adjusted for SAVE.
269   sys_seconds operator()(seconds __save) const noexcept { return __until_ - __needs_adjustment_ * __save; }
270 
271 private:
272   sys_seconds __until_;
273   bool __needs_adjustment_;
274 };
275 
276 [[nodiscard]] static seconds __at_to_seconds(seconds __stdoff, const __tz::__rule& __rule) {
277   switch (__rule.__at.__clock) {
278   case __tz::__clock::__local:
279     // Local time and standard time behave the same. This is not
280     // correct. Local time needs to adjust for the current saved time.
281     // To know the saved time the rules need to be known and sorted.
282     // This needs a time so to avoid the chicken and egg adjust the
283     // saving of the local time later.
284     return __rule.__at.__time - __stdoff;
285 
286   case __tz::__clock::__universal:
287     return __rule.__at.__time;
288 
289   case __tz::__clock::__standard:
290     return __rule.__at.__time - __stdoff;
291   }
292   std::__libcpp_unreachable();
293 }
294 
295 [[nodiscard]] static sys_seconds __from_to_sys_seconds(seconds __stdoff, const __tz::__rule& __rule, year __year) {
296   year_month_day __ymd = chrono::__to_year_month_day(__year, __rule.__in, __rule.__on);
297 
298   seconds __at = chrono::__at_to_seconds(__stdoff, __rule);
299   return chrono::__to_sys_seconds(__ymd, __at);
300 }
301 
302 [[nodiscard]] static sys_seconds __from_to_sys_seconds(seconds __stdoff, const __tz::__rule& __rule) {
303   return chrono::__from_to_sys_seconds(__stdoff, __rule, __rule.__from);
304 }
305 
306 [[nodiscard]] static const vector<__tz::__rule>&
307 __get_rules(const __tz::__rules_storage_type& __rules_db, const string& __rule_name) {
308   auto __result = chrono::__binary_find(__rules_db, __rule_name, {}, [](const auto& __p) { return __p.first; });
309   if (__result == std::end(__rules_db))
310     std::__throw_runtime_error(("corrupt tzdb: rule '" + __rule_name + " 'does not exist").c_str());
311 
312   return __result->second;
313 }
314 
315 // Returns the letters field for a time before the first rule.
316 //
317 // Per https://data.iana.org/time-zones/tz-how-to.html
318 // One wrinkle, not fully explained in zic.8.txt, is what happens when switching
319 // to a named rule. To what values should the SAVE and LETTER data be
320 // initialized?
321 //
322 // 1 If at least one transition has happened, use the SAVE and LETTER data from
323 //   the most recent.
324 // 2 If switching to a named rule before any transition has happened, assume
325 //   standard time (SAVE zero), and use the LETTER data from the earliest
326 //   transition with a SAVE of zero.
327 //
328 // This function implements case 2.
329 [[nodiscard]] static string __letters_before_first_rule(const vector<__tz::__rule>& __rules) {
330   auto __letters =
331       __rules                                                                                //
332       | views::filter([](const __tz::__rule& __rule) { return __rule.__save.__time == 0s; }) //
333       | views::transform([](const __tz::__rule& __rule) { return __rule.__letters; })        //
334       | views::take(1);
335 
336   if (__letters.empty())
337     std::__throw_runtime_error("corrupt tzdb: rule has zero entries");
338 
339   return __letters.front();
340 }
341 
342 // Determines the information based on the continuation and the rules.
343 //
344 // There are several special cases to take into account
345 //
346 // === Entries before the first rule becomes active ===
347 // Asia/Hong_Kong
348 //   9 - JST 1945 N 18 2        // (1)
349 //   8 HK HK%sT                 // (2)
350 //   R HK 1946 o - Ap 21 0 1 S  // (3)
351 // There (1) is active until Novemer 18th 1945 at 02:00, after this time
352 // (2) becomes active. The first rule entry for HK (3) becomes active
353 // from April 21st 1945 at 01:00. In the period between (2) is active.
354 // This entry has an offset.
355 // This entry has no save, letters, or dst flag. So in the period
356 // after (1) and until (3) no rule entry is associated with the time.
357 
358 [[nodiscard]] static sys_info __get_sys_info_before_first_rule(
359     sys_seconds __begin,
360     sys_seconds __end,
361     const __tz::__continuation& __continuation,
362     const vector<__tz::__rule>& __rules) {
363   return sys_info{
364       __begin,
365       __end,
366       __continuation.__stdoff,
367       chrono::minutes(0),
368       chrono::__format(__continuation, __letters_before_first_rule(__rules), 0s)};
369 }
370 
371 // Returns the sys_info object for a time before the first rule.
372 // When this first rule has a SAVE of 0s the sys_info for the time before the
373 // first rule and for the first rule are identical and will be merged.
374 [[nodiscard]] static sys_info __get_sys_info_before_first_rule(
375     sys_seconds __begin,
376     sys_seconds __rule_end, // The end used when SAVE != 0s
377     sys_seconds __next_end, // The end used when SAVE == 0s the times are merged
378     const __tz::__continuation& __continuation,
379     const vector<__tz::__rule>& __rules,
380     vector<__tz::__rule>::const_iterator __rule) {
381   if (__rule->__save.__time != 0s)
382     return __get_sys_info_before_first_rule(__begin, __rule_end, __continuation, __rules);
383 
384   return sys_info{
385       __begin, __next_end, __continuation.__stdoff, 0min, chrono::__format(__continuation, __rule->__letters, 0s)};
386 }
387 
388 [[nodiscard]] static seconds __at_to_seconds(seconds __stdoff, seconds __save, const __tz::__rule& __rule) {
389   switch (__rule.__at.__clock) {
390   case __tz::__clock::__local:
391     return __rule.__at.__time - __stdoff - __save;
392 
393   case __tz::__clock::__universal:
394     return __rule.__at.__time;
395 
396   case __tz::__clock::__standard:
397     return __rule.__at.__time - __stdoff;
398   }
399   std::__libcpp_unreachable();
400 }
401 
402 [[nodiscard]] static sys_seconds
403 __rule_to_sys_seconds(seconds __stdoff, seconds __save, const __tz::__rule& __rule, year __year) {
404   year_month_day __ymd = chrono::__to_year_month_day(__year, __rule.__in, __rule.__on);
405 
406   seconds __at = chrono::__at_to_seconds(__stdoff, __save, __rule);
407   return chrono::__to_sys_seconds(__ymd, __at);
408 }
409 
410 // Returns the first rule after __time.
411 // Note that a rule can be "active" in multiple years, this may result in an
412 // infinite loop where the same rule is returned every time, use __current to
413 // guard against that.
414 //
415 // When no next rule exists the returned time will be sys_seconds::max(). This
416 // can happen in practice. For example,
417 //
418 //   R So 1945 o - May 24 2 2 M
419 //   R So 1945 o - S 24 3 1 S
420 //   R So 1945 o - N 18 2s 0 -
421 //
422 // Has 3 rules that are all only active in 1945.
423 [[nodiscard]] static pair<sys_seconds, vector<__tz::__rule>::const_iterator>
424 __next_rule(sys_seconds __time,
425             seconds __stdoff,
426             seconds __save,
427             const vector<__tz::__rule>& __rules,
428             vector<__tz::__rule>::const_iterator __current) {
429   year __year = year_month_day{chrono::floor<days>(__time)}.year();
430 
431   // Note it would probably be better to store the pairs in a vector and then
432   // use min() to get the smallest element
433   map<sys_seconds, vector<__tz::__rule>::const_iterator> __candidates;
434   // Note this evaluates all rules which is a waste of effort; when the entries
435   // are beyond the current year's "next year" (where "next year" is not always
436   // year + 1) the algorithm should end.
437   for (auto __it = __rules.begin(); __it != __rules.end(); ++__it) {
438     for (year __y = __it->__from; __y <= __it->__to; ++__y) {
439       // Adding the current entry for the current year may lead to infinite
440       // loops due to the SAVE adjustment. Skip these entries.
441       if (__y == __year && __it == __current)
442         continue;
443 
444       sys_seconds __t = chrono::__rule_to_sys_seconds(__stdoff, __save, *__it, __y);
445       if (__t <= __time)
446         continue;
447 
448       _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(!__candidates.contains(__t), "duplicated rule");
449       __candidates[__t] = __it;
450       break;
451     }
452   }
453 
454   if (!__candidates.empty()) [[likely]] {
455     auto __it = __candidates.begin();
456 
457     // When no rule is selected the time before the first rule and the first rule
458     // should not be merged.
459     if (__time == sys_seconds::min())
460       return *__it;
461 
462     // There can be two constitutive rules that are the same. For example,
463     // Hong Kong
464     //
465     // R HK 1973 o - D 30 3:30 1 S          (R1)
466     // R HK 1965 1976 - Ap Su>=16 3:30 1 S  (R2)
467     //
468     // 1973-12-29 19:30:00 R1 becomes active.
469     // 1974-04-20 18:30:00 R2 becomes active.
470     // Both rules have a SAVE of 1 hour and LETTERS are S for both of them.
471     while (__it != __candidates.end()) {
472       if (__current->__save.__time != __it->second->__save.__time || __current->__letters != __it->second->__letters)
473         return *__it;
474 
475       ++__it;
476     }
477   }
478 
479   return {sys_seconds::max(), __rules.end()};
480 }
481 
482 // Returns the first rule of a set of rules.
483 // This is not always the first of the listed rules. For example
484 //   R Sa 2008 2009 - Mar Su>=8 0 0 -
485 //   R Sa 2007 2008 - O Su>=8 0 1 -
486 // The transition in October 2007 happens before the transition in March 2008.
487 [[nodiscard]] static vector<__tz::__rule>::const_iterator
488 __first_rule(seconds __stdoff, const vector<__tz::__rule>& __rules) {
489   return chrono::__next_rule(sys_seconds::min(), __stdoff, 0s, __rules, __rules.end()).second;
490 }
491 
492 [[nodiscard]] static __sys_info_result __get_sys_info_rule(
493     sys_seconds __time,
494     sys_seconds __continuation_begin,
495     const __tz::__continuation& __continuation,
496     const vector<__tz::__rule>& __rules) {
497   auto __rule = chrono::__first_rule(__continuation.__stdoff, __rules);
498   _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(__rule != __rules.end(), "the set of rules has no first rule");
499 
500   // Avoid selecting a time before the start of the continuation
501   __time = std::max(__time, __continuation_begin);
502 
503   sys_seconds __rule_begin = chrono::__from_to_sys_seconds(__continuation.__stdoff, *__rule);
504 
505   // The time sought is very likely inside the current rule.
506   // When the continuation's UNTIL uses the local clock there are edge cases
507   // where this is not true.
508   //
509   // Start to walk the rules to find the proper one.
510   //
511   // For now we just walk all the rules TODO TZDB investigate whether a smarter
512   // algorithm would work.
513   auto __next = chrono::__next_rule(__rule_begin, __continuation.__stdoff, __rule->__save.__time, __rules, __rule);
514 
515   // Ignore small steps, this happens with America/Punta_Arenas for the
516   // transition
517   // -4:42:46 - SMT 1927 S
518   // -5 x -05/-04 1932 S
519   // ...
520   //
521   // R x 1927 1931 - S 1 0 1 -
522   // R x 1928 1932 - Ap 1 0 0 -
523   //
524   // America/Punta_Arenas  Thu Sep  1 04:42:45 1927 UT = Thu Sep  1 00:42:45 1927 -04 isdst=1 gmtoff=-14400
525   // America/Punta_Arenas  Sun Apr  1 03:59:59 1928 UT = Sat Mar 31 23:59:59 1928 -04 isdst=1 gmtoff=-14400
526   // America/Punta_Arenas  Sun Apr  1 04:00:00 1928 UT = Sat Mar 31 23:00:00 1928 -05 isdst=0 gmtoff=-18000
527   //
528   // Without this there will be a transition
529   //   [1927-09-01 04:42:45, 1927-09-01 05:00:00) -05:00:00 0min -05
530 
531   if (sys_seconds __begin = __rule->__save.__time != 0s ? __rule_begin : __next.first; __time < __begin) {
532     if (__continuation_begin == sys_seconds::min() || __begin - __continuation_begin > 12h)
533       return __sys_info{__get_sys_info_before_first_rule(
534                             __continuation_begin, __rule_begin, __next.first, __continuation, __rules, __rule),
535                         false};
536 
537     // Europe/Berlin
538     // 1 c CE%sT 1945 May 24 2          (C1)
539     // 1 So CE%sT 1946                  (C2)
540     //
541     // R c 1944 1945 - Ap M>=1 2s 1 S   (R1)
542     //
543     // R So 1945 o - May 24 2 2 M       (R2)
544     //
545     // When C2 becomes active the time would be before the first rule R2,
546     // giving a 1 hour sys_info.
547     seconds __save = __rule->__save.__time;
548     __named_rule_until __continuation_end{__continuation};
549     sys_seconds __sys_info_end = std::min(__continuation_end(__save), __next.first);
550 
551     return __sys_info{
552         sys_info{__continuation_begin,
553                  __sys_info_end,
554                  __continuation.__stdoff + __save,
555                  chrono::duration_cast<minutes>(__save),
556                  chrono::__format(__continuation, __rule->__letters, __save)},
557         __sys_info_end == __continuation_end(__save)};
558   }
559 
560   // See above for America/Asuncion
561   if (__rule->__save.__time == 0s && __time < __next.first) {
562     return __sys_info{
563         sys_info{__continuation_begin,
564                  __next.first,
565                  __continuation.__stdoff,
566                  0min,
567                  chrono::__format(__continuation, __rule->__letters, 0s)},
568         false};
569   }
570 
571   if (__rule->__save.__time != 0s) {
572     // another fix for America/Punta_Arenas when not at the start of the
573     // sys_info object.
574     seconds __save = __rule->__save.__time;
575     if (__continuation_begin >= __rule_begin - __save && __time < __next.first) {
576       return __sys_info{
577           sys_info{__continuation_begin,
578                    __next.first,
579                    __continuation.__stdoff + __save,
580                    chrono::duration_cast<minutes>(__save),
581                    chrono::__format(__continuation, __rule->__letters, __save)},
582           false};
583     }
584   }
585 
586   __named_rule_until __continuation_end{__continuation};
587   while (__next.second != __rules.end()) {
588 #ifdef PRINT
589     std::print(
590         stderr,
591         "Rule for {}: [{}, {}) off={} save={} duration={}\n",
592         __time,
593         __rule_begin,
594         __next.first,
595         __continuation.__stdoff,
596         __rule->__save.__time,
597         __next.first - __rule_begin);
598 #endif
599 
600     sys_seconds __end = __continuation_end(__rule->__save.__time);
601 
602     sys_seconds __sys_info_begin = std::max(__continuation_begin, __rule_begin);
603     sys_seconds __sys_info_end   = std::min(__end, __next.first);
604     seconds __diff               = chrono::abs(__sys_info_end - __sys_info_begin);
605 
606     if (__diff < 12h) {
607       // Z America/Argentina/Buenos_Aires -3:53:48 - LMT 1894 O 31
608       // -4:16:48 - CMT 1920 May
609       // -4 - -04 1930 D
610       // -4 A -04/-03 1969 O 5
611       // -3 A -03/-02 1999 O 3
612       // -4 A -04/-03 2000 Mar 3
613       // ...
614       //
615       // ...
616       // R A 1989 1992 - O Su>=15 0 1 -
617       // R A 1999 o - O Su>=1 0 1 -
618       // R A 2000 o - Mar 3 0 0 -
619       // R A 2007 o - D 30 0 1 -
620       // ...
621 
622       // The 1999 switch uses the same rule, but with a different stdoff.
623       //   R A 1999 o - O Su>=1 0 1 -
624       //     stdoff -3 -> 1999-10-03 03:00:00
625       //     stdoff -4 -> 1999-10-03 04:00:00
626       // This generates an invalid entry and this is evaluated as a transition.
627       // Looking at the zdump like output in libc++ this generates jumps in
628       // the UTC time.
629 
630       __rule         = __next.second;
631       __next         = __next_rule(__next.first, __continuation.__stdoff, __rule->__save.__time, __rules, __rule);
632       __end          = __continuation_end(__rule->__save.__time);
633       __sys_info_end = std::min(__end, __next.first);
634     }
635 
636     if ((__time >= __rule_begin && __time < __next.first) || __next.first >= __end) {
637       __sys_info_begin = std::max(__continuation_begin, __rule_begin);
638       __sys_info_end   = std::min(__end, __next.first);
639 
640       return __sys_info{
641           sys_info{__sys_info_begin,
642                    __sys_info_end,
643                    __continuation.__stdoff + __rule->__save.__time,
644                    chrono::duration_cast<minutes>(__rule->__save.__time),
645                    chrono::__format(__continuation, __rule->__letters, __rule->__save.__time)},
646           __sys_info_end == __end};
647     }
648 
649     __rule_begin = __next.first;
650     __rule       = __next.second;
651     __next       = __next_rule(__rule_begin, __continuation.__stdoff, __rule->__save.__time, __rules, __rule);
652   }
653 
654   return __sys_info{
655       sys_info{std::max(__continuation_begin, __rule_begin),
656                __continuation_end(__rule->__save.__time),
657                __continuation.__stdoff + __rule->__save.__time,
658                chrono::duration_cast<minutes>(__rule->__save.__time),
659                chrono::__format(__continuation, __rule->__letters, __rule->__save.__time)},
660       true};
661 }
662 
663 [[nodiscard]] static __sys_info_result __get_sys_info_basic(
664     sys_seconds __time, sys_seconds __continuation_begin, const __tz::__continuation& __continuation, seconds __save) {
665   sys_seconds __continuation_end = chrono::__until_to_sys_seconds(__continuation);
666   return __sys_info{
667       sys_info{__continuation_begin,
668                __continuation_end,
669                __continuation.__stdoff + __save,
670                chrono::duration_cast<minutes>(__save),
671                __continuation.__format},
672       true};
673 }
674 
675 [[nodiscard]] static __sys_info_result
676 __get_sys_info(sys_seconds __time,
677                sys_seconds __continuation_begin,
678                const __tz::__continuation& __continuation,
679                const __tz::__rules_storage_type& __rules_db) {
680   return std::visit(
681       [&](const auto& __value) {
682         using _Tp = decay_t<decltype(__value)>;
683         if constexpr (same_as<_Tp, std::string>)
684           return chrono::__get_sys_info_rule(
685               __time, __continuation_begin, __continuation, __get_rules(__rules_db, __value));
686         else if constexpr (same_as<_Tp, monostate>)
687           return chrono::__get_sys_info_basic(__time, __continuation_begin, __continuation, chrono::seconds(0));
688         else if constexpr (same_as<_Tp, __tz::__save>)
689           return chrono::__get_sys_info_basic(__time, __continuation_begin, __continuation, __value.__time);
690         else
691           static_assert(sizeof(_Tp) == 0); // TODO TZDB static_assert(false); after droping clang-16 support
692 
693         std::__libcpp_unreachable();
694       },
695       __continuation.__rules);
696 }
697 
698 // The transition from one continuation to the next continuation may result in
699 // two constitutive continuations with the same "offset" information.
700 // [time.zone.info.sys]/3
701 //   The begin and end data members indicate that, for the associated time_zone
702 //   and time_point, the offset and abbrev are in effect in the range
703 //   [begin, end). This information can be used to efficiently iterate the
704 //   transitions of a time_zone.
705 //
706 // Note that this does considers a change in the SAVE field not to be a
707 // different sys_info, zdump does consider this different.
708 //   LWG XXXX The sys_info range should be affected by save
709 // matches the behaviour of the Standard and zdump.
710 //
711 // Iff the "offsets" are the same '__current.__end' is replaced with
712 // '__next.__end', which effectively merges the two objects in one object. The
713 // function returns true if a merge occurred.
714 [[nodiscard]] bool __merge_continuation(sys_info& __current, const sys_info& __next) {
715   if (__current.end != __next.begin)
716     return false;
717 
718   if (__current.offset != __next.offset || __current.abbrev != __next.abbrev || __current.save != __next.save)
719     return false;
720 
721   __current.end = __next.end;
722   return true;
723 }
724 
725 //===----------------------------------------------------------------------===//
726 //                           Public API
727 //===----------------------------------------------------------------------===//
728 
729 [[nodiscard]] _LIBCPP_EXPORTED_FROM_ABI time_zone time_zone::__create(unique_ptr<time_zone::__impl>&& __p) {
730   _LIBCPP_ASSERT_NON_NULL(__p != nullptr, "initialized time_zone without a valid pimpl object");
731   time_zone result;
732   result.__impl_ = std::move(__p);
733   return result;
734 }
735 
736 _LIBCPP_EXPORTED_FROM_ABI time_zone::~time_zone() = default;
737 
738 [[nodiscard]] _LIBCPP_EXPORTED_FROM_ABI string_view time_zone::__name() const noexcept { return __impl_->__name(); }
739 
740 [[nodiscard]] _LIBCPP_AVAILABILITY_TZDB _LIBCPP_EXPORTED_FROM_ABI sys_info
741 time_zone::__get_info(sys_seconds __time) const {
742   optional<sys_info> __result;
743   bool __valid_result = false; // true iff __result.has_value() is true and
744                                // __result.begin <= __time < __result.end is true.
745   bool __can_merge                 = false;
746   sys_seconds __continuation_begin = sys_seconds::min();
747   // Iterates over the Zone entry and its continuations. Internally the Zone
748   // entry is split in a Zone information and the first continuation. The last
749   // continuation has no UNTIL field. This means the loop should always find a
750   // continuation.
751   //
752   // For more information on background of zone information please consult the
753   // following information
754   //   [zic manual](https://www.man7.org/linux/man-pages/man8/zic.8.html)
755   //   [tz source info](https://data.iana.org/time-zones/tz-how-to.html)
756   //   On POSIX systems the zdump tool can be useful:
757   //     zdump -v Asia/Hong_Kong
758   //   Gives all transitions in the Hong Kong time zone.
759   //
760   // During iteration the result for the current continuation is returned. If
761   // no continuation is applicable it will return the end time as "error". When
762   // two continuations are contiguous and contain the "same" information these
763   // ranges are merged as one range.
764   // The merging requires keeping any result that occurs before __time,
765   // likewise when a valid result is found the algorithm needs to test the next
766   // continuation to see whether it can be merged. For example, Africa/Ceuta
767   // Continuations
768   //  0 s WE%sT 1929                   (C1)
769   //  0 - WET 1967                     (C2)
770   //  0 Sp WE%sT 1984 Mar 16           (C3)
771   //
772   // Rules
773   //  R s 1926 1929 - O Sa>=1 24s 0 -  (R1)
774   //
775   //  R Sp 1967 o - Jun 3 12 1 S       (R2)
776   //
777   // The rule R1 is the last rule used in C1. The rule R2 is the first rule in
778   // C3. Since R2 is the first rule this means when a continuation uses this
779   // rule its value prior to R2 will be SAVE 0 LETTERS of the first entry with a
780   // SAVE of 0, in this case WET.
781   // This gives the following changes in the information.
782   //   1928-10-07 00:00:00 C1 R1 becomes active: offset 0 save 0 abbrev WET
783   //   1929-01-01 00:00:00 C2    becomes active: offset 0 save 0 abbrev WET
784   //   1967-01-01 00:00:00 C3    becomes active: offset 0 save 0 abbrev WET
785   //   1967-06-03 12:00:00 C3 R2 becomes active: offset 0 save 1 abbrev WEST
786   //
787   // The first 3 entries are contiguous and contain the same information, this
788   // means the period [1928-10-07 00:00:00, 1967-06-03 12:00:00) should be
789   // returned in one sys_info object.
790 
791   const auto& __continuations                  = __impl_->__continuations();
792   const __tz::__rules_storage_type& __rules_db = __impl_->__rules_db();
793   for (auto __it = __continuations.begin(); __it != __continuations.end(); ++__it) {
794     const auto& __continuation   = *__it;
795     __sys_info_result __sys_info = chrono::__get_sys_info(__time, __continuation_begin, __continuation, __rules_db);
796 
797     if (__sys_info) {
798       _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
799           __sys_info->__info.begin < __sys_info->__info.end, "invalid sys_info range");
800 
801       // Filters out dummy entries
802       // Z America/Argentina/Buenos_Aires -3:53:48 - LMT 1894 O 31
803       // ...
804       // -4 A -04/-03 2000 Mar 3 (C1)
805       // -3 A -03/-02            (C2)
806       //
807       // ...
808       // R A 2000 o - Mar 3 0 0 -
809       // R A 2007 o - D 30 0 1 -
810       // ...
811       //
812       // This results in an entry
813       //   [2000-03-03 03:00:00, 2000-03-03 04:00:00) -10800s 60min -03
814       // for [C1 & R1, C1, R2) which due to the end of the continuation is an
815       // one hour "sys_info". Instead the entry should be ignored and replaced
816       // by [C2 & R1, C2 & R2) which is the proper range
817       //   "[2000-03-03 03:00:00, 2007-12-30 03:00:00) -02:00:00 60min -02
818 
819       if (std::holds_alternative<string>(__continuation.__rules) && __sys_info->__can_merge &&
820           __sys_info->__info.begin + 12h > __sys_info->__info.end) {
821         __continuation_begin = __sys_info->__info.begin;
822         continue;
823       }
824 
825       if (!__result) {
826         // First entry found, always keep it.
827         __result = __sys_info->__info;
828 
829         __valid_result = __time >= __result->begin && __time < __result->end;
830         __can_merge    = __sys_info->__can_merge;
831       } else if (__can_merge && chrono::__merge_continuation(*__result, __sys_info->__info)) {
832         // The results are merged, update the result state. This may
833         // "overwrite" a valid sys_info object with another valid sys_info
834         // object.
835         __valid_result = __time >= __result->begin && __time < __result->end;
836         __can_merge    = __sys_info->__can_merge;
837       } else {
838         // Here things get interesting:
839         // For example, America/Argentina/San_Luis
840         //
841         //   -3 A -03/-02 2008 Ja 21           (C1)
842         //   -4 Sa -04/-03 2009 O 11           (C2)
843         //
844         //   R A 2007 o - D 30 0 1 -           (R1)
845         //
846         //   R Sa 2007 2008 - O Su>=8 0 1 -    (R2)
847         //
848         // Based on C1 & R1 the end time of C1 is 2008-01-21 03:00:00
849         // Based on C2 & R2 the end time of C1 is 2008-01-21 02:00:00
850         // In this case the earlier time is the real time of the transition.
851         // However the algorithm used gives 2008-01-21 03:00:00.
852         //
853         // So we need to calculate the previous UNTIL in the current context and
854         // see whether it's earlier.
855 
856         // The results could not be merged.
857         // - When we have a valid result that result is the final result.
858         // - Otherwise the result we had is before __time and the result we got
859         //   is at a later time (possibly valid). This result is always better
860         //   than the previous result.
861         if (__valid_result) {
862           return *__result;
863         } else {
864           _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
865               __it != __continuations.begin(), "the first rule should always seed the result");
866           const auto& __last = *(__it - 1);
867           if (std::holds_alternative<string>(__last.__rules)) {
868             // Europe/Berlin
869             // 1 c CE%sT 1945 May 24 2          (C1)
870             // 1 So CE%sT 1946                  (C2)
871             //
872             // R c 1944 1945 - Ap M>=1 2s 1 S   (R1)
873             //
874             // R So 1945 o - May 24 2 2 M       (R2)
875             //
876             // When C2 becomes active the time would be before the first rule R2,
877             // giving a 1 hour sys_info. This is not valid and the results need
878             // merging.
879 
880             if (__result->end != __sys_info->__info.begin) {
881               // When the UTC gap between the rules is due to the change of
882               // offsets adjust the new time to remove the gap.
883               sys_seconds __end   = __result->end - __result->offset;
884               sys_seconds __begin = __sys_info->__info.begin - __sys_info->__info.offset;
885               if (__end == __begin) {
886                 __sys_info->__info.begin = __result->end;
887               }
888             }
889           }
890 
891           __result       = __sys_info->__info;
892           __valid_result = __time >= __result->begin && __time < __result->end;
893           __can_merge    = __sys_info->__can_merge;
894         }
895       }
896       __continuation_begin = __result->end;
897     } else {
898       __continuation_begin = __sys_info.error();
899     }
900   }
901   if (__valid_result)
902     return *__result;
903 
904   std::__throw_runtime_error("tzdb: corrupt db");
905 }
906 
907 // Is the "__local_time" present in "__first" and "__second". If so the
908 // local_info has an ambiguous result.
909 [[nodiscard]] static bool
910 __is_ambiguous(local_seconds __local_time, const sys_info& __first, const sys_info& __second) {
911   std::chrono::local_seconds __end_first{__first.end.time_since_epoch() + __first.offset};
912   std::chrono::local_seconds __begin_second{__second.begin.time_since_epoch() + __second.offset};
913 
914   return __local_time < __end_first && __local_time >= __begin_second;
915 }
916 
917 // Determines the result of the "__local_time". This expects the object
918 // "__first" to be earlier in time than "__second".
919 [[nodiscard]] static local_info
920 __get_info(local_seconds __local_time, const sys_info& __first, const sys_info& __second) {
921   std::chrono::local_seconds __end_first{__first.end.time_since_epoch() + __first.offset};
922   std::chrono::local_seconds __begin_second{__second.begin.time_since_epoch() + __second.offset};
923 
924   if (__local_time < __end_first) {
925     if (__local_time >= __begin_second)
926       // |--------|
927       //        |------|
928       //         ^
929       return {local_info::ambiguous, __first, __second};
930 
931     // |--------|
932     //          |------|
933     //         ^
934     return {local_info::unique, __first, sys_info{}};
935   }
936 
937   if (__local_time < __begin_second)
938     // |--------|
939     //             |------|
940     //           ^
941     return {local_info::nonexistent, __first, __second};
942 
943   // |--------|
944   //          |------|
945   //           ^
946   return {local_info::unique, __second, sys_info{}};
947 }
948 
949 [[nodiscard]] _LIBCPP_AVAILABILITY_TZDB _LIBCPP_EXPORTED_FROM_ABI local_info
950 time_zone::__get_info(local_seconds __local_time) const {
951   seconds __local_seconds = __local_time.time_since_epoch();
952 
953   /* An example of a typical year with a DST switch displayed in local time.
954    *
955    * At the first of April the time goes forward one hour. This means the
956    * time marked with ~~ is not a valid local time. This is represented by the
957    * nonexistent value in local_info.result.
958    *
959    * At the first of November the time goes backward one hour. This means the
960    * time marked with ^^ happens twice. This is represented by the ambiguous
961    * value in local_info.result.
962    *
963    * 2020.11.01                  2021.04.01              2021.11.01
964    * offset +05                  offset +05              offset +05
965    * save    0s                  save    1h              save    0s
966    * |------------//----------|
967    *                             |---------//--------------|
968    *                                                    |-------------
969    *                           ~~                        ^^
970    *
971    * These shifts can happen due to changes in the current time zone for a
972    * location. For example, Indian/Kerguelen switched only once. In 1950 from an
973    * offset of 0 hours to an offset of +05 hours.
974    *
975    * During all these shifts the UTC time will not have gaps.
976    */
977 
978   // The code needs to determine the system time for the local time. There is no
979   // information available. Assume the offset between system time and local time
980   // is 0s. This gives an initial estimate.
981   sys_seconds __guess{__local_seconds};
982   sys_info __info = __get_info(__guess);
983 
984   // At this point the offset can be used to determine an estimate for the local
985   // time. Before doing that, determine the offset and validate whether the
986   // local time is the range [chrono::local_seconds::min(),
987   // chrono::local_seconds::max()).
988   if (__local_seconds < 0s && __info.offset > 0s)
989     if (__local_seconds - chrono::local_seconds::min().time_since_epoch() < __info.offset)
990       return {-1, __info, {}};
991 
992   if (__local_seconds > 0s && __info.offset < 0s)
993     if (chrono::local_seconds::max().time_since_epoch() - __local_seconds < -__info.offset)
994       return {-2, __info, {}};
995 
996   // Based on the information found in the sys_info, the local time can be
997   // converted to a system time. This resulting time can be in the following
998   // locations of the sys_info:
999   //
1000   //                             |---------//--------------|
1001   //                           1   2.1      2.2         2.3  3
1002   //
1003   // 1. The estimate is before the returned sys_info object.
1004   //    The result is either non-existent or unique in the previous sys_info.
1005   // 2. The estimate is in the sys_info object
1006   //    - If the sys_info begin is not sys_seconds::min(), then it might be at
1007   //      2.1 and could be ambiguous with the previous or unique.
1008   //    - If sys_info end is not sys_seconds::max(), then it might be at 2.3
1009   //      and could be ambiguous with the next or unique.
1010   //    - Else it is at 2.2 and always unique. This case happens when a
1011   //      time zone has no transitions. For example, UTC or GMT+1.
1012   // 3. The estimate is after the returned sys_info object.
1013   //    The result is either non-existent or unique in the next sys_info.
1014   //
1015   // There is no specification where the "middle" starts. Similar issues can
1016   // happen when sys_info objects are "short", then "unique in the next" could
1017   // become "ambiguous in the next and the one following". Theoretically there
1018   // is the option of the following time-line
1019   //
1020   // |------------|
1021   //           |----|
1022   //       |-----------------|
1023   //
1024   // However the local_info object only has 2 sys_info objects, so this option
1025   // is not tested.
1026 
1027   sys_seconds __sys_time{__local_seconds - __info.offset};
1028   if (__sys_time < __info.begin)
1029     // Case 1 before __info
1030     return chrono::__get_info(__local_time, __get_info(__info.begin - 1s), __info);
1031 
1032   if (__sys_time >= __info.end)
1033     // Case 3 after __info
1034     return chrono::__get_info(__local_time, __info, __get_info(__info.end));
1035 
1036   // Case 2 in __info
1037   if (__info.begin != sys_seconds::min()) {
1038     // Case 2.1 Not at the beginning, when not ambiguous the result should test
1039     // case 2.3.
1040     sys_info __prev = __get_info(__info.begin - 1s);
1041     if (__is_ambiguous(__local_time, __prev, __info))
1042       return {local_info::ambiguous, __prev, __info};
1043   }
1044 
1045   if (__info.end == sys_seconds::max())
1046     // At the end so it's case 2.2
1047     return {local_info::unique, __info, sys_info{}};
1048 
1049   // This tests case 2.2 or case 2.3.
1050   return chrono::__get_info(__local_time, __info, __get_info(__info.end));
1051 }
1052 
1053 } // namespace chrono
1054 
1055 _LIBCPP_END_NAMESPACE_STD
1056