xref: /freebsd/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.h (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Main internal TSan header file.
12 //
13 // Ground rules:
14 //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
15 //     function-scope locals)
16 //   - All functions/classes/etc reside in namespace __tsan, except for those
17 //     declared in tsan_interface.h.
18 //   - Platform-specific files should be used instead of ifdefs (*).
19 //   - No system headers included in header files (*).
20 //   - Platform specific headres included only into platform-specific files (*).
21 //
22 //  (*) Except when inlining is critical for performance.
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef TSAN_RTL_H
26 #define TSAN_RTL_H
27 
28 #include "sanitizer_common/sanitizer_allocator.h"
29 #include "sanitizer_common/sanitizer_allocator_internal.h"
30 #include "sanitizer_common/sanitizer_asm.h"
31 #include "sanitizer_common/sanitizer_common.h"
32 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
33 #include "sanitizer_common/sanitizer_libignore.h"
34 #include "sanitizer_common/sanitizer_suppressions.h"
35 #include "sanitizer_common/sanitizer_thread_registry.h"
36 #include "sanitizer_common/sanitizer_vector.h"
37 #include "tsan_defs.h"
38 #include "tsan_flags.h"
39 #include "tsan_ignoreset.h"
40 #include "tsan_ilist.h"
41 #include "tsan_mman.h"
42 #include "tsan_mutexset.h"
43 #include "tsan_platform.h"
44 #include "tsan_report.h"
45 #include "tsan_shadow.h"
46 #include "tsan_stack_trace.h"
47 #include "tsan_sync.h"
48 #include "tsan_trace.h"
49 #include "tsan_vector_clock.h"
50 
51 #if SANITIZER_WORDSIZE != 64
52 # error "ThreadSanitizer is supported only on 64-bit platforms"
53 #endif
54 
55 namespace __tsan {
56 
57 #if !SANITIZER_GO
58 struct MapUnmapCallback;
59 #  if defined(__mips64) || defined(__aarch64__) || defined(__loongarch__) || \
60       defined(__powerpc__) || SANITIZER_RISCV64
61 
62 struct AP32 {
63   static const uptr kSpaceBeg = 0;
64   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
65   static const uptr kMetadataSize = 0;
66   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
67   static const uptr kRegionSizeLog = 20;
68   using AddressSpaceView = LocalAddressSpaceView;
69   typedef __tsan::MapUnmapCallback MapUnmapCallback;
70   static const uptr kFlags = 0;
71 };
72 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
73 #else
74 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
75 #    if defined(__s390x__)
76   typedef MappingS390x Mapping;
77 #    else
78   typedef Mapping48AddressSpace Mapping;
79 #    endif
80   static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
81   static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
82   static const uptr kMetadataSize = 0;
83   typedef DefaultSizeClassMap SizeClassMap;
84   typedef __tsan::MapUnmapCallback MapUnmapCallback;
85   static const uptr kFlags = 0;
86   using AddressSpaceView = LocalAddressSpaceView;
87 };
88 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
89 #endif
90 typedef CombinedAllocator<PrimaryAllocator> Allocator;
91 typedef Allocator::AllocatorCache AllocatorCache;
92 Allocator *allocator();
93 #endif
94 
95 struct ThreadSignalContext;
96 
97 struct JmpBuf {
98   uptr sp;
99   int int_signal_send;
100   bool in_blocking_func;
101   uptr in_signal_handler;
102   uptr *shadow_stack_pos;
103 };
104 
105 // A Processor represents a physical thread, or a P for Go.
106 // It is used to store internal resources like allocate cache, and does not
107 // participate in race-detection logic (invisible to end user).
108 // In C++ it is tied to an OS thread just like ThreadState, however ideally
109 // it should be tied to a CPU (this way we will have fewer allocator caches).
110 // In Go it is tied to a P, so there are significantly fewer Processor's than
111 // ThreadState's (which are tied to Gs).
112 // A ThreadState must be wired with a Processor to handle events.
113 struct Processor {
114   ThreadState *thr; // currently wired thread, or nullptr
115 #if !SANITIZER_GO
116   AllocatorCache alloc_cache;
117   InternalAllocatorCache internal_alloc_cache;
118 #endif
119   DenseSlabAllocCache block_cache;
120   DenseSlabAllocCache sync_cache;
121   DDPhysicalThread *dd_pt;
122 };
123 
124 #if !SANITIZER_GO
125 // ScopedGlobalProcessor temporary setups a global processor for the current
126 // thread, if it does not have one. Intended for interceptors that can run
127 // at the very thread end, when we already destroyed the thread processor.
128 struct ScopedGlobalProcessor {
129   ScopedGlobalProcessor();
130   ~ScopedGlobalProcessor();
131 };
132 #endif
133 
134 struct TidEpoch {
135   Tid tid;
136   Epoch epoch;
137 };
138 
139 struct alignas(SANITIZER_CACHE_LINE_SIZE) TidSlot {
140   Mutex mtx;
141   Sid sid;
142   atomic_uint32_t raw_epoch;
143   ThreadState *thr;
144   Vector<TidEpoch> journal;
145   INode node;
146 
147   Epoch epoch() const {
148     return static_cast<Epoch>(atomic_load(&raw_epoch, memory_order_relaxed));
149   }
150 
151   void SetEpoch(Epoch v) {
152     atomic_store(&raw_epoch, static_cast<u32>(v), memory_order_relaxed);
153   }
154 
155   TidSlot();
156 };
157 
158 // This struct is stored in TLS.
159 struct alignas(SANITIZER_CACHE_LINE_SIZE) ThreadState {
160   FastState fast_state;
161   int ignore_sync;
162 #if !SANITIZER_GO
163   int ignore_interceptors;
164 #endif
165   uptr *shadow_stack_pos;
166 
167   // Current position in tctx->trace.Back()->events (Event*).
168   atomic_uintptr_t trace_pos;
169   // PC of the last memory access, used to compute PC deltas in the trace.
170   uptr trace_prev_pc;
171 
172   // Technically `current` should be a separate THREADLOCAL variable;
173   // but it is placed here in order to share cache line with previous fields.
174   ThreadState* current;
175 
176   atomic_sint32_t pending_signals;
177 
178   VectorClock clock;
179 
180   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
181   // We do not distinguish beteween ignoring reads and writes
182   // for better performance.
183   int ignore_reads_and_writes;
184   int suppress_reports;
185   // Go does not support ignores.
186 #if !SANITIZER_GO
187   IgnoreSet mop_ignore_set;
188   IgnoreSet sync_ignore_set;
189 #endif
190   uptr *shadow_stack;
191   uptr *shadow_stack_end;
192 #if !SANITIZER_GO
193   Vector<JmpBuf> jmp_bufs;
194   int in_symbolizer;
195   atomic_uintptr_t in_blocking_func;
196   bool in_ignored_lib;
197   bool is_inited;
198 #endif
199   MutexSet mset;
200   bool is_dead;
201   const Tid tid;
202   uptr stk_addr;
203   uptr stk_size;
204   uptr tls_addr;
205   uptr tls_size;
206   ThreadContext *tctx;
207 
208   DDLogicalThread *dd_lt;
209 
210   TidSlot *slot;
211   uptr slot_epoch;
212   bool slot_locked;
213 
214   // Current wired Processor, or nullptr. Required to handle any events.
215   Processor *proc1;
216 #if !SANITIZER_GO
217   Processor *proc() { return proc1; }
218 #else
219   Processor *proc();
220 #endif
221 
222   atomic_uintptr_t in_signal_handler;
223   atomic_uintptr_t signal_ctx;
224 
225 #if !SANITIZER_GO
226   StackID last_sleep_stack_id;
227   VectorClock last_sleep_clock;
228 #endif
229 
230   // Set in regions of runtime that must be signal-safe and fork-safe.
231   // If set, malloc must not be called.
232   int nomalloc;
233 
234   const ReportDesc *current_report;
235 
236   explicit ThreadState(Tid tid);
237 };
238 
239 #if !SANITIZER_GO
240 #if SANITIZER_APPLE || SANITIZER_ANDROID
241 ThreadState *cur_thread();
242 void set_cur_thread(ThreadState *thr);
243 void cur_thread_finalize();
244 inline ThreadState *cur_thread_init() { return cur_thread(); }
245 #  else
246 __attribute__((tls_model("initial-exec")))
247 extern THREADLOCAL char cur_thread_placeholder[];
248 inline ThreadState *cur_thread() {
249   return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
250 }
251 inline ThreadState *cur_thread_init() {
252   ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
253   if (UNLIKELY(!thr->current))
254     thr->current = thr;
255   return thr->current;
256 }
257 inline void set_cur_thread(ThreadState *thr) {
258   reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
259 }
260 inline void cur_thread_finalize() { }
261 #  endif  // SANITIZER_APPLE || SANITIZER_ANDROID
262 #endif  // SANITIZER_GO
263 
264 class ThreadContext final : public ThreadContextBase {
265  public:
266   explicit ThreadContext(Tid tid);
267   ~ThreadContext();
268   ThreadState *thr;
269   StackID creation_stack_id;
270   VectorClock *sync;
271   uptr sync_epoch;
272   Trace trace;
273 
274   // Override superclass callbacks.
275   void OnDead() override;
276   void OnJoined(void *arg) override;
277   void OnFinished() override;
278   void OnStarted(void *arg) override;
279   void OnCreated(void *arg) override;
280   void OnReset() override;
281   void OnDetached(void *arg) override;
282 };
283 
284 struct RacyStacks {
285   MD5Hash hash[2];
286   bool operator==(const RacyStacks &other) const;
287 };
288 
289 struct RacyAddress {
290   uptr addr_min;
291   uptr addr_max;
292 };
293 
294 struct FiredSuppression {
295   ReportType type;
296   uptr pc_or_addr;
297   Suppression *supp;
298 };
299 
300 struct Context {
301   Context();
302 
303   bool initialized;
304 #if !SANITIZER_GO
305   bool after_multithreaded_fork;
306 #endif
307 
308   MetaMap metamap;
309 
310   Mutex report_mtx;
311   int nreported;
312   atomic_uint64_t last_symbolize_time_ns;
313 
314   void *background_thread;
315   atomic_uint32_t stop_background_thread;
316 
317   ThreadRegistry thread_registry;
318 
319   // This is used to prevent a very unlikely but very pathological behavior.
320   // Since memory access handling is not synchronized with DoReset,
321   // a thread running concurrently with DoReset can leave a bogus shadow value
322   // that will be later falsely detected as a race. For such false races
323   // RestoreStack will return false and we will not report it.
324   // However, consider that a thread leaves a whole lot of such bogus values
325   // and these values are later read by a whole lot of threads.
326   // This will cause massive amounts of ReportRace calls and lots of
327   // serialization. In very pathological cases the resulting slowdown
328   // can be >100x. This is very unlikely, but it was presumably observed
329   // in practice: https://github.com/google/sanitizers/issues/1552
330   // If this happens, previous access sid+epoch will be the same for all of
331   // these false races b/c if the thread will try to increment epoch, it will
332   // notice that DoReset has happened and will stop producing bogus shadow
333   // values. So, last_spurious_race is used to remember the last sid+epoch
334   // for which RestoreStack returned false. Then it is used to filter out
335   // races with the same sid+epoch very early and quickly.
336   // It is of course possible that multiple threads left multiple bogus shadow
337   // values and all of them are read by lots of threads at the same time.
338   // In such case last_spurious_race will only be able to deduplicate a few
339   // races from one thread, then few from another and so on. An alternative
340   // would be to hold an array of such sid+epoch, but we consider such scenario
341   // as even less likely.
342   // Note: this can lead to some rare false negatives as well:
343   // 1. When a legit access with the same sid+epoch participates in a race
344   // as the "previous" memory access, it will be wrongly filtered out.
345   // 2. When RestoreStack returns false for a legit memory access because it
346   // was already evicted from the thread trace, we will still remember it in
347   // last_spurious_race. Then if there is another racing memory access from
348   // the same thread that happened in the same epoch, but was stored in the
349   // next thread trace part (which is still preserved in the thread trace),
350   // we will also wrongly filter it out while RestoreStack would actually
351   // succeed for that second memory access.
352   RawShadow last_spurious_race;
353 
354   Mutex racy_mtx;
355   Vector<RacyStacks> racy_stacks;
356   // Number of fired suppressions may be large enough.
357   Mutex fired_suppressions_mtx;
358   InternalMmapVector<FiredSuppression> fired_suppressions;
359   DDetector *dd;
360 
361   Flags flags;
362   fd_t memprof_fd;
363 
364   // The last slot index (kFreeSid) is used to denote freed memory.
365   TidSlot slots[kThreadSlotCount - 1];
366 
367   // Protects global_epoch, slot_queue, trace_part_recycle.
368   Mutex slot_mtx;
369   uptr global_epoch;  // guarded by slot_mtx and by all slot mutexes
370   bool resetting;     // global reset is in progress
371   IList<TidSlot, &TidSlot::node> slot_queue SANITIZER_GUARDED_BY(slot_mtx);
372   IList<TraceHeader, &TraceHeader::global, TracePart> trace_part_recycle
373       SANITIZER_GUARDED_BY(slot_mtx);
374   uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx);
375   uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx);
376   uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx);
377 #if SANITIZER_GO
378   uptr mapped_shadow_begin;
379   uptr mapped_shadow_end;
380 #endif
381 };
382 
383 extern Context *ctx;  // The one and the only global runtime context.
384 
385 ALWAYS_INLINE Flags *flags() {
386   return &ctx->flags;
387 }
388 
389 struct ScopedIgnoreInterceptors {
390   ScopedIgnoreInterceptors() {
391 #if !SANITIZER_GO
392     cur_thread()->ignore_interceptors++;
393 #endif
394   }
395 
396   ~ScopedIgnoreInterceptors() {
397 #if !SANITIZER_GO
398     cur_thread()->ignore_interceptors--;
399 #endif
400   }
401 };
402 
403 const char *GetObjectTypeFromTag(uptr tag);
404 const char *GetReportHeaderFromTag(uptr tag);
405 uptr TagFromShadowStackFrame(uptr pc);
406 
407 class ScopedReportBase {
408  public:
409   void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid,
410                        StackTrace stack, const MutexSet *mset);
411   void AddStack(StackTrace stack, bool suppressable = false);
412   void AddThread(const ThreadContext *tctx, bool suppressable = false);
413   void AddThread(Tid tid, bool suppressable = false);
414   void AddUniqueTid(Tid unique_tid);
415   int AddMutex(uptr addr, StackID creation_stack_id);
416   void AddLocation(uptr addr, uptr size);
417   void AddSleep(StackID stack_id);
418   void SetCount(int count);
419   void SetSigNum(int sig);
420 
421   const ReportDesc *GetReport() const;
422 
423  protected:
424   ScopedReportBase(ReportType typ, uptr tag);
425   ~ScopedReportBase();
426 
427  private:
428   ReportDesc *rep_;
429   // Symbolizer makes lots of intercepted calls. If we try to process them,
430   // at best it will cause deadlocks on internal mutexes.
431   ScopedIgnoreInterceptors ignore_interceptors_;
432 
433   ScopedReportBase(const ScopedReportBase &) = delete;
434   void operator=(const ScopedReportBase &) = delete;
435 };
436 
437 class ScopedReport : public ScopedReportBase {
438  public:
439   explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
440   ~ScopedReport();
441 
442  private:
443   ScopedErrorReportLock lock_;
444 };
445 
446 bool ShouldReport(ThreadState *thr, ReportType typ);
447 ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
448 
449 // The stack could look like:
450 //   <start> | <main> | <foo> | tag | <bar>
451 // This will extract the tag and keep:
452 //   <start> | <main> | <foo> | <bar>
453 template<typename StackTraceTy>
454 void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
455   if (stack->size < 2) return;
456   uptr possible_tag_pc = stack->trace[stack->size - 2];
457   uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
458   if (possible_tag == kExternalTagNone) return;
459   stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
460   stack->size -= 1;
461   if (tag) *tag = possible_tag;
462 }
463 
464 template<typename StackTraceTy>
465 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
466                         uptr *tag = nullptr) {
467   uptr size = thr->shadow_stack_pos - thr->shadow_stack;
468   uptr start = 0;
469   if (size + !!toppc > kStackTraceMax) {
470     start = size + !!toppc - kStackTraceMax;
471     size = kStackTraceMax - !!toppc;
472   }
473   stack->Init(&thr->shadow_stack[start], size, toppc);
474   ExtractTagFromStack(stack, tag);
475 }
476 
477 #define GET_STACK_TRACE_FATAL(thr, pc) \
478   VarSizeStackTrace stack; \
479   ObtainCurrentStack(thr, pc, &stack); \
480   stack.ReverseOrder();
481 
482 void MapShadow(uptr addr, uptr size);
483 void MapThreadTrace(uptr addr, uptr size, const char *name);
484 void DontNeedShadowFor(uptr addr, uptr size);
485 void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
486 void InitializeShadowMemory();
487 void DontDumpShadow(uptr addr, uptr size);
488 void InitializeInterceptors();
489 void InitializeLibIgnore();
490 void InitializeDynamicAnnotations();
491 
492 void ForkBefore(ThreadState *thr, uptr pc);
493 void ForkParentAfter(ThreadState *thr, uptr pc);
494 void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread);
495 
496 void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old,
497                 AccessType typ);
498 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
499 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
500 bool IsExpectedReport(uptr addr, uptr size);
501 
502 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
503 # define DPrintf Printf
504 #else
505 # define DPrintf(...)
506 #endif
507 
508 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
509 # define DPrintf2 Printf
510 #else
511 # define DPrintf2(...)
512 #endif
513 
514 StackID CurrentStackId(ThreadState *thr, uptr pc);
515 ReportStack *SymbolizeStackId(StackID stack_id);
516 void PrintCurrentStack(ThreadState *thr, uptr pc);
517 void PrintCurrentStackSlow(uptr pc);  // uses libunwind
518 MBlock *JavaHeapBlock(uptr addr, uptr *start);
519 
520 void Initialize(ThreadState *thr);
521 void MaybeSpawnBackgroundThread();
522 int Finalize(ThreadState *thr);
523 
524 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
525 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
526 
527 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
528                   AccessType typ);
529 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
530                            AccessType typ);
531 // This creates 2 non-inlined specialized versions of MemoryAccessRange.
532 template <bool is_read>
533 void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size);
534 
535 ALWAYS_INLINE
536 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
537                        bool is_write) {
538   if (size == 0)
539     return;
540   if (is_write)
541     MemoryAccessRangeT<false>(thr, pc, addr, size);
542   else
543     MemoryAccessRangeT<true>(thr, pc, addr, size);
544 }
545 
546 void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v);
547 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
548 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
549 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
550 void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
551                                          uptr size);
552 
553 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
554 void ThreadIgnoreEnd(ThreadState *thr);
555 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
556 void ThreadIgnoreSyncEnd(ThreadState *thr);
557 
558 Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
559 void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id,
560                  ThreadType thread_type);
561 void ThreadFinish(ThreadState *thr);
562 Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
563 void ThreadJoin(ThreadState *thr, uptr pc, Tid tid);
564 void ThreadDetach(ThreadState *thr, uptr pc, Tid tid);
565 void ThreadFinalize(ThreadState *thr);
566 void ThreadSetName(ThreadState *thr, const char *name);
567 int ThreadCount(ThreadState *thr);
568 void ProcessPendingSignalsImpl(ThreadState *thr);
569 void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid);
570 
571 Processor *ProcCreate();
572 void ProcDestroy(Processor *proc);
573 void ProcWire(Processor *proc, ThreadState *thr);
574 void ProcUnwire(Processor *proc, ThreadState *thr);
575 
576 // Note: the parameter is called flagz, because flags is already taken
577 // by the global function that returns flags.
578 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
579 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
580 void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
581 void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
582     int rec = 1);
583 int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
584 void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
585 void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
586 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
587 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
588 void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
589 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
590 
591 void Acquire(ThreadState *thr, uptr pc, uptr addr);
592 // AcquireGlobal synchronizes the current thread with all other threads.
593 // In terms of happens-before relation, it draws a HB edge from all threads
594 // (where they happen to execute right now) to the current thread. We use it to
595 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
596 // right before executing finalizers. This provides a coarse, but simple
597 // approximation of the actual required synchronization.
598 void AcquireGlobal(ThreadState *thr);
599 void Release(ThreadState *thr, uptr pc, uptr addr);
600 void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
601 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
602 void AfterSleep(ThreadState *thr, uptr pc);
603 void IncrementEpoch(ThreadState *thr);
604 
605 #if !SANITIZER_GO
606 uptr ALWAYS_INLINE HeapEnd() {
607   return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
608 }
609 #endif
610 
611 void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
612 void SlotDetach(ThreadState *thr);
613 void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
614 void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx);
615 void DoReset(ThreadState *thr, uptr epoch);
616 void FlushShadowMemory();
617 
618 ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
619 void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
620 void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
621 
622 // These need to match __tsan_switch_to_fiber_* flags defined in
623 // tsan_interface.h. See documentation there as well.
624 enum FiberSwitchFlags {
625   FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
626 };
627 
628 class SlotLocker {
629  public:
630   ALWAYS_INLINE
631   SlotLocker(ThreadState *thr, bool recursive = false)
632       : thr_(thr), locked_(recursive ? thr->slot_locked : false) {
633 #if !SANITIZER_GO
634     // We are in trouble if we are here with in_blocking_func set.
635     // If in_blocking_func is set, all signals will be delivered synchronously,
636     // which means we can't lock slots since the signal handler will try
637     // to lock it recursively and deadlock.
638     DCHECK(!atomic_load(&thr->in_blocking_func, memory_order_relaxed));
639 #endif
640     if (!locked_)
641       SlotLock(thr_);
642   }
643 
644   ALWAYS_INLINE
645   ~SlotLocker() {
646     if (!locked_)
647       SlotUnlock(thr_);
648   }
649 
650  private:
651   ThreadState *thr_;
652   bool locked_;
653 };
654 
655 class SlotUnlocker {
656  public:
657   SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) {
658     if (locked_)
659       SlotUnlock(thr_);
660   }
661 
662   ~SlotUnlocker() {
663     if (locked_)
664       SlotLock(thr_);
665   }
666 
667  private:
668   ThreadState *thr_;
669   bool locked_;
670 };
671 
672 ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) {
673   if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals)))
674     ProcessPendingSignalsImpl(thr);
675 }
676 
677 extern bool is_initialized;
678 
679 ALWAYS_INLINE
680 void LazyInitialize(ThreadState *thr) {
681   // If we can use .preinit_array, assume that __tsan_init
682   // called from .preinit_array initializes runtime before
683   // any instrumented code except when tsan is used as a
684   // shared library.
685 #if (!SANITIZER_CAN_USE_PREINIT_ARRAY || defined(SANITIZER_SHARED))
686   if (UNLIKELY(!is_initialized))
687     Initialize(thr);
688 #endif
689 }
690 
691 void TraceResetForTesting();
692 void TraceSwitchPart(ThreadState *thr);
693 void TraceSwitchPartImpl(ThreadState *thr);
694 bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size,
695                   AccessType typ, Tid *ptid, VarSizeStackTrace *pstk,
696                   MutexSet *pmset, uptr *ptag);
697 
698 template <typename EventT>
699 ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr,
700                                                    EventT **ev) {
701   // TraceSwitchPart accesses shadow_stack, but it's called infrequently,
702   // so we check it here proactively.
703   DCHECK(thr->shadow_stack);
704   Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
705 #if SANITIZER_DEBUG
706   // TraceSwitch acquires these mutexes,
707   // so we lock them here to detect deadlocks more reliably.
708   { Lock lock(&ctx->slot_mtx); }
709   { Lock lock(&thr->tctx->trace.mtx); }
710   TracePart *current = thr->tctx->trace.parts.Back();
711   if (current) {
712     DCHECK_GE(pos, &current->events[0]);
713     DCHECK_LE(pos, &current->events[TracePart::kSize]);
714   } else {
715     DCHECK_EQ(pos, nullptr);
716   }
717 #endif
718   // TracePart is allocated with mmap and is at least 4K aligned.
719   // So the following check is a faster way to check for part end.
720   // It may have false positives in the middle of the trace,
721   // they are filtered out in TraceSwitch.
722   if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0))
723     return false;
724   *ev = reinterpret_cast<EventT *>(pos);
725   return true;
726 }
727 
728 template <typename EventT>
729 ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) {
730   DCHECK_LE(evp + 1, &thr->tctx->trace.parts.Back()->events[TracePart::kSize]);
731   atomic_store_relaxed(&thr->trace_pos, (uptr)(evp + 1));
732 }
733 
734 template <typename EventT>
735 void TraceEvent(ThreadState *thr, EventT ev) {
736   EventT *evp;
737   if (!TraceAcquire(thr, &evp)) {
738     TraceSwitchPart(thr);
739     UNUSED bool res = TraceAcquire(thr, &evp);
740     DCHECK(res);
741   }
742   *evp = ev;
743   TraceRelease(thr, evp);
744 }
745 
746 ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr,
747                                                    uptr pc = 0) {
748   if (!kCollectHistory)
749     return true;
750   EventFunc *ev;
751   if (UNLIKELY(!TraceAcquire(thr, &ev)))
752     return false;
753   ev->is_access = 0;
754   ev->is_func = 1;
755   ev->pc = pc;
756   TraceRelease(thr, ev);
757   return true;
758 }
759 
760 WARN_UNUSED_RESULT
761 bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
762                           AccessType typ);
763 WARN_UNUSED_RESULT
764 bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
765                                AccessType typ);
766 void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
767                             AccessType typ);
768 void TraceFunc(ThreadState *thr, uptr pc = 0);
769 void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
770                     StackID stk);
771 void TraceMutexUnlock(ThreadState *thr, uptr addr);
772 void TraceTime(ThreadState *thr);
773 
774 void TraceRestartFuncExit(ThreadState *thr);
775 void TraceRestartFuncEntry(ThreadState *thr, uptr pc);
776 
777 void GrowShadowStack(ThreadState *thr);
778 
779 ALWAYS_INLINE
780 void FuncEntry(ThreadState *thr, uptr pc) {
781   DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.sid(), (void *)pc);
782   if (UNLIKELY(!TryTraceFunc(thr, pc)))
783     return TraceRestartFuncEntry(thr, pc);
784   DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
785 #if !SANITIZER_GO
786   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
787 #else
788   if (thr->shadow_stack_pos == thr->shadow_stack_end)
789     GrowShadowStack(thr);
790 #endif
791   thr->shadow_stack_pos[0] = pc;
792   thr->shadow_stack_pos++;
793 }
794 
795 ALWAYS_INLINE
796 void FuncExit(ThreadState *thr) {
797   DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.sid());
798   if (UNLIKELY(!TryTraceFunc(thr, 0)))
799     return TraceRestartFuncExit(thr);
800   DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
801 #if !SANITIZER_GO
802   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
803 #endif
804   thr->shadow_stack_pos--;
805 }
806 
807 #if !SANITIZER_GO
808 extern void (*on_initialize)(void);
809 extern int (*on_finalize)(int);
810 #endif
811 }  // namespace __tsan
812 
813 #endif  // TSAN_RTL_H
814