xref: /freebsd/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.h (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Main internal TSan header file.
12 //
13 // Ground rules:
14 //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
15 //     function-scope locals)
16 //   - All functions/classes/etc reside in namespace __tsan, except for those
17 //     declared in tsan_interface.h.
18 //   - Platform-specific files should be used instead of ifdefs (*).
19 //   - No system headers included in header files (*).
20 //   - Platform specific headres included only into platform-specific files (*).
21 //
22 //  (*) Except when inlining is critical for performance.
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef TSAN_RTL_H
26 #define TSAN_RTL_H
27 
28 #include "sanitizer_common/sanitizer_allocator.h"
29 #include "sanitizer_common/sanitizer_allocator_internal.h"
30 #include "sanitizer_common/sanitizer_asm.h"
31 #include "sanitizer_common/sanitizer_common.h"
32 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
33 #include "sanitizer_common/sanitizer_libignore.h"
34 #include "sanitizer_common/sanitizer_suppressions.h"
35 #include "sanitizer_common/sanitizer_thread_registry.h"
36 #include "sanitizer_common/sanitizer_vector.h"
37 #include "tsan_defs.h"
38 #include "tsan_flags.h"
39 #include "tsan_ignoreset.h"
40 #include "tsan_ilist.h"
41 #include "tsan_mman.h"
42 #include "tsan_mutexset.h"
43 #include "tsan_platform.h"
44 #include "tsan_report.h"
45 #include "tsan_shadow.h"
46 #include "tsan_stack_trace.h"
47 #include "tsan_sync.h"
48 #include "tsan_trace.h"
49 #include "tsan_vector_clock.h"
50 
51 #if SANITIZER_WORDSIZE != 64
52 # error "ThreadSanitizer is supported only on 64-bit platforms"
53 #endif
54 
55 namespace __tsan {
56 
57 #if !SANITIZER_GO
58 struct MapUnmapCallback;
59 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
60 
61 struct AP32 {
62   static const uptr kSpaceBeg = 0;
63   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
64   static const uptr kMetadataSize = 0;
65   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
66   static const uptr kRegionSizeLog = 20;
67   using AddressSpaceView = LocalAddressSpaceView;
68   typedef __tsan::MapUnmapCallback MapUnmapCallback;
69   static const uptr kFlags = 0;
70 };
71 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
72 #else
73 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
74 #    if defined(__s390x__)
75   typedef MappingS390x Mapping;
76 #    else
77   typedef Mapping48AddressSpace Mapping;
78 #    endif
79   static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
80   static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
81   static const uptr kMetadataSize = 0;
82   typedef DefaultSizeClassMap SizeClassMap;
83   typedef __tsan::MapUnmapCallback MapUnmapCallback;
84   static const uptr kFlags = 0;
85   using AddressSpaceView = LocalAddressSpaceView;
86 };
87 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
88 #endif
89 typedef CombinedAllocator<PrimaryAllocator> Allocator;
90 typedef Allocator::AllocatorCache AllocatorCache;
91 Allocator *allocator();
92 #endif
93 
94 struct ThreadSignalContext;
95 
96 struct JmpBuf {
97   uptr sp;
98   int int_signal_send;
99   bool in_blocking_func;
100   uptr in_signal_handler;
101   uptr *shadow_stack_pos;
102 };
103 
104 // A Processor represents a physical thread, or a P for Go.
105 // It is used to store internal resources like allocate cache, and does not
106 // participate in race-detection logic (invisible to end user).
107 // In C++ it is tied to an OS thread just like ThreadState, however ideally
108 // it should be tied to a CPU (this way we will have fewer allocator caches).
109 // In Go it is tied to a P, so there are significantly fewer Processor's than
110 // ThreadState's (which are tied to Gs).
111 // A ThreadState must be wired with a Processor to handle events.
112 struct Processor {
113   ThreadState *thr; // currently wired thread, or nullptr
114 #if !SANITIZER_GO
115   AllocatorCache alloc_cache;
116   InternalAllocatorCache internal_alloc_cache;
117 #endif
118   DenseSlabAllocCache block_cache;
119   DenseSlabAllocCache sync_cache;
120   DDPhysicalThread *dd_pt;
121 };
122 
123 #if !SANITIZER_GO
124 // ScopedGlobalProcessor temporary setups a global processor for the current
125 // thread, if it does not have one. Intended for interceptors that can run
126 // at the very thread end, when we already destroyed the thread processor.
127 struct ScopedGlobalProcessor {
128   ScopedGlobalProcessor();
129   ~ScopedGlobalProcessor();
130 };
131 #endif
132 
133 struct TidEpoch {
134   Tid tid;
135   Epoch epoch;
136 };
137 
138 struct TidSlot {
139   Mutex mtx;
140   Sid sid;
141   atomic_uint32_t raw_epoch;
142   ThreadState *thr;
143   Vector<TidEpoch> journal;
144   INode node;
145 
146   Epoch epoch() const {
147     return static_cast<Epoch>(atomic_load(&raw_epoch, memory_order_relaxed));
148   }
149 
150   void SetEpoch(Epoch v) {
151     atomic_store(&raw_epoch, static_cast<u32>(v), memory_order_relaxed);
152   }
153 
154   TidSlot();
155 } ALIGNED(SANITIZER_CACHE_LINE_SIZE);
156 
157 // This struct is stored in TLS.
158 struct ThreadState {
159   FastState fast_state;
160   int ignore_sync;
161 #if !SANITIZER_GO
162   int ignore_interceptors;
163 #endif
164   uptr *shadow_stack_pos;
165 
166   // Current position in tctx->trace.Back()->events (Event*).
167   atomic_uintptr_t trace_pos;
168   // PC of the last memory access, used to compute PC deltas in the trace.
169   uptr trace_prev_pc;
170 
171   // Technically `current` should be a separate THREADLOCAL variable;
172   // but it is placed here in order to share cache line with previous fields.
173   ThreadState* current;
174 
175   atomic_sint32_t pending_signals;
176 
177   VectorClock clock;
178 
179   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
180   // We do not distinguish beteween ignoring reads and writes
181   // for better performance.
182   int ignore_reads_and_writes;
183   int suppress_reports;
184   // Go does not support ignores.
185 #if !SANITIZER_GO
186   IgnoreSet mop_ignore_set;
187   IgnoreSet sync_ignore_set;
188 #endif
189   uptr *shadow_stack;
190   uptr *shadow_stack_end;
191 #if !SANITIZER_GO
192   Vector<JmpBuf> jmp_bufs;
193   int in_symbolizer;
194   bool in_ignored_lib;
195   bool is_inited;
196 #endif
197   MutexSet mset;
198   bool is_dead;
199   const Tid tid;
200   uptr stk_addr;
201   uptr stk_size;
202   uptr tls_addr;
203   uptr tls_size;
204   ThreadContext *tctx;
205 
206   DDLogicalThread *dd_lt;
207 
208   TidSlot *slot;
209   uptr slot_epoch;
210   bool slot_locked;
211 
212   // Current wired Processor, or nullptr. Required to handle any events.
213   Processor *proc1;
214 #if !SANITIZER_GO
215   Processor *proc() { return proc1; }
216 #else
217   Processor *proc();
218 #endif
219 
220   atomic_uintptr_t in_signal_handler;
221   ThreadSignalContext *signal_ctx;
222 
223 #if !SANITIZER_GO
224   StackID last_sleep_stack_id;
225   VectorClock last_sleep_clock;
226 #endif
227 
228   // Set in regions of runtime that must be signal-safe and fork-safe.
229   // If set, malloc must not be called.
230   int nomalloc;
231 
232   const ReportDesc *current_report;
233 
234   explicit ThreadState(Tid tid);
235 } ALIGNED(SANITIZER_CACHE_LINE_SIZE);
236 
237 #if !SANITIZER_GO
238 #if SANITIZER_MAC || SANITIZER_ANDROID
239 ThreadState *cur_thread();
240 void set_cur_thread(ThreadState *thr);
241 void cur_thread_finalize();
242 inline ThreadState *cur_thread_init() { return cur_thread(); }
243 #  else
244 __attribute__((tls_model("initial-exec")))
245 extern THREADLOCAL char cur_thread_placeholder[];
246 inline ThreadState *cur_thread() {
247   return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
248 }
249 inline ThreadState *cur_thread_init() {
250   ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
251   if (UNLIKELY(!thr->current))
252     thr->current = thr;
253   return thr->current;
254 }
255 inline void set_cur_thread(ThreadState *thr) {
256   reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
257 }
258 inline void cur_thread_finalize() { }
259 #  endif  // SANITIZER_MAC || SANITIZER_ANDROID
260 #endif  // SANITIZER_GO
261 
262 class ThreadContext final : public ThreadContextBase {
263  public:
264   explicit ThreadContext(Tid tid);
265   ~ThreadContext();
266   ThreadState *thr;
267   StackID creation_stack_id;
268   VectorClock *sync;
269   uptr sync_epoch;
270   Trace trace;
271 
272   // Override superclass callbacks.
273   void OnDead() override;
274   void OnJoined(void *arg) override;
275   void OnFinished() override;
276   void OnStarted(void *arg) override;
277   void OnCreated(void *arg) override;
278   void OnReset() override;
279   void OnDetached(void *arg) override;
280 };
281 
282 struct RacyStacks {
283   MD5Hash hash[2];
284   bool operator==(const RacyStacks &other) const;
285 };
286 
287 struct RacyAddress {
288   uptr addr_min;
289   uptr addr_max;
290 };
291 
292 struct FiredSuppression {
293   ReportType type;
294   uptr pc_or_addr;
295   Suppression *supp;
296 };
297 
298 struct Context {
299   Context();
300 
301   bool initialized;
302 #if !SANITIZER_GO
303   bool after_multithreaded_fork;
304 #endif
305 
306   MetaMap metamap;
307 
308   Mutex report_mtx;
309   int nreported;
310   atomic_uint64_t last_symbolize_time_ns;
311 
312   void *background_thread;
313   atomic_uint32_t stop_background_thread;
314 
315   ThreadRegistry thread_registry;
316 
317   Mutex racy_mtx;
318   Vector<RacyStacks> racy_stacks;
319   Vector<RacyAddress> racy_addresses;
320   // Number of fired suppressions may be large enough.
321   Mutex fired_suppressions_mtx;
322   InternalMmapVector<FiredSuppression> fired_suppressions;
323   DDetector *dd;
324 
325   Flags flags;
326   fd_t memprof_fd;
327 
328   // The last slot index (kFreeSid) is used to denote freed memory.
329   TidSlot slots[kThreadSlotCount - 1];
330 
331   // Protects global_epoch, slot_queue, trace_part_recycle.
332   Mutex slot_mtx;
333   uptr global_epoch;  // guarded by slot_mtx and by all slot mutexes
334   bool resetting;     // global reset is in progress
335   IList<TidSlot, &TidSlot::node> slot_queue SANITIZER_GUARDED_BY(slot_mtx);
336   IList<TraceHeader, &TraceHeader::global, TracePart> trace_part_recycle
337       SANITIZER_GUARDED_BY(slot_mtx);
338   uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx);
339   uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx);
340   uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx);
341 };
342 
343 extern Context *ctx;  // The one and the only global runtime context.
344 
345 ALWAYS_INLINE Flags *flags() {
346   return &ctx->flags;
347 }
348 
349 struct ScopedIgnoreInterceptors {
350   ScopedIgnoreInterceptors() {
351 #if !SANITIZER_GO
352     cur_thread()->ignore_interceptors++;
353 #endif
354   }
355 
356   ~ScopedIgnoreInterceptors() {
357 #if !SANITIZER_GO
358     cur_thread()->ignore_interceptors--;
359 #endif
360   }
361 };
362 
363 const char *GetObjectTypeFromTag(uptr tag);
364 const char *GetReportHeaderFromTag(uptr tag);
365 uptr TagFromShadowStackFrame(uptr pc);
366 
367 class ScopedReportBase {
368  public:
369   void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid,
370                        StackTrace stack, const MutexSet *mset);
371   void AddStack(StackTrace stack, bool suppressable = false);
372   void AddThread(const ThreadContext *tctx, bool suppressable = false);
373   void AddThread(Tid tid, bool suppressable = false);
374   void AddUniqueTid(Tid unique_tid);
375   int AddMutex(uptr addr, StackID creation_stack_id);
376   void AddLocation(uptr addr, uptr size);
377   void AddSleep(StackID stack_id);
378   void SetCount(int count);
379 
380   const ReportDesc *GetReport() const;
381 
382  protected:
383   ScopedReportBase(ReportType typ, uptr tag);
384   ~ScopedReportBase();
385 
386  private:
387   ReportDesc *rep_;
388   // Symbolizer makes lots of intercepted calls. If we try to process them,
389   // at best it will cause deadlocks on internal mutexes.
390   ScopedIgnoreInterceptors ignore_interceptors_;
391 
392   ScopedReportBase(const ScopedReportBase &) = delete;
393   void operator=(const ScopedReportBase &) = delete;
394 };
395 
396 class ScopedReport : public ScopedReportBase {
397  public:
398   explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
399   ~ScopedReport();
400 
401  private:
402   ScopedErrorReportLock lock_;
403 };
404 
405 bool ShouldReport(ThreadState *thr, ReportType typ);
406 ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
407 
408 // The stack could look like:
409 //   <start> | <main> | <foo> | tag | <bar>
410 // This will extract the tag and keep:
411 //   <start> | <main> | <foo> | <bar>
412 template<typename StackTraceTy>
413 void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
414   if (stack->size < 2) return;
415   uptr possible_tag_pc = stack->trace[stack->size - 2];
416   uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
417   if (possible_tag == kExternalTagNone) return;
418   stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
419   stack->size -= 1;
420   if (tag) *tag = possible_tag;
421 }
422 
423 template<typename StackTraceTy>
424 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
425                         uptr *tag = nullptr) {
426   uptr size = thr->shadow_stack_pos - thr->shadow_stack;
427   uptr start = 0;
428   if (size + !!toppc > kStackTraceMax) {
429     start = size + !!toppc - kStackTraceMax;
430     size = kStackTraceMax - !!toppc;
431   }
432   stack->Init(&thr->shadow_stack[start], size, toppc);
433   ExtractTagFromStack(stack, tag);
434 }
435 
436 #define GET_STACK_TRACE_FATAL(thr, pc) \
437   VarSizeStackTrace stack; \
438   ObtainCurrentStack(thr, pc, &stack); \
439   stack.ReverseOrder();
440 
441 void MapShadow(uptr addr, uptr size);
442 void MapThreadTrace(uptr addr, uptr size, const char *name);
443 void DontNeedShadowFor(uptr addr, uptr size);
444 void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
445 void InitializeShadowMemory();
446 void InitializeInterceptors();
447 void InitializeLibIgnore();
448 void InitializeDynamicAnnotations();
449 
450 void ForkBefore(ThreadState *thr, uptr pc);
451 void ForkParentAfter(ThreadState *thr, uptr pc);
452 void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread);
453 
454 void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old,
455                 AccessType typ);
456 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
457 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
458 bool IsExpectedReport(uptr addr, uptr size);
459 
460 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
461 # define DPrintf Printf
462 #else
463 # define DPrintf(...)
464 #endif
465 
466 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
467 # define DPrintf2 Printf
468 #else
469 # define DPrintf2(...)
470 #endif
471 
472 StackID CurrentStackId(ThreadState *thr, uptr pc);
473 ReportStack *SymbolizeStackId(StackID stack_id);
474 void PrintCurrentStack(ThreadState *thr, uptr pc);
475 void PrintCurrentStackSlow(uptr pc);  // uses libunwind
476 MBlock *JavaHeapBlock(uptr addr, uptr *start);
477 
478 void Initialize(ThreadState *thr);
479 void MaybeSpawnBackgroundThread();
480 int Finalize(ThreadState *thr);
481 
482 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
483 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
484 
485 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
486                   AccessType typ);
487 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
488                            AccessType typ);
489 // This creates 2 non-inlined specialized versions of MemoryAccessRange.
490 template <bool is_read>
491 void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size);
492 
493 ALWAYS_INLINE
494 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
495                        bool is_write) {
496   if (size == 0)
497     return;
498   if (is_write)
499     MemoryAccessRangeT<false>(thr, pc, addr, size);
500   else
501     MemoryAccessRangeT<true>(thr, pc, addr, size);
502 }
503 
504 void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v);
505 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
506 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
507 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
508 void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
509                                          uptr size);
510 
511 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
512 void ThreadIgnoreEnd(ThreadState *thr);
513 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
514 void ThreadIgnoreSyncEnd(ThreadState *thr);
515 
516 Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
517 void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id,
518                  ThreadType thread_type);
519 void ThreadFinish(ThreadState *thr);
520 Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
521 void ThreadJoin(ThreadState *thr, uptr pc, Tid tid);
522 void ThreadDetach(ThreadState *thr, uptr pc, Tid tid);
523 void ThreadFinalize(ThreadState *thr);
524 void ThreadSetName(ThreadState *thr, const char *name);
525 int ThreadCount(ThreadState *thr);
526 void ProcessPendingSignalsImpl(ThreadState *thr);
527 void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid);
528 
529 Processor *ProcCreate();
530 void ProcDestroy(Processor *proc);
531 void ProcWire(Processor *proc, ThreadState *thr);
532 void ProcUnwire(Processor *proc, ThreadState *thr);
533 
534 // Note: the parameter is called flagz, because flags is already taken
535 // by the global function that returns flags.
536 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
537 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
538 void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
539 void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
540     int rec = 1);
541 int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
542 void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
543 void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
544 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
545 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
546 void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
547 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
548 
549 void Acquire(ThreadState *thr, uptr pc, uptr addr);
550 // AcquireGlobal synchronizes the current thread with all other threads.
551 // In terms of happens-before relation, it draws a HB edge from all threads
552 // (where they happen to execute right now) to the current thread. We use it to
553 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
554 // right before executing finalizers. This provides a coarse, but simple
555 // approximation of the actual required synchronization.
556 void AcquireGlobal(ThreadState *thr);
557 void Release(ThreadState *thr, uptr pc, uptr addr);
558 void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
559 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
560 void AfterSleep(ThreadState *thr, uptr pc);
561 void IncrementEpoch(ThreadState *thr);
562 
563 #if !SANITIZER_GO
564 uptr ALWAYS_INLINE HeapEnd() {
565   return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
566 }
567 #endif
568 
569 void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
570 void SlotDetach(ThreadState *thr);
571 void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
572 void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx);
573 void DoReset(ThreadState *thr, uptr epoch);
574 void FlushShadowMemory();
575 
576 ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
577 void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
578 void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
579 
580 // These need to match __tsan_switch_to_fiber_* flags defined in
581 // tsan_interface.h. See documentation there as well.
582 enum FiberSwitchFlags {
583   FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
584 };
585 
586 class SlotLocker {
587  public:
588   ALWAYS_INLINE
589   SlotLocker(ThreadState *thr, bool recursive = false)
590       : thr_(thr), locked_(recursive ? thr->slot_locked : false) {
591     if (!locked_)
592       SlotLock(thr_);
593   }
594 
595   ALWAYS_INLINE
596   ~SlotLocker() {
597     if (!locked_)
598       SlotUnlock(thr_);
599   }
600 
601  private:
602   ThreadState *thr_;
603   bool locked_;
604 };
605 
606 class SlotUnlocker {
607  public:
608   SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) {
609     if (locked_)
610       SlotUnlock(thr_);
611   }
612 
613   ~SlotUnlocker() {
614     if (locked_)
615       SlotLock(thr_);
616   }
617 
618  private:
619   ThreadState *thr_;
620   bool locked_;
621 };
622 
623 ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) {
624   if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals)))
625     ProcessPendingSignalsImpl(thr);
626 }
627 
628 extern bool is_initialized;
629 
630 ALWAYS_INLINE
631 void LazyInitialize(ThreadState *thr) {
632   // If we can use .preinit_array, assume that __tsan_init
633   // called from .preinit_array initializes runtime before
634   // any instrumented code.
635 #if !SANITIZER_CAN_USE_PREINIT_ARRAY
636   if (UNLIKELY(!is_initialized))
637     Initialize(thr);
638 #endif
639 }
640 
641 void TraceResetForTesting();
642 void TraceSwitchPart(ThreadState *thr);
643 void TraceSwitchPartImpl(ThreadState *thr);
644 bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size,
645                   AccessType typ, Tid *ptid, VarSizeStackTrace *pstk,
646                   MutexSet *pmset, uptr *ptag);
647 
648 template <typename EventT>
649 ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr,
650                                                    EventT **ev) {
651   // TraceSwitchPart accesses shadow_stack, but it's called infrequently,
652   // so we check it here proactively.
653   DCHECK(thr->shadow_stack);
654   Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
655 #if SANITIZER_DEBUG
656   // TraceSwitch acquires these mutexes,
657   // so we lock them here to detect deadlocks more reliably.
658   { Lock lock(&ctx->slot_mtx); }
659   { Lock lock(&thr->tctx->trace.mtx); }
660   TracePart *current = thr->tctx->trace.parts.Back();
661   if (current) {
662     DCHECK_GE(pos, &current->events[0]);
663     DCHECK_LE(pos, &current->events[TracePart::kSize]);
664   } else {
665     DCHECK_EQ(pos, nullptr);
666   }
667 #endif
668   // TracePart is allocated with mmap and is at least 4K aligned.
669   // So the following check is a faster way to check for part end.
670   // It may have false positives in the middle of the trace,
671   // they are filtered out in TraceSwitch.
672   if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0))
673     return false;
674   *ev = reinterpret_cast<EventT *>(pos);
675   return true;
676 }
677 
678 template <typename EventT>
679 ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) {
680   DCHECK_LE(evp + 1, &thr->tctx->trace.parts.Back()->events[TracePart::kSize]);
681   atomic_store_relaxed(&thr->trace_pos, (uptr)(evp + 1));
682 }
683 
684 template <typename EventT>
685 void TraceEvent(ThreadState *thr, EventT ev) {
686   EventT *evp;
687   if (!TraceAcquire(thr, &evp)) {
688     TraceSwitchPart(thr);
689     UNUSED bool res = TraceAcquire(thr, &evp);
690     DCHECK(res);
691   }
692   *evp = ev;
693   TraceRelease(thr, evp);
694 }
695 
696 ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr,
697                                                    uptr pc = 0) {
698   if (!kCollectHistory)
699     return true;
700   EventFunc *ev;
701   if (UNLIKELY(!TraceAcquire(thr, &ev)))
702     return false;
703   ev->is_access = 0;
704   ev->is_func = 1;
705   ev->pc = pc;
706   TraceRelease(thr, ev);
707   return true;
708 }
709 
710 WARN_UNUSED_RESULT
711 bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
712                           AccessType typ);
713 WARN_UNUSED_RESULT
714 bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
715                                AccessType typ);
716 void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
717                             AccessType typ);
718 void TraceFunc(ThreadState *thr, uptr pc = 0);
719 void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
720                     StackID stk);
721 void TraceMutexUnlock(ThreadState *thr, uptr addr);
722 void TraceTime(ThreadState *thr);
723 
724 void TraceRestartFuncExit(ThreadState *thr);
725 void TraceRestartFuncEntry(ThreadState *thr, uptr pc);
726 
727 void GrowShadowStack(ThreadState *thr);
728 
729 ALWAYS_INLINE
730 void FuncEntry(ThreadState *thr, uptr pc) {
731   DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.sid(), (void *)pc);
732   if (UNLIKELY(!TryTraceFunc(thr, pc)))
733     return TraceRestartFuncEntry(thr, pc);
734   DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
735 #if !SANITIZER_GO
736   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
737 #else
738   if (thr->shadow_stack_pos == thr->shadow_stack_end)
739     GrowShadowStack(thr);
740 #endif
741   thr->shadow_stack_pos[0] = pc;
742   thr->shadow_stack_pos++;
743 }
744 
745 ALWAYS_INLINE
746 void FuncExit(ThreadState *thr) {
747   DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.sid());
748   if (UNLIKELY(!TryTraceFunc(thr, 0)))
749     return TraceRestartFuncExit(thr);
750   DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
751 #if !SANITIZER_GO
752   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
753 #endif
754   thr->shadow_stack_pos--;
755 }
756 
757 #if !SANITIZER_GO
758 extern void (*on_initialize)(void);
759 extern int (*on_finalize)(int);
760 #endif
761 }  // namespace __tsan
762 
763 #endif  // TSAN_RTL_H
764