xref: /freebsd/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl_thread.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===-- tsan_rtl_thread.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "sanitizer_common/sanitizer_placement_new.h"
14 #include "tsan_rtl.h"
15 #include "tsan_mman.h"
16 #include "tsan_platform.h"
17 #include "tsan_report.h"
18 #include "tsan_sync.h"
19 
20 namespace __tsan {
21 
22 // ThreadContext implementation.
23 
24 ThreadContext::ThreadContext(int tid)
25   : ThreadContextBase(tid)
26   , thr()
27   , sync()
28   , epoch0()
29   , epoch1() {
30 }
31 
32 #if !SANITIZER_GO
33 ThreadContext::~ThreadContext() {
34 }
35 #endif
36 
37 void ThreadContext::OnDead() {
38   CHECK_EQ(sync.size(), 0);
39 }
40 
41 void ThreadContext::OnJoined(void *arg) {
42   ThreadState *caller_thr = static_cast<ThreadState *>(arg);
43   AcquireImpl(caller_thr, 0, &sync);
44   sync.Reset(&caller_thr->proc()->clock_cache);
45 }
46 
47 struct OnCreatedArgs {
48   ThreadState *thr;
49   uptr pc;
50 };
51 
52 void ThreadContext::OnCreated(void *arg) {
53   thr = 0;
54   if (tid == 0)
55     return;
56   OnCreatedArgs *args = static_cast<OnCreatedArgs *>(arg);
57   if (!args->thr)  // GCD workers don't have a parent thread.
58     return;
59   args->thr->fast_state.IncrementEpoch();
60   // Can't increment epoch w/o writing to the trace as well.
61   TraceAddEvent(args->thr, args->thr->fast_state, EventTypeMop, 0);
62   ReleaseImpl(args->thr, 0, &sync);
63   creation_stack_id = CurrentStackId(args->thr, args->pc);
64   if (reuse_count == 0)
65     StatInc(args->thr, StatThreadMaxTid);
66 }
67 
68 void ThreadContext::OnReset() {
69   CHECK_EQ(sync.size(), 0);
70   uptr trace_p = GetThreadTrace(tid);
71   ReleaseMemoryPagesToOS(trace_p, trace_p + TraceSize() * sizeof(Event));
72   //!!! ReleaseMemoryToOS(GetThreadTraceHeader(tid), sizeof(Trace));
73 }
74 
75 void ThreadContext::OnDetached(void *arg) {
76   ThreadState *thr1 = static_cast<ThreadState*>(arg);
77   sync.Reset(&thr1->proc()->clock_cache);
78 }
79 
80 struct OnStartedArgs {
81   ThreadState *thr;
82   uptr stk_addr;
83   uptr stk_size;
84   uptr tls_addr;
85   uptr tls_size;
86 };
87 
88 void ThreadContext::OnStarted(void *arg) {
89   OnStartedArgs *args = static_cast<OnStartedArgs*>(arg);
90   thr = args->thr;
91   // RoundUp so that one trace part does not contain events
92   // from different threads.
93   epoch0 = RoundUp(epoch1 + 1, kTracePartSize);
94   epoch1 = (u64)-1;
95   new(thr) ThreadState(ctx, tid, unique_id, epoch0, reuse_count,
96       args->stk_addr, args->stk_size, args->tls_addr, args->tls_size);
97 #if !SANITIZER_GO
98   thr->shadow_stack = &ThreadTrace(thr->tid)->shadow_stack[0];
99   thr->shadow_stack_pos = thr->shadow_stack;
100   thr->shadow_stack_end = thr->shadow_stack + kShadowStackSize;
101 #else
102   // Setup dynamic shadow stack.
103   const int kInitStackSize = 8;
104   thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
105       kInitStackSize * sizeof(uptr));
106   thr->shadow_stack_pos = thr->shadow_stack;
107   thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
108 #endif
109   if (common_flags()->detect_deadlocks)
110     thr->dd_lt = ctx->dd->CreateLogicalThread(unique_id);
111   thr->fast_state.SetHistorySize(flags()->history_size);
112   // Commit switch to the new part of the trace.
113   // TraceAddEvent will reset stack0/mset0 in the new part for us.
114   TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
115 
116   thr->fast_synch_epoch = epoch0;
117   AcquireImpl(thr, 0, &sync);
118   StatInc(thr, StatSyncAcquire);
119   sync.Reset(&thr->proc()->clock_cache);
120   thr->is_inited = true;
121   DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
122           "tls_addr=%zx tls_size=%zx\n",
123           tid, (uptr)epoch0, args->stk_addr, args->stk_size,
124           args->tls_addr, args->tls_size);
125 }
126 
127 void ThreadContext::OnFinished() {
128 #if SANITIZER_GO
129   internal_free(thr->shadow_stack);
130   thr->shadow_stack = nullptr;
131   thr->shadow_stack_pos = nullptr;
132   thr->shadow_stack_end = nullptr;
133 #endif
134   if (!detached) {
135     thr->fast_state.IncrementEpoch();
136     // Can't increment epoch w/o writing to the trace as well.
137     TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
138     ReleaseImpl(thr, 0, &sync);
139   }
140   epoch1 = thr->fast_state.epoch();
141 
142   if (common_flags()->detect_deadlocks)
143     ctx->dd->DestroyLogicalThread(thr->dd_lt);
144   thr->clock.ResetCached(&thr->proc()->clock_cache);
145 #if !SANITIZER_GO
146   thr->last_sleep_clock.ResetCached(&thr->proc()->clock_cache);
147 #endif
148 #if !SANITIZER_GO
149   PlatformCleanUpThreadState(thr);
150 #endif
151   thr->~ThreadState();
152 #if TSAN_COLLECT_STATS
153   StatAggregate(ctx->stat, thr->stat);
154 #endif
155   thr = 0;
156 }
157 
158 #if !SANITIZER_GO
159 struct ThreadLeak {
160   ThreadContext *tctx;
161   int count;
162 };
163 
164 static void MaybeReportThreadLeak(ThreadContextBase *tctx_base, void *arg) {
165   Vector<ThreadLeak> &leaks = *(Vector<ThreadLeak>*)arg;
166   ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
167   if (tctx->detached || tctx->status != ThreadStatusFinished)
168     return;
169   for (uptr i = 0; i < leaks.Size(); i++) {
170     if (leaks[i].tctx->creation_stack_id == tctx->creation_stack_id) {
171       leaks[i].count++;
172       return;
173     }
174   }
175   ThreadLeak leak = {tctx, 1};
176   leaks.PushBack(leak);
177 }
178 #endif
179 
180 #if !SANITIZER_GO
181 static void ReportIgnoresEnabled(ThreadContext *tctx, IgnoreSet *set) {
182   if (tctx->tid == 0) {
183     Printf("ThreadSanitizer: main thread finished with ignores enabled\n");
184   } else {
185     Printf("ThreadSanitizer: thread T%d %s finished with ignores enabled,"
186       " created at:\n", tctx->tid, tctx->name);
187     PrintStack(SymbolizeStackId(tctx->creation_stack_id));
188   }
189   Printf("  One of the following ignores was not ended"
190       " (in order of probability)\n");
191   for (uptr i = 0; i < set->Size(); i++) {
192     Printf("  Ignore was enabled at:\n");
193     PrintStack(SymbolizeStackId(set->At(i)));
194   }
195   Die();
196 }
197 
198 static void ThreadCheckIgnore(ThreadState *thr) {
199   if (ctx->after_multithreaded_fork)
200     return;
201   if (thr->ignore_reads_and_writes)
202     ReportIgnoresEnabled(thr->tctx, &thr->mop_ignore_set);
203   if (thr->ignore_sync)
204     ReportIgnoresEnabled(thr->tctx, &thr->sync_ignore_set);
205 }
206 #else
207 static void ThreadCheckIgnore(ThreadState *thr) {}
208 #endif
209 
210 void ThreadFinalize(ThreadState *thr) {
211   ThreadCheckIgnore(thr);
212 #if !SANITIZER_GO
213   if (!flags()->report_thread_leaks)
214     return;
215   ThreadRegistryLock l(ctx->thread_registry);
216   Vector<ThreadLeak> leaks;
217   ctx->thread_registry->RunCallbackForEachThreadLocked(
218       MaybeReportThreadLeak, &leaks);
219   for (uptr i = 0; i < leaks.Size(); i++) {
220     ScopedReport rep(ReportTypeThreadLeak);
221     rep.AddThread(leaks[i].tctx, true);
222     rep.SetCount(leaks[i].count);
223     OutputReport(thr, rep);
224   }
225 #endif
226 }
227 
228 int ThreadCount(ThreadState *thr) {
229   uptr result;
230   ctx->thread_registry->GetNumberOfThreads(0, 0, &result);
231   return (int)result;
232 }
233 
234 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
235   StatInc(thr, StatThreadCreate);
236   OnCreatedArgs args = { thr, pc };
237   u32 parent_tid = thr ? thr->tid : kInvalidTid;  // No parent for GCD workers.
238   int tid =
239       ctx->thread_registry->CreateThread(uid, detached, parent_tid, &args);
240   DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", parent_tid, tid, uid);
241   StatSet(thr, StatThreadMaxAlive, ctx->thread_registry->GetMaxAliveThreads());
242   return tid;
243 }
244 
245 void ThreadStart(ThreadState *thr, int tid, tid_t os_id,
246                  ThreadType thread_type) {
247   uptr stk_addr = 0;
248   uptr stk_size = 0;
249   uptr tls_addr = 0;
250   uptr tls_size = 0;
251 #if !SANITIZER_GO
252   if (thread_type != ThreadType::Fiber)
253     GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
254 
255   if (tid) {
256     if (stk_addr && stk_size)
257       MemoryRangeImitateWrite(thr, /*pc=*/ 1, stk_addr, stk_size);
258 
259     if (tls_addr && tls_size) ImitateTlsWrite(thr, tls_addr, tls_size);
260   }
261 #endif
262 
263   ThreadRegistry *tr = ctx->thread_registry;
264   OnStartedArgs args = { thr, stk_addr, stk_size, tls_addr, tls_size };
265   tr->StartThread(tid, os_id, thread_type, &args);
266 
267   tr->Lock();
268   thr->tctx = (ThreadContext*)tr->GetThreadLocked(tid);
269   tr->Unlock();
270 
271 #if !SANITIZER_GO
272   if (ctx->after_multithreaded_fork) {
273     thr->ignore_interceptors++;
274     ThreadIgnoreBegin(thr, 0);
275     ThreadIgnoreSyncBegin(thr, 0);
276   }
277 #endif
278 }
279 
280 void ThreadFinish(ThreadState *thr) {
281   ThreadCheckIgnore(thr);
282   StatInc(thr, StatThreadFinish);
283   if (thr->stk_addr && thr->stk_size)
284     DontNeedShadowFor(thr->stk_addr, thr->stk_size);
285   if (thr->tls_addr && thr->tls_size)
286     DontNeedShadowFor(thr->tls_addr, thr->tls_size);
287   thr->is_dead = true;
288   ctx->thread_registry->FinishThread(thr->tid);
289 }
290 
291 struct ConsumeThreadContext {
292   uptr uid;
293   ThreadContextBase *tctx;
294 };
295 
296 static bool ConsumeThreadByUid(ThreadContextBase *tctx, void *arg) {
297   ConsumeThreadContext *findCtx = (ConsumeThreadContext *)arg;
298   if (tctx->user_id == findCtx->uid && tctx->status != ThreadStatusInvalid) {
299     if (findCtx->tctx) {
300       // Ensure that user_id is unique. If it's not the case we are screwed.
301       // Something went wrong before, but now there is no way to recover.
302       // Returning a wrong thread is not an option, it may lead to very hard
303       // to debug false positives (e.g. if we join a wrong thread).
304       Report("ThreadSanitizer: dup thread with used id 0x%zx\n", findCtx->uid);
305       Die();
306     }
307     findCtx->tctx = tctx;
308     tctx->user_id = 0;
309   }
310   return false;
311 }
312 
313 int ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid) {
314   ConsumeThreadContext findCtx = {uid, nullptr};
315   ctx->thread_registry->FindThread(ConsumeThreadByUid, &findCtx);
316   int tid = findCtx.tctx ? findCtx.tctx->tid : ThreadRegistry::kUnknownTid;
317   DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, tid);
318   return tid;
319 }
320 
321 void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
322   CHECK_GT(tid, 0);
323   CHECK_LT(tid, kMaxTid);
324   DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
325   ctx->thread_registry->JoinThread(tid, thr);
326 }
327 
328 void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
329   CHECK_GT(tid, 0);
330   CHECK_LT(tid, kMaxTid);
331   ctx->thread_registry->DetachThread(tid, thr);
332 }
333 
334 void ThreadNotJoined(ThreadState *thr, uptr pc, int tid, uptr uid) {
335   CHECK_GT(tid, 0);
336   CHECK_LT(tid, kMaxTid);
337   ctx->thread_registry->SetThreadUserId(tid, uid);
338 }
339 
340 void ThreadSetName(ThreadState *thr, const char *name) {
341   ctx->thread_registry->SetThreadName(thr->tid, name);
342 }
343 
344 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
345                        uptr size, bool is_write) {
346   if (size == 0)
347     return;
348 
349   u64 *shadow_mem = (u64*)MemToShadow(addr);
350   DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
351       thr->tid, (void*)pc, (void*)addr,
352       (int)size, is_write);
353 
354 #if SANITIZER_DEBUG
355   if (!IsAppMem(addr)) {
356     Printf("Access to non app mem %zx\n", addr);
357     DCHECK(IsAppMem(addr));
358   }
359   if (!IsAppMem(addr + size - 1)) {
360     Printf("Access to non app mem %zx\n", addr + size - 1);
361     DCHECK(IsAppMem(addr + size - 1));
362   }
363   if (!IsShadowMem((uptr)shadow_mem)) {
364     Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
365     DCHECK(IsShadowMem((uptr)shadow_mem));
366   }
367   if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
368     Printf("Bad shadow addr %p (%zx)\n",
369                shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
370     DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
371   }
372 #endif
373 
374   StatInc(thr, StatMopRange);
375 
376   if (*shadow_mem == kShadowRodata) {
377     DCHECK(!is_write);
378     // Access to .rodata section, no races here.
379     // Measurements show that it can be 10-20% of all memory accesses.
380     StatInc(thr, StatMopRangeRodata);
381     return;
382   }
383 
384   FastState fast_state = thr->fast_state;
385   if (fast_state.GetIgnoreBit())
386     return;
387 
388   fast_state.IncrementEpoch();
389   thr->fast_state = fast_state;
390   TraceAddEvent(thr, fast_state, EventTypeMop, pc);
391 
392   bool unaligned = (addr % kShadowCell) != 0;
393 
394   // Handle unaligned beginning, if any.
395   for (; addr % kShadowCell && size; addr++, size--) {
396     int const kAccessSizeLog = 0;
397     Shadow cur(fast_state);
398     cur.SetWrite(is_write);
399     cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
400     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
401         shadow_mem, cur);
402   }
403   if (unaligned)
404     shadow_mem += kShadowCnt;
405   // Handle middle part, if any.
406   for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
407     int const kAccessSizeLog = 3;
408     Shadow cur(fast_state);
409     cur.SetWrite(is_write);
410     cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
411     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
412         shadow_mem, cur);
413     shadow_mem += kShadowCnt;
414   }
415   // Handle ending, if any.
416   for (; size; addr++, size--) {
417     int const kAccessSizeLog = 0;
418     Shadow cur(fast_state);
419     cur.SetWrite(is_write);
420     cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
421     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
422         shadow_mem, cur);
423   }
424 }
425 
426 #if !SANITIZER_GO
427 void FiberSwitchImpl(ThreadState *from, ThreadState *to) {
428   Processor *proc = from->proc();
429   ProcUnwire(proc, from);
430   ProcWire(proc, to);
431   set_cur_thread(to);
432 }
433 
434 ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags) {
435   void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadState));
436   ThreadState *fiber = static_cast<ThreadState *>(mem);
437   internal_memset(fiber, 0, sizeof(*fiber));
438   int tid = ThreadCreate(thr, pc, 0, true);
439   FiberSwitchImpl(thr, fiber);
440   ThreadStart(fiber, tid, 0, ThreadType::Fiber);
441   FiberSwitchImpl(fiber, thr);
442   return fiber;
443 }
444 
445 void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber) {
446   FiberSwitchImpl(thr, fiber);
447   ThreadFinish(fiber);
448   FiberSwitchImpl(fiber, thr);
449   internal_free(fiber);
450 }
451 
452 void FiberSwitch(ThreadState *thr, uptr pc,
453                  ThreadState *fiber, unsigned flags) {
454   if (!(flags & FiberSwitchFlagNoSync))
455     Release(thr, pc, (uptr)fiber);
456   FiberSwitchImpl(thr, fiber);
457   if (!(flags & FiberSwitchFlagNoSync))
458     Acquire(fiber, pc, (uptr)fiber);
459 }
460 #endif
461 
462 }  // namespace __tsan
463