xref: /freebsd/contrib/llvm-project/compiler-rt/lib/xray/xray_interface.cpp (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===-- xray_interface.cpp --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of XRay, a dynamic runtime instrumentation system.
10 //
11 // Implementation of the API functions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "xray_interface_internal.h"
16 
17 #include <cinttypes>
18 #include <cstdio>
19 #include <errno.h>
20 #include <limits>
21 #include <string.h>
22 #include <sys/mman.h>
23 
24 #if SANITIZER_FUCHSIA
25 #include <zircon/process.h>
26 #include <zircon/sanitizer.h>
27 #include <zircon/status.h>
28 #include <zircon/syscalls.h>
29 #endif
30 
31 #include "sanitizer_common/sanitizer_addrhashmap.h"
32 #include "sanitizer_common/sanitizer_common.h"
33 
34 #include "xray_defs.h"
35 #include "xray_flags.h"
36 
37 extern __sanitizer::SpinMutex XRayInstrMapMutex;
38 extern __sanitizer::atomic_uint8_t XRayInitialized;
39 extern __xray::XRaySledMap XRayInstrMap;
40 
41 namespace __xray {
42 
43 #if defined(__x86_64__)
44 static const int16_t cSledLength = 12;
45 #elif defined(__aarch64__)
46 static const int16_t cSledLength = 32;
47 #elif defined(__arm__)
48 static const int16_t cSledLength = 28;
49 #elif SANITIZER_LOONGARCH64
50 static const int16_t cSledLength = 48;
51 #elif SANITIZER_MIPS32
52 static const int16_t cSledLength = 48;
53 #elif SANITIZER_MIPS64
54 static const int16_t cSledLength = 64;
55 #elif defined(__powerpc64__)
56 static const int16_t cSledLength = 8;
57 #elif defined(__hexagon__)
58 static const int16_t cSledLength = 20;
59 #else
60 #error "Unsupported CPU Architecture"
61 #endif /* CPU architecture */
62 
63 // This is the function to call when we encounter the entry or exit sleds.
64 atomic_uintptr_t XRayPatchedFunction{0};
65 
66 // This is the function to call from the arg1-enabled sleds/trampolines.
67 atomic_uintptr_t XRayArgLogger{0};
68 
69 // This is the function to call when we encounter a custom event log call.
70 atomic_uintptr_t XRayPatchedCustomEvent{0};
71 
72 // This is the function to call when we encounter a typed event log call.
73 atomic_uintptr_t XRayPatchedTypedEvent{0};
74 
75 // This is the global status to determine whether we are currently
76 // patching/unpatching.
77 atomic_uint8_t XRayPatching{0};
78 
79 struct TypeDescription {
80   uint32_t type_id;
81   std::size_t description_string_length;
82 };
83 
84 using TypeDescriptorMapType = AddrHashMap<TypeDescription, 11>;
85 // An address map from immutable descriptors to type ids.
86 TypeDescriptorMapType TypeDescriptorAddressMap{};
87 
88 atomic_uint32_t TypeEventDescriptorCounter{0};
89 
90 // MProtectHelper is an RAII wrapper for calls to mprotect(...) that will
91 // undo any successful mprotect(...) changes. This is used to make a page
92 // writeable and executable, and upon destruction if it was successful in
93 // doing so returns the page into a read-only and executable page.
94 //
95 // This is only used specifically for runtime-patching of the XRay
96 // instrumentation points. This assumes that the executable pages are
97 // originally read-and-execute only.
98 class MProtectHelper {
99   void *PageAlignedAddr;
100   std::size_t MProtectLen;
101   bool MustCleanup;
102 
103 public:
104   explicit MProtectHelper(void *PageAlignedAddr,
105                           std::size_t MProtectLen,
106                           std::size_t PageSize) XRAY_NEVER_INSTRUMENT
107       : PageAlignedAddr(PageAlignedAddr),
108         MProtectLen(MProtectLen),
109         MustCleanup(false) {
110 #if SANITIZER_FUCHSIA
111     MProtectLen = RoundUpTo(MProtectLen, PageSize);
112 #endif
113   }
114 
115   int MakeWriteable() XRAY_NEVER_INSTRUMENT {
116 #if SANITIZER_FUCHSIA
117     auto R = __sanitizer_change_code_protection(
118         reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, true);
119     if (R != ZX_OK) {
120       Report("XRay: cannot change code protection: %s\n",
121              _zx_status_get_string(R));
122       return -1;
123     }
124     MustCleanup = true;
125     return 0;
126 #else
127     auto R = mprotect(PageAlignedAddr, MProtectLen,
128                       PROT_READ | PROT_WRITE | PROT_EXEC);
129     if (R != -1)
130       MustCleanup = true;
131     return R;
132 #endif
133   }
134 
135   ~MProtectHelper() XRAY_NEVER_INSTRUMENT {
136     if (MustCleanup) {
137 #if SANITIZER_FUCHSIA
138       auto R = __sanitizer_change_code_protection(
139           reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, false);
140       if (R != ZX_OK) {
141         Report("XRay: cannot change code protection: %s\n",
142                _zx_status_get_string(R));
143       }
144 #else
145       mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC);
146 #endif
147     }
148   }
149 };
150 
151 namespace {
152 
153 bool patchSled(const XRaySledEntry &Sled, bool Enable,
154                int32_t FuncId) XRAY_NEVER_INSTRUMENT {
155   bool Success = false;
156   switch (Sled.Kind) {
157   case XRayEntryType::ENTRY:
158     Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry);
159     break;
160   case XRayEntryType::EXIT:
161     Success = patchFunctionExit(Enable, FuncId, Sled);
162     break;
163   case XRayEntryType::TAIL:
164     Success = patchFunctionTailExit(Enable, FuncId, Sled);
165     break;
166   case XRayEntryType::LOG_ARGS_ENTRY:
167     Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry);
168     break;
169   case XRayEntryType::CUSTOM_EVENT:
170     Success = patchCustomEvent(Enable, FuncId, Sled);
171     break;
172   case XRayEntryType::TYPED_EVENT:
173     Success = patchTypedEvent(Enable, FuncId, Sled);
174     break;
175   default:
176     Report("Unsupported sled kind '%" PRIu64 "' @%04x\n", Sled.Address,
177            int(Sled.Kind));
178     return false;
179   }
180   return Success;
181 }
182 
183 const XRayFunctionSledIndex
184 findFunctionSleds(int32_t FuncId,
185                   const XRaySledMap &InstrMap) XRAY_NEVER_INSTRUMENT {
186   int32_t CurFn = 0;
187   uint64_t LastFnAddr = 0;
188   XRayFunctionSledIndex Index = {nullptr, 0};
189 
190   for (std::size_t I = 0; I < InstrMap.Entries && CurFn <= FuncId; I++) {
191     const auto &Sled = InstrMap.Sleds[I];
192     const auto Function = Sled.function();
193     if (Function != LastFnAddr) {
194       CurFn++;
195       LastFnAddr = Function;
196     }
197 
198     if (CurFn == FuncId) {
199       if (Index.Begin == nullptr)
200         Index.Begin = &Sled;
201       Index.Size = &Sled - Index.Begin + 1;
202     }
203   }
204 
205   return Index;
206 }
207 
208 XRayPatchingStatus patchFunction(int32_t FuncId,
209                                  bool Enable) XRAY_NEVER_INSTRUMENT {
210   if (!atomic_load(&XRayInitialized,
211                                 memory_order_acquire))
212     return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
213 
214   uint8_t NotPatching = false;
215   if (!atomic_compare_exchange_strong(
216           &XRayPatching, &NotPatching, true, memory_order_acq_rel))
217     return XRayPatchingStatus::ONGOING; // Already patching.
218 
219   // Next, we look for the function index.
220   XRaySledMap InstrMap;
221   {
222     SpinMutexLock Guard(&XRayInstrMapMutex);
223     InstrMap = XRayInstrMap;
224   }
225 
226   // If we don't have an index, we can't patch individual functions.
227   if (InstrMap.Functions == 0)
228     return XRayPatchingStatus::NOT_INITIALIZED;
229 
230   // FuncId must be a positive number, less than the number of functions
231   // instrumented.
232   if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
233     Report("Invalid function id provided: %d\n", FuncId);
234     return XRayPatchingStatus::FAILED;
235   }
236 
237   // Now we patch ths sleds for this specific function.
238   XRayFunctionSledIndex SledRange;
239   if (InstrMap.SledsIndex) {
240     SledRange = {InstrMap.SledsIndex[FuncId - 1].fromPCRelative(),
241                  InstrMap.SledsIndex[FuncId - 1].Size};
242   } else {
243     SledRange = findFunctionSleds(FuncId, InstrMap);
244   }
245   auto *f = SledRange.Begin;
246   bool SucceedOnce = false;
247   for (size_t i = 0; i != SledRange.Size; ++i)
248     SucceedOnce |= patchSled(f[i], Enable, FuncId);
249 
250   atomic_store(&XRayPatching, false,
251                             memory_order_release);
252 
253   if (!SucceedOnce) {
254     Report("Failed patching any sled for function '%d'.", FuncId);
255     return XRayPatchingStatus::FAILED;
256   }
257 
258   return XRayPatchingStatus::SUCCESS;
259 }
260 
261 // controlPatching implements the common internals of the patching/unpatching
262 // implementation. |Enable| defines whether we're enabling or disabling the
263 // runtime XRay instrumentation.
264 XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT {
265   if (!atomic_load(&XRayInitialized,
266                                 memory_order_acquire))
267     return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
268 
269   uint8_t NotPatching = false;
270   if (!atomic_compare_exchange_strong(
271           &XRayPatching, &NotPatching, true, memory_order_acq_rel))
272     return XRayPatchingStatus::ONGOING; // Already patching.
273 
274   uint8_t PatchingSuccess = false;
275   auto XRayPatchingStatusResetter =
276       at_scope_exit([&PatchingSuccess] {
277         if (!PatchingSuccess)
278           atomic_store(&XRayPatching, false,
279                                     memory_order_release);
280       });
281 
282   XRaySledMap InstrMap;
283   {
284     SpinMutexLock Guard(&XRayInstrMapMutex);
285     InstrMap = XRayInstrMap;
286   }
287   if (InstrMap.Entries == 0)
288     return XRayPatchingStatus::NOT_INITIALIZED;
289 
290   uint32_t FuncId = 1;
291   uint64_t CurFun = 0;
292 
293   // First we want to find the bounds for which we have instrumentation points,
294   // and try to get as few calls to mprotect(...) as possible. We're assuming
295   // that all the sleds for the instrumentation map are contiguous as a single
296   // set of pages. When we do support dynamic shared object instrumentation,
297   // we'll need to do this for each set of page load offsets per DSO loaded. For
298   // now we're assuming we can mprotect the whole section of text between the
299   // minimum sled address and the maximum sled address (+ the largest sled
300   // size).
301   auto *MinSled = &InstrMap.Sleds[0];
302   auto *MaxSled = &InstrMap.Sleds[InstrMap.Entries - 1];
303   for (std::size_t I = 0; I < InstrMap.Entries; I++) {
304     const auto &Sled = InstrMap.Sleds[I];
305     if (Sled.address() < MinSled->address())
306       MinSled = &Sled;
307     if (Sled.address() > MaxSled->address())
308       MaxSled = &Sled;
309   }
310 
311   const size_t PageSize = flags()->xray_page_size_override > 0
312                               ? flags()->xray_page_size_override
313                               : GetPageSizeCached();
314   if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
315     Report("System page size is not a power of two: %zu\n", PageSize);
316     return XRayPatchingStatus::FAILED;
317   }
318 
319   void *PageAlignedAddr =
320       reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1));
321   size_t MProtectLen =
322       (MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) +
323       cSledLength;
324   MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
325   if (Protector.MakeWriteable() == -1) {
326     Report("Failed mprotect: %d\n", errno);
327     return XRayPatchingStatus::FAILED;
328   }
329 
330   for (std::size_t I = 0; I < InstrMap.Entries; ++I) {
331     auto &Sled = InstrMap.Sleds[I];
332     auto F = Sled.function();
333     if (CurFun == 0)
334       CurFun = F;
335     if (F != CurFun) {
336       ++FuncId;
337       CurFun = F;
338     }
339     patchSled(Sled, Enable, FuncId);
340   }
341   atomic_store(&XRayPatching, false,
342                             memory_order_release);
343   PatchingSuccess = true;
344   return XRayPatchingStatus::SUCCESS;
345 }
346 
347 XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId,
348                                             bool Enable) XRAY_NEVER_INSTRUMENT {
349   XRaySledMap InstrMap;
350   {
351     SpinMutexLock Guard(&XRayInstrMapMutex);
352     InstrMap = XRayInstrMap;
353   }
354 
355   // FuncId must be a positive number, less than the number of functions
356   // instrumented.
357   if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
358     Report("Invalid function id provided: %d\n", FuncId);
359     return XRayPatchingStatus::FAILED;
360   }
361 
362   const size_t PageSize = flags()->xray_page_size_override > 0
363                               ? flags()->xray_page_size_override
364                               : GetPageSizeCached();
365   if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
366     Report("Provided page size is not a power of two: %zu\n", PageSize);
367     return XRayPatchingStatus::FAILED;
368   }
369 
370   // Here we compute the minimum sled and maximum sled associated with a
371   // particular function ID.
372   XRayFunctionSledIndex SledRange;
373   if (InstrMap.SledsIndex) {
374     SledRange = {InstrMap.SledsIndex[FuncId - 1].fromPCRelative(),
375                  InstrMap.SledsIndex[FuncId - 1].Size};
376   } else {
377     SledRange = findFunctionSleds(FuncId, InstrMap);
378   }
379   auto *f = SledRange.Begin;
380   auto *e = SledRange.Begin + SledRange.Size;
381   auto *MinSled = f;
382   auto *MaxSled = e - 1;
383   while (f != e) {
384     if (f->address() < MinSled->address())
385       MinSled = f;
386     if (f->address() > MaxSled->address())
387       MaxSled = f;
388     ++f;
389   }
390 
391   void *PageAlignedAddr =
392       reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1));
393   size_t MProtectLen =
394       (MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) +
395       cSledLength;
396   MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
397   if (Protector.MakeWriteable() == -1) {
398     Report("Failed mprotect: %d\n", errno);
399     return XRayPatchingStatus::FAILED;
400   }
401   return patchFunction(FuncId, Enable);
402 }
403 
404 } // namespace
405 
406 } // namespace __xray
407 
408 using namespace __xray;
409 
410 // The following functions are declared `extern "C" {...}` in the header, hence
411 // they're defined in the global namespace.
412 
413 int __xray_set_handler(void (*entry)(int32_t,
414                                      XRayEntryType)) XRAY_NEVER_INSTRUMENT {
415   if (atomic_load(&XRayInitialized,
416                                memory_order_acquire)) {
417 
418     atomic_store(&__xray::XRayPatchedFunction,
419                               reinterpret_cast<uintptr_t>(entry),
420                               memory_order_release);
421     return 1;
422   }
423   return 0;
424 }
425 
426 int __xray_set_customevent_handler(void (*entry)(void *, size_t))
427     XRAY_NEVER_INSTRUMENT {
428   if (atomic_load(&XRayInitialized,
429                                memory_order_acquire)) {
430     atomic_store(&__xray::XRayPatchedCustomEvent,
431                               reinterpret_cast<uintptr_t>(entry),
432                               memory_order_release);
433     return 1;
434   }
435   return 0;
436 }
437 
438 int __xray_set_typedevent_handler(void (*entry)(size_t, const void *,
439                                                 size_t)) XRAY_NEVER_INSTRUMENT {
440   if (atomic_load(&XRayInitialized,
441                                memory_order_acquire)) {
442     atomic_store(&__xray::XRayPatchedTypedEvent,
443                               reinterpret_cast<uintptr_t>(entry),
444                               memory_order_release);
445     return 1;
446   }
447   return 0;
448 }
449 
450 int __xray_remove_handler() XRAY_NEVER_INSTRUMENT {
451   return __xray_set_handler(nullptr);
452 }
453 
454 int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT {
455   return __xray_set_customevent_handler(nullptr);
456 }
457 
458 int __xray_remove_typedevent_handler() XRAY_NEVER_INSTRUMENT {
459   return __xray_set_typedevent_handler(nullptr);
460 }
461 
462 uint16_t __xray_register_event_type(
463     const char *const event_type) XRAY_NEVER_INSTRUMENT {
464   TypeDescriptorMapType::Handle h(&TypeDescriptorAddressMap, (uptr)event_type);
465   if (h.created()) {
466     h->type_id = atomic_fetch_add(
467         &TypeEventDescriptorCounter, 1, memory_order_acq_rel);
468     h->description_string_length = strnlen(event_type, 1024);
469   }
470   return h->type_id;
471 }
472 
473 XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT {
474   return controlPatching(true);
475 }
476 
477 XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT {
478   return controlPatching(false);
479 }
480 
481 XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
482   return mprotectAndPatchFunction(FuncId, true);
483 }
484 
485 XRayPatchingStatus
486 __xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
487   return mprotectAndPatchFunction(FuncId, false);
488 }
489 
490 int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) {
491   if (!atomic_load(&XRayInitialized,
492                                 memory_order_acquire))
493     return 0;
494 
495   // A relaxed write might not be visible even if the current thread gets
496   // scheduled on a different CPU/NUMA node.  We need to wait for everyone to
497   // have this handler installed for consistency of collected data across CPUs.
498   atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(entry),
499                             memory_order_release);
500   return 1;
501 }
502 
503 int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); }
504 
505 uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
506   XRaySledMap InstrMap;
507   {
508     SpinMutexLock Guard(&XRayInstrMapMutex);
509     InstrMap = XRayInstrMap;
510   }
511 
512   if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions)
513     return 0;
514   const XRaySledEntry *Sled =
515       InstrMap.SledsIndex ? InstrMap.SledsIndex[FuncId - 1].fromPCRelative()
516                           : findFunctionSleds(FuncId, InstrMap).Begin;
517   return Sled->function()
518 // On PPC, function entries are always aligned to 16 bytes. The beginning of a
519 // sled might be a local entry, which is always +8 based on the global entry.
520 // Always return the global entry.
521 #ifdef __PPC__
522          & ~0xf
523 #endif
524       ;
525 }
526 
527 size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT {
528   SpinMutexLock Guard(&XRayInstrMapMutex);
529   return XRayInstrMap.Functions;
530 }
531