xref: /freebsd/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl_access.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- tsan_rtl_access.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Definitions of memory access and function entry/exit entry points.
12 //===----------------------------------------------------------------------===//
13 
14 #include "tsan_rtl.h"
15 
16 namespace __tsan {
17 
18 namespace v3 {
19 
20 ALWAYS_INLINE USED bool TryTraceMemoryAccess(ThreadState *thr, uptr pc,
21                                              uptr addr, uptr size,
22                                              AccessType typ) {
23   DCHECK(size == 1 || size == 2 || size == 4 || size == 8);
24   if (!kCollectHistory)
25     return true;
26   EventAccess *ev;
27   if (UNLIKELY(!TraceAcquire(thr, &ev)))
28     return false;
29   u64 size_log = size == 1 ? 0 : size == 2 ? 1 : size == 4 ? 2 : 3;
30   uptr pc_delta = pc - thr->trace_prev_pc + (1 << (EventAccess::kPCBits - 1));
31   thr->trace_prev_pc = pc;
32   if (LIKELY(pc_delta < (1 << EventAccess::kPCBits))) {
33     ev->is_access = 1;
34     ev->is_read = !!(typ & kAccessRead);
35     ev->is_atomic = !!(typ & kAccessAtomic);
36     ev->size_log = size_log;
37     ev->pc_delta = pc_delta;
38     DCHECK_EQ(ev->pc_delta, pc_delta);
39     ev->addr = CompressAddr(addr);
40     TraceRelease(thr, ev);
41     return true;
42   }
43   auto *evex = reinterpret_cast<EventAccessExt *>(ev);
44   evex->is_access = 0;
45   evex->is_func = 0;
46   evex->type = EventType::kAccessExt;
47   evex->is_read = !!(typ & kAccessRead);
48   evex->is_atomic = !!(typ & kAccessAtomic);
49   evex->size_log = size_log;
50   evex->addr = CompressAddr(addr);
51   evex->pc = pc;
52   TraceRelease(thr, evex);
53   return true;
54 }
55 
56 ALWAYS_INLINE USED bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc,
57                                                   uptr addr, uptr size,
58                                                   AccessType typ) {
59   if (!kCollectHistory)
60     return true;
61   EventAccessRange *ev;
62   if (UNLIKELY(!TraceAcquire(thr, &ev)))
63     return false;
64   thr->trace_prev_pc = pc;
65   ev->is_access = 0;
66   ev->is_func = 0;
67   ev->type = EventType::kAccessRange;
68   ev->is_read = !!(typ & kAccessRead);
69   ev->is_free = !!(typ & kAccessFree);
70   ev->size_lo = size;
71   ev->pc = CompressAddr(pc);
72   ev->addr = CompressAddr(addr);
73   ev->size_hi = size >> EventAccessRange::kSizeLoBits;
74   TraceRelease(thr, ev);
75   return true;
76 }
77 
78 void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
79                             AccessType typ) {
80   if (LIKELY(TryTraceMemoryAccessRange(thr, pc, addr, size, typ)))
81     return;
82   TraceSwitchPart(thr);
83   UNUSED bool res = TryTraceMemoryAccessRange(thr, pc, addr, size, typ);
84   DCHECK(res);
85 }
86 
87 void TraceFunc(ThreadState *thr, uptr pc) {
88   if (LIKELY(TryTraceFunc(thr, pc)))
89     return;
90   TraceSwitchPart(thr);
91   UNUSED bool res = TryTraceFunc(thr, pc);
92   DCHECK(res);
93 }
94 
95 void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
96                     StackID stk) {
97   DCHECK(type == EventType::kLock || type == EventType::kRLock);
98   if (!kCollectHistory)
99     return;
100   EventLock ev;
101   ev.is_access = 0;
102   ev.is_func = 0;
103   ev.type = type;
104   ev.pc = CompressAddr(pc);
105   ev.stack_lo = stk;
106   ev.stack_hi = stk >> EventLock::kStackIDLoBits;
107   ev._ = 0;
108   ev.addr = CompressAddr(addr);
109   TraceEvent(thr, ev);
110 }
111 
112 void TraceMutexUnlock(ThreadState *thr, uptr addr) {
113   if (!kCollectHistory)
114     return;
115   EventUnlock ev;
116   ev.is_access = 0;
117   ev.is_func = 0;
118   ev.type = EventType::kUnlock;
119   ev._ = 0;
120   ev.addr = CompressAddr(addr);
121   TraceEvent(thr, ev);
122 }
123 
124 void TraceTime(ThreadState *thr) {
125   if (!kCollectHistory)
126     return;
127   EventTime ev;
128   ev.is_access = 0;
129   ev.is_func = 0;
130   ev.type = EventType::kTime;
131   ev.sid = static_cast<u64>(thr->sid);
132   ev.epoch = static_cast<u64>(thr->epoch);
133   ev._ = 0;
134   TraceEvent(thr, ev);
135 }
136 
137 }  // namespace v3
138 
139 ALWAYS_INLINE
140 Shadow LoadShadow(u64 *p) {
141   u64 raw = atomic_load((atomic_uint64_t *)p, memory_order_relaxed);
142   return Shadow(raw);
143 }
144 
145 ALWAYS_INLINE
146 void StoreShadow(u64 *sp, u64 s) {
147   atomic_store((atomic_uint64_t *)sp, s, memory_order_relaxed);
148 }
149 
150 ALWAYS_INLINE
151 void StoreIfNotYetStored(u64 *sp, u64 *s) {
152   StoreShadow(sp, *s);
153   *s = 0;
154 }
155 
156 extern "C" void __tsan_report_race();
157 
158 ALWAYS_INLINE
159 void HandleRace(ThreadState *thr, u64 *shadow_mem, Shadow cur, Shadow old) {
160   thr->racy_state[0] = cur.raw();
161   thr->racy_state[1] = old.raw();
162   thr->racy_shadow_addr = shadow_mem;
163 #if !SANITIZER_GO
164   HACKY_CALL(__tsan_report_race);
165 #else
166   ReportRace(thr);
167 #endif
168 }
169 
170 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
171   return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
172 }
173 
174 ALWAYS_INLINE
175 void MemoryAccessImpl1(ThreadState *thr, uptr addr, int kAccessSizeLog,
176                        bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem,
177                        Shadow cur) {
178   // This potentially can live in an MMX/SSE scratch register.
179   // The required intrinsics are:
180   // __m128i _mm_move_epi64(__m128i*);
181   // _mm_storel_epi64(u64*, __m128i);
182   u64 store_word = cur.raw();
183   bool stored = false;
184 
185   // scan all the shadow values and dispatch to 4 categories:
186   // same, replace, candidate and race (see comments below).
187   // we consider only 3 cases regarding access sizes:
188   // equal, intersect and not intersect. initially I considered
189   // larger and smaller as well, it allowed to replace some
190   // 'candidates' with 'same' or 'replace', but I think
191   // it's just not worth it (performance- and complexity-wise).
192 
193   Shadow old(0);
194 
195   // It release mode we manually unroll the loop,
196   // because empirically gcc generates better code this way.
197   // However, we can't afford unrolling in debug mode, because the function
198   // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
199   // threads, which is not enough for the unrolled loop.
200 #if SANITIZER_DEBUG
201   for (int idx = 0; idx < 4; idx++) {
202 #  include "tsan_update_shadow_word.inc"
203   }
204 #else
205   int idx = 0;
206 #  include "tsan_update_shadow_word.inc"
207   idx = 1;
208   if (stored) {
209 #  include "tsan_update_shadow_word.inc"
210   } else {
211 #  include "tsan_update_shadow_word.inc"
212   }
213   idx = 2;
214   if (stored) {
215 #  include "tsan_update_shadow_word.inc"
216   } else {
217 #  include "tsan_update_shadow_word.inc"
218   }
219   idx = 3;
220   if (stored) {
221 #  include "tsan_update_shadow_word.inc"
222   } else {
223 #  include "tsan_update_shadow_word.inc"
224   }
225 #endif
226 
227   // we did not find any races and had already stored
228   // the current access info, so we are done
229   if (LIKELY(stored))
230     return;
231   // choose a random candidate slot and replace it
232   StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
233   return;
234 RACE:
235   HandleRace(thr, shadow_mem, cur, old);
236   return;
237 }
238 
239 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
240                            AccessType typ) {
241   DCHECK(!(typ & kAccessAtomic));
242   const bool kAccessIsWrite = !(typ & kAccessRead);
243   const bool kIsAtomic = false;
244   while (size) {
245     int size1 = 1;
246     int kAccessSizeLog = kSizeLog1;
247     if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
248       size1 = 8;
249       kAccessSizeLog = kSizeLog8;
250     } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
251       size1 = 4;
252       kAccessSizeLog = kSizeLog4;
253     } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
254       size1 = 2;
255       kAccessSizeLog = kSizeLog2;
256     }
257     MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
258     addr += size1;
259     size -= size1;
260   }
261 }
262 
263 ALWAYS_INLINE
264 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
265   Shadow cur(a);
266   for (uptr i = 0; i < kShadowCnt; i++) {
267     Shadow old(LoadShadow(&s[i]));
268     if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
269         old.TidWithIgnore() == cur.TidWithIgnore() &&
270         old.epoch() > sync_epoch && old.IsAtomic() == cur.IsAtomic() &&
271         old.IsRead() <= cur.IsRead())
272       return true;
273   }
274   return false;
275 }
276 
277 #if TSAN_VECTORIZE
278 #  define SHUF(v0, v1, i0, i1, i2, i3)                    \
279     _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(v0), \
280                                     _mm_castsi128_ps(v1), \
281                                     (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
282 ALWAYS_INLINE
283 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
284   // This is an optimized version of ContainsSameAccessSlow.
285   // load current access into access[0:63]
286   const m128 access = _mm_cvtsi64_si128(a);
287   // duplicate high part of access in addr0:
288   // addr0[0:31]        = access[32:63]
289   // addr0[32:63]       = access[32:63]
290   // addr0[64:95]       = access[32:63]
291   // addr0[96:127]      = access[32:63]
292   const m128 addr0 = SHUF(access, access, 1, 1, 1, 1);
293   // load 4 shadow slots
294   const m128 shadow0 = _mm_load_si128((__m128i *)s);
295   const m128 shadow1 = _mm_load_si128((__m128i *)s + 1);
296   // load high parts of 4 shadow slots into addr_vect:
297   // addr_vect[0:31]    = shadow0[32:63]
298   // addr_vect[32:63]   = shadow0[96:127]
299   // addr_vect[64:95]   = shadow1[32:63]
300   // addr_vect[96:127]  = shadow1[96:127]
301   m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3);
302   if (!is_write) {
303     // set IsRead bit in addr_vect
304     const m128 rw_mask1 = _mm_cvtsi64_si128(1 << 15);
305     const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
306     addr_vect = _mm_or_si128(addr_vect, rw_mask);
307   }
308   // addr0 == addr_vect?
309   const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect);
310   // epoch1[0:63]       = sync_epoch
311   const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch);
312   // epoch[0:31]        = sync_epoch[0:31]
313   // epoch[32:63]       = sync_epoch[0:31]
314   // epoch[64:95]       = sync_epoch[0:31]
315   // epoch[96:127]      = sync_epoch[0:31]
316   const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0);
317   // load low parts of shadow cell epochs into epoch_vect:
318   // epoch_vect[0:31]   = shadow0[0:31]
319   // epoch_vect[32:63]  = shadow0[64:95]
320   // epoch_vect[64:95]  = shadow1[0:31]
321   // epoch_vect[96:127] = shadow1[64:95]
322   const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
323   // epoch_vect >= sync_epoch?
324   const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch);
325   // addr_res & epoch_res
326   const m128 res = _mm_and_si128(addr_res, epoch_res);
327   // mask[0] = res[7]
328   // mask[1] = res[15]
329   // ...
330   // mask[15] = res[127]
331   const int mask = _mm_movemask_epi8(res);
332   return mask != 0;
333 }
334 #endif
335 
336 ALWAYS_INLINE
337 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
338 #if TSAN_VECTORIZE
339   bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
340   // NOTE: this check can fail if the shadow is concurrently mutated
341   // by other threads. But it still can be useful if you modify
342   // ContainsSameAccessFast and want to ensure that it's not completely broken.
343   // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
344   return res;
345 #else
346   return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
347 #endif
348 }
349 
350 ALWAYS_INLINE USED void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
351                                      int kAccessSizeLog, bool kAccessIsWrite,
352                                      bool kIsAtomic) {
353   RawShadow *shadow_mem = MemToShadow(addr);
354   DPrintf2(
355       "#%d: MemoryAccess: @%p %p size=%d"
356       " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
357       (int)thr->fast_state.tid(), (void *)pc, (void *)addr,
358       (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
359       (uptr)shadow_mem[0], (uptr)shadow_mem[1], (uptr)shadow_mem[2],
360       (uptr)shadow_mem[3]);
361 #if SANITIZER_DEBUG
362   if (!IsAppMem(addr)) {
363     Printf("Access to non app mem %zx\n", addr);
364     DCHECK(IsAppMem(addr));
365   }
366   if (!IsShadowMem(shadow_mem)) {
367     Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
368     DCHECK(IsShadowMem(shadow_mem));
369   }
370 #endif
371 
372   if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) {
373     // Access to .rodata section, no races here.
374     // Measurements show that it can be 10-20% of all memory accesses.
375     return;
376   }
377 
378   FastState fast_state = thr->fast_state;
379   if (UNLIKELY(fast_state.GetIgnoreBit())) {
380     return;
381   }
382 
383   Shadow cur(fast_state);
384   cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
385   cur.SetWrite(kAccessIsWrite);
386   cur.SetAtomic(kIsAtomic);
387 
388   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch,
389                                 kAccessIsWrite))) {
390     return;
391   }
392 
393   if (kCollectHistory) {
394     fast_state.IncrementEpoch();
395     thr->fast_state = fast_state;
396     TraceAddEvent(thr, fast_state, EventTypeMop, pc);
397     cur.IncrementEpoch();
398   }
399 
400   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
401                     shadow_mem, cur);
402 }
403 
404 // Called by MemoryAccessRange in tsan_rtl_thread.cpp
405 ALWAYS_INLINE USED void MemoryAccessImpl(ThreadState *thr, uptr addr,
406                                          int kAccessSizeLog,
407                                          bool kAccessIsWrite, bool kIsAtomic,
408                                          u64 *shadow_mem, Shadow cur) {
409   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch,
410                                 kAccessIsWrite))) {
411     return;
412   }
413 
414   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
415                     shadow_mem, cur);
416 }
417 
418 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
419                            u64 val) {
420   (void)thr;
421   (void)pc;
422   if (size == 0)
423     return;
424   // FIXME: fix me.
425   uptr offset = addr % kShadowCell;
426   if (offset) {
427     offset = kShadowCell - offset;
428     if (size <= offset)
429       return;
430     addr += offset;
431     size -= offset;
432   }
433   DCHECK_EQ(addr % 8, 0);
434   // If a user passes some insane arguments (memset(0)),
435   // let it just crash as usual.
436   if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
437     return;
438   // Don't want to touch lots of shadow memory.
439   // If a program maps 10MB stack, there is no need reset the whole range.
440   size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
441   // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
442   if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
443     RawShadow *p = MemToShadow(addr);
444     CHECK(IsShadowMem(p));
445     CHECK(IsShadowMem(p + size * kShadowCnt / kShadowCell - 1));
446     // FIXME: may overwrite a part outside the region
447     for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
448       p[i++] = val;
449       for (uptr j = 1; j < kShadowCnt; j++) p[i++] = 0;
450     }
451   } else {
452     // The region is big, reset only beginning and end.
453     const uptr kPageSize = GetPageSizeCached();
454     RawShadow *begin = MemToShadow(addr);
455     RawShadow *end = begin + size / kShadowCell * kShadowCnt;
456     RawShadow *p = begin;
457     // Set at least first kPageSize/2 to page boundary.
458     while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
459       *p++ = val;
460       for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0;
461     }
462     // Reset middle part.
463     RawShadow *p1 = p;
464     p = RoundDown(end, kPageSize);
465     if (!MmapFixedSuperNoReserve((uptr)p1, (uptr)p - (uptr)p1))
466       Die();
467     // Set the ending.
468     while (p < end) {
469       *p++ = val;
470       for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0;
471     }
472   }
473 }
474 
475 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
476   MemoryRangeSet(thr, pc, addr, size, 0);
477 }
478 
479 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
480   // Processing more than 1k (4k of shadow) is expensive,
481   // can cause excessive memory consumption (user does not necessary touch
482   // the whole range) and most likely unnecessary.
483   if (size > 1024)
484     size = 1024;
485   CHECK_EQ(thr->is_freeing, false);
486   thr->is_freeing = true;
487   MemoryAccessRange(thr, pc, addr, size, true);
488   thr->is_freeing = false;
489   if (kCollectHistory) {
490     thr->fast_state.IncrementEpoch();
491     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
492   }
493   Shadow s(thr->fast_state);
494   s.ClearIgnoreBit();
495   s.MarkAsFreed();
496   s.SetWrite(true);
497   s.SetAddr0AndSizeLog(0, 3);
498   MemoryRangeSet(thr, pc, addr, size, s.raw());
499 }
500 
501 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
502   if (kCollectHistory) {
503     thr->fast_state.IncrementEpoch();
504     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
505   }
506   Shadow s(thr->fast_state);
507   s.ClearIgnoreBit();
508   s.SetWrite(true);
509   s.SetAddr0AndSizeLog(0, 3);
510   MemoryRangeSet(thr, pc, addr, size, s.raw());
511 }
512 
513 void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
514                                          uptr size) {
515   if (thr->ignore_reads_and_writes == 0)
516     MemoryRangeImitateWrite(thr, pc, addr, size);
517   else
518     MemoryResetRange(thr, pc, addr, size);
519 }
520 
521 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
522                        bool is_write) {
523   if (size == 0)
524     return;
525 
526   RawShadow *shadow_mem = MemToShadow(addr);
527   DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n", thr->tid,
528            (void *)pc, (void *)addr, (int)size, is_write);
529 
530 #if SANITIZER_DEBUG
531   if (!IsAppMem(addr)) {
532     Printf("Access to non app mem %zx\n", addr);
533     DCHECK(IsAppMem(addr));
534   }
535   if (!IsAppMem(addr + size - 1)) {
536     Printf("Access to non app mem %zx\n", addr + size - 1);
537     DCHECK(IsAppMem(addr + size - 1));
538   }
539   if (!IsShadowMem(shadow_mem)) {
540     Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
541     DCHECK(IsShadowMem(shadow_mem));
542   }
543   if (!IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1)) {
544     Printf("Bad shadow addr %p (%zx)\n", shadow_mem + size * kShadowCnt / 8 - 1,
545            addr + size - 1);
546     DCHECK(IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1));
547   }
548 #endif
549 
550   if (*shadow_mem == kShadowRodata) {
551     DCHECK(!is_write);
552     // Access to .rodata section, no races here.
553     // Measurements show that it can be 10-20% of all memory accesses.
554     return;
555   }
556 
557   FastState fast_state = thr->fast_state;
558   if (fast_state.GetIgnoreBit())
559     return;
560 
561   fast_state.IncrementEpoch();
562   thr->fast_state = fast_state;
563   TraceAddEvent(thr, fast_state, EventTypeMop, pc);
564 
565   bool unaligned = (addr % kShadowCell) != 0;
566 
567   // Handle unaligned beginning, if any.
568   for (; addr % kShadowCell && size; addr++, size--) {
569     int const kAccessSizeLog = 0;
570     Shadow cur(fast_state);
571     cur.SetWrite(is_write);
572     cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
573     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
574                      cur);
575   }
576   if (unaligned)
577     shadow_mem += kShadowCnt;
578   // Handle middle part, if any.
579   for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
580     int const kAccessSizeLog = 3;
581     Shadow cur(fast_state);
582     cur.SetWrite(is_write);
583     cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
584     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
585                      cur);
586     shadow_mem += kShadowCnt;
587   }
588   // Handle ending, if any.
589   for (; size; addr++, size--) {
590     int const kAccessSizeLog = 0;
591     Shadow cur(fast_state);
592     cur.SetWrite(is_write);
593     cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
594     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
595                      cur);
596   }
597 }
598 
599 }  // namespace __tsan
600 
601 #if !SANITIZER_GO
602 // Must be included in this file to make sure everything is inlined.
603 #  include "tsan_interface.inc"
604 #endif
605