xref: /freebsd/contrib/llvm-project/libcxx/include/__random/poisson_distribution.h (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
10 #define _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
11 
12 #include <__config>
13 #include <__random/clamp_to_integral.h>
14 #include <__random/exponential_distribution.h>
15 #include <__random/normal_distribution.h>
16 #include <__random/uniform_real_distribution.h>
17 #include <cmath>
18 #include <iosfwd>
19 #include <limits>
20 
21 #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
22 #pragma GCC system_header
23 #endif
24 
25 _LIBCPP_PUSH_MACROS
26 #include <__undef_macros>
27 
28 _LIBCPP_BEGIN_NAMESPACE_STD
29 
30 template<class _IntType = int>
31 class _LIBCPP_TEMPLATE_VIS poisson_distribution
32 {
33 public:
34     // types
35     typedef _IntType result_type;
36 
37     class _LIBCPP_TEMPLATE_VIS param_type
38     {
39         double __mean_;
40         double __s_;
41         double __d_;
42         double __l_;
43         double __omega_;
44         double __c0_;
45         double __c1_;
46         double __c2_;
47         double __c3_;
48         double __c_;
49 
50     public:
51         typedef poisson_distribution distribution_type;
52 
53         explicit param_type(double __mean = 1.0);
54 
55         _LIBCPP_INLINE_VISIBILITY
56         double mean() const {return __mean_;}
57 
58         friend _LIBCPP_INLINE_VISIBILITY
59             bool operator==(const param_type& __x, const param_type& __y)
60             {return __x.__mean_ == __y.__mean_;}
61         friend _LIBCPP_INLINE_VISIBILITY
62             bool operator!=(const param_type& __x, const param_type& __y)
63             {return !(__x == __y);}
64 
65         friend class poisson_distribution;
66     };
67 
68 private:
69     param_type __p_;
70 
71 public:
72     // constructors and reset functions
73 #ifndef _LIBCPP_CXX03_LANG
74     _LIBCPP_INLINE_VISIBILITY
75     poisson_distribution() : poisson_distribution(1.0) {}
76     _LIBCPP_INLINE_VISIBILITY
77     explicit poisson_distribution(double __mean)
78         : __p_(__mean) {}
79 #else
80     _LIBCPP_INLINE_VISIBILITY
81     explicit poisson_distribution(double __mean = 1.0)
82         : __p_(__mean) {}
83 #endif
84     _LIBCPP_INLINE_VISIBILITY
85     explicit poisson_distribution(const param_type& __p) : __p_(__p) {}
86     _LIBCPP_INLINE_VISIBILITY
87     void reset() {}
88 
89     // generating functions
90     template<class _URNG>
91         _LIBCPP_INLINE_VISIBILITY
92         result_type operator()(_URNG& __g)
93         {return (*this)(__g, __p_);}
94     template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
95 
96     // property functions
97     _LIBCPP_INLINE_VISIBILITY
98     double mean() const {return __p_.mean();}
99 
100     _LIBCPP_INLINE_VISIBILITY
101     param_type param() const {return __p_;}
102     _LIBCPP_INLINE_VISIBILITY
103     void param(const param_type& __p) {__p_ = __p;}
104 
105     _LIBCPP_INLINE_VISIBILITY
106     result_type min() const {return 0;}
107     _LIBCPP_INLINE_VISIBILITY
108     result_type max() const {return numeric_limits<result_type>::max();}
109 
110     friend _LIBCPP_INLINE_VISIBILITY
111         bool operator==(const poisson_distribution& __x,
112                         const poisson_distribution& __y)
113         {return __x.__p_ == __y.__p_;}
114     friend _LIBCPP_INLINE_VISIBILITY
115         bool operator!=(const poisson_distribution& __x,
116                         const poisson_distribution& __y)
117         {return !(__x == __y);}
118 };
119 
120 template<class _IntType>
121 poisson_distribution<_IntType>::param_type::param_type(double __mean)
122     // According to the standard `inf` is a valid input, but it causes the
123     // distribution to hang, so we replace it with the maximum representable
124     // mean.
125     : __mean_(isinf(__mean) ? numeric_limits<double>::max() : __mean)
126 {
127     if (__mean_ < 10)
128     {
129         __s_ = 0;
130         __d_ = 0;
131         __l_ = _VSTD::exp(-__mean_);
132         __omega_ = 0;
133         __c3_ = 0;
134         __c2_ = 0;
135         __c1_ = 0;
136         __c0_ = 0;
137         __c_ = 0;
138     }
139     else
140     {
141         __s_ = _VSTD::sqrt(__mean_);
142         __d_ = 6 * __mean_ * __mean_;
143         __l_ = _VSTD::trunc(__mean_ - 1.1484);
144         __omega_ = .3989423 / __s_;
145         double __b1_ = .4166667E-1 / __mean_;
146         double __b2_ = .3 * __b1_ * __b1_;
147         __c3_ = .1428571 * __b1_ * __b2_;
148         __c2_ = __b2_ - 15. * __c3_;
149         __c1_ = __b1_ - 6. * __b2_ + 45. * __c3_;
150         __c0_ = 1. - __b1_ + 3. * __b2_ - 15. * __c3_;
151         __c_ = .1069 / __mean_;
152     }
153 }
154 
155 template <class _IntType>
156 template<class _URNG>
157 _IntType
158 poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
159 {
160     double __tx;
161     uniform_real_distribution<double> __urd;
162     if (__pr.__mean_ < 10)
163     {
164          __tx = 0;
165         for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx)
166             __p *= __urd(__urng);
167     }
168     else
169     {
170         double __difmuk;
171         double __g = __pr.__mean_ + __pr.__s_ * normal_distribution<double>()(__urng);
172         double __u;
173         if (__g > 0)
174         {
175             __tx = _VSTD::trunc(__g);
176             if (__tx >= __pr.__l_)
177                 return _VSTD::__clamp_to_integral<result_type>(__tx);
178             __difmuk = __pr.__mean_ - __tx;
179             __u = __urd(__urng);
180             if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
181                 return _VSTD::__clamp_to_integral<result_type>(__tx);
182         }
183         exponential_distribution<double> __edist;
184         for (bool __using_exp_dist = false; true; __using_exp_dist = true)
185         {
186             double __e;
187             if (__using_exp_dist || __g <= 0)
188             {
189                 double __t;
190                 do
191                 {
192                     __e = __edist(__urng);
193                     __u = __urd(__urng);
194                     __u += __u - 1;
195                     __t = 1.8 + (__u < 0 ? -__e : __e);
196                 } while (__t <= -.6744);
197                 __tx = _VSTD::trunc(__pr.__mean_ + __pr.__s_ * __t);
198                 __difmuk = __pr.__mean_ - __tx;
199                 __using_exp_dist = true;
200             }
201             double __px;
202             double __py;
203             if (__tx < 10 && __tx >= 0)
204             {
205                 const double __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040,
206                                              40320, 362880};
207                 __px = -__pr.__mean_;
208                 __py = _VSTD::pow(__pr.__mean_, (double)__tx) / __fac[static_cast<int>(__tx)];
209             }
210             else
211             {
212                 double __del = .8333333E-1 / __tx;
213                 __del -= 4.8 * __del * __del * __del;
214                 double __v = __difmuk / __tx;
215                 if (_VSTD::abs(__v) > 0.25)
216                     __px = __tx * _VSTD::log(1 + __v) - __difmuk - __del;
217                 else
218                     __px = __tx * __v * __v * (((((((.1250060 * __v + -.1384794) *
219                            __v + .1421878) * __v + -.1661269) * __v + .2000118) *
220                            __v + -.2500068) * __v + .3333333) * __v + -.5) - __del;
221                 __py = .3989423 / _VSTD::sqrt(__tx);
222             }
223             double __r = (0.5 - __difmuk) / __pr.__s_;
224             double __r2 = __r * __r;
225             double __fx = -0.5 * __r2;
226             double __fy = __pr.__omega_ * (((__pr.__c3_ * __r2 + __pr.__c2_) *
227                                         __r2 + __pr.__c1_) * __r2 + __pr.__c0_);
228             if (__using_exp_dist)
229             {
230                 if (__pr.__c_ * _VSTD::abs(__u) <= __py * _VSTD::exp(__px + __e) -
231                                                    __fy * _VSTD::exp(__fx + __e))
232                     break;
233             }
234             else
235             {
236                 if (__fy - __u * __fy <= __py * _VSTD::exp(__px - __fx))
237                     break;
238             }
239         }
240     }
241     return _VSTD::__clamp_to_integral<result_type>(__tx);
242 }
243 
244 template <class _CharT, class _Traits, class _IntType>
245 basic_ostream<_CharT, _Traits>&
246 operator<<(basic_ostream<_CharT, _Traits>& __os,
247            const poisson_distribution<_IntType>& __x)
248 {
249     __save_flags<_CharT, _Traits> __lx(__os);
250     typedef basic_ostream<_CharT, _Traits> _OStream;
251     __os.flags(_OStream::dec | _OStream::left | _OStream::fixed |
252                _OStream::scientific);
253     return __os << __x.mean();
254 }
255 
256 template <class _CharT, class _Traits, class _IntType>
257 basic_istream<_CharT, _Traits>&
258 operator>>(basic_istream<_CharT, _Traits>& __is,
259            poisson_distribution<_IntType>& __x)
260 {
261     typedef poisson_distribution<_IntType> _Eng;
262     typedef typename _Eng::param_type param_type;
263     __save_flags<_CharT, _Traits> __lx(__is);
264     typedef basic_istream<_CharT, _Traits> _Istream;
265     __is.flags(_Istream::dec | _Istream::skipws);
266     double __mean;
267     __is >> __mean;
268     if (!__is.fail())
269         __x.param(param_type(__mean));
270     return __is;
271 }
272 
273 _LIBCPP_END_NAMESPACE_STD
274 
275 _LIBCPP_POP_MACROS
276 
277 #endif // _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
278