xref: /freebsd/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.cpp (revision c9539b89010900499a200cdd6c0265ea5d950875)
1 //===-- tsan_rtl.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Main file (entry points) for the TSan run-time.
12 //===----------------------------------------------------------------------===//
13 
14 #include "tsan_rtl.h"
15 
16 #include "sanitizer_common/sanitizer_atomic.h"
17 #include "sanitizer_common/sanitizer_common.h"
18 #include "sanitizer_common/sanitizer_file.h"
19 #include "sanitizer_common/sanitizer_interface_internal.h"
20 #include "sanitizer_common/sanitizer_libc.h"
21 #include "sanitizer_common/sanitizer_placement_new.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_symbolizer.h"
24 #include "tsan_defs.h"
25 #include "tsan_interface.h"
26 #include "tsan_mman.h"
27 #include "tsan_platform.h"
28 #include "tsan_suppressions.h"
29 #include "tsan_symbolize.h"
30 #include "ubsan/ubsan_init.h"
31 
32 volatile int __tsan_resumed = 0;
33 
34 extern "C" void __tsan_resume() {
35   __tsan_resumed = 1;
36 }
37 
38 SANITIZER_WEAK_DEFAULT_IMPL
39 void __tsan_test_only_on_fork() {}
40 
41 namespace __tsan {
42 
43 #if !SANITIZER_GO
44 void (*on_initialize)(void);
45 int (*on_finalize)(int);
46 #endif
47 
48 #if !SANITIZER_GO && !SANITIZER_APPLE
49 __attribute__((tls_model("initial-exec")))
50 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(
51     SANITIZER_CACHE_LINE_SIZE);
52 #endif
53 static char ctx_placeholder[sizeof(Context)] ALIGNED(SANITIZER_CACHE_LINE_SIZE);
54 Context *ctx;
55 
56 // Can be overriden by a front-end.
57 #ifdef TSAN_EXTERNAL_HOOKS
58 bool OnFinalize(bool failed);
59 void OnInitialize();
60 #else
61 SANITIZER_WEAK_CXX_DEFAULT_IMPL
62 bool OnFinalize(bool failed) {
63 #  if !SANITIZER_GO
64   if (on_finalize)
65     return on_finalize(failed);
66 #  endif
67   return failed;
68 }
69 
70 SANITIZER_WEAK_CXX_DEFAULT_IMPL
71 void OnInitialize() {
72 #  if !SANITIZER_GO
73   if (on_initialize)
74     on_initialize();
75 #  endif
76 }
77 #endif
78 
79 static TracePart* TracePartAlloc(ThreadState* thr) {
80   TracePart* part = nullptr;
81   {
82     Lock lock(&ctx->slot_mtx);
83     uptr max_parts = Trace::kMinParts + flags()->history_size;
84     Trace* trace = &thr->tctx->trace;
85     if (trace->parts_allocated == max_parts ||
86         ctx->trace_part_finished_excess) {
87       part = ctx->trace_part_recycle.PopFront();
88       DPrintf("#%d: TracePartAlloc: part=%p\n", thr->tid, part);
89       if (part && part->trace) {
90         Trace* trace1 = part->trace;
91         Lock trace_lock(&trace1->mtx);
92         part->trace = nullptr;
93         TracePart* part1 = trace1->parts.PopFront();
94         CHECK_EQ(part, part1);
95         if (trace1->parts_allocated > trace1->parts.Size()) {
96           ctx->trace_part_finished_excess +=
97               trace1->parts_allocated - trace1->parts.Size();
98           trace1->parts_allocated = trace1->parts.Size();
99         }
100       }
101     }
102     if (trace->parts_allocated < max_parts) {
103       trace->parts_allocated++;
104       if (ctx->trace_part_finished_excess)
105         ctx->trace_part_finished_excess--;
106     }
107     if (!part)
108       ctx->trace_part_total_allocated++;
109     else if (ctx->trace_part_recycle_finished)
110       ctx->trace_part_recycle_finished--;
111   }
112   if (!part)
113     part = new (MmapOrDie(sizeof(*part), "TracePart")) TracePart();
114   return part;
115 }
116 
117 static void TracePartFree(TracePart* part) SANITIZER_REQUIRES(ctx->slot_mtx) {
118   DCHECK(part->trace);
119   part->trace = nullptr;
120   ctx->trace_part_recycle.PushFront(part);
121 }
122 
123 void TraceResetForTesting() {
124   Lock lock(&ctx->slot_mtx);
125   while (auto* part = ctx->trace_part_recycle.PopFront()) {
126     if (auto trace = part->trace)
127       CHECK_EQ(trace->parts.PopFront(), part);
128     UnmapOrDie(part, sizeof(*part));
129   }
130   ctx->trace_part_total_allocated = 0;
131   ctx->trace_part_recycle_finished = 0;
132   ctx->trace_part_finished_excess = 0;
133 }
134 
135 static void DoResetImpl(uptr epoch) {
136   ThreadRegistryLock lock0(&ctx->thread_registry);
137   Lock lock1(&ctx->slot_mtx);
138   CHECK_EQ(ctx->global_epoch, epoch);
139   ctx->global_epoch++;
140   CHECK(!ctx->resetting);
141   ctx->resetting = true;
142   for (u32 i = ctx->thread_registry.NumThreadsLocked(); i--;) {
143     ThreadContext* tctx = (ThreadContext*)ctx->thread_registry.GetThreadLocked(
144         static_cast<Tid>(i));
145     // Potentially we could purge all ThreadStatusDead threads from the
146     // registry. Since we reset all shadow, they can't race with anything
147     // anymore. However, their tid's can still be stored in some aux places
148     // (e.g. tid of thread that created something).
149     auto trace = &tctx->trace;
150     Lock lock(&trace->mtx);
151     bool attached = tctx->thr && tctx->thr->slot;
152     auto parts = &trace->parts;
153     bool local = false;
154     while (!parts->Empty()) {
155       auto part = parts->Front();
156       local = local || part == trace->local_head;
157       if (local)
158         CHECK(!ctx->trace_part_recycle.Queued(part));
159       else
160         ctx->trace_part_recycle.Remove(part);
161       if (attached && parts->Size() == 1) {
162         // The thread is running and this is the last/current part.
163         // Set the trace position to the end of the current part
164         // to force the thread to call SwitchTracePart and re-attach
165         // to a new slot and allocate a new trace part.
166         // Note: the thread is concurrently modifying the position as well,
167         // so this is only best-effort. The thread can only modify position
168         // within this part, because switching parts is protected by
169         // slot/trace mutexes that we hold here.
170         atomic_store_relaxed(
171             &tctx->thr->trace_pos,
172             reinterpret_cast<uptr>(&part->events[TracePart::kSize]));
173         break;
174       }
175       parts->Remove(part);
176       TracePartFree(part);
177     }
178     CHECK_LE(parts->Size(), 1);
179     trace->local_head = parts->Front();
180     if (tctx->thr && !tctx->thr->slot) {
181       atomic_store_relaxed(&tctx->thr->trace_pos, 0);
182       tctx->thr->trace_prev_pc = 0;
183     }
184     if (trace->parts_allocated > trace->parts.Size()) {
185       ctx->trace_part_finished_excess +=
186           trace->parts_allocated - trace->parts.Size();
187       trace->parts_allocated = trace->parts.Size();
188     }
189   }
190   while (ctx->slot_queue.PopFront()) {
191   }
192   for (auto& slot : ctx->slots) {
193     slot.SetEpoch(kEpochZero);
194     slot.journal.Reset();
195     slot.thr = nullptr;
196     ctx->slot_queue.PushBack(&slot);
197   }
198 
199   DPrintf("Resetting shadow...\n");
200   auto shadow_begin = ShadowBeg();
201   auto shadow_end = ShadowEnd();
202 #if SANITIZER_GO
203   CHECK_NE(0, ctx->mapped_shadow_begin);
204   shadow_begin = ctx->mapped_shadow_begin;
205   shadow_end = ctx->mapped_shadow_end;
206   VPrintf(2, "shadow_begin-shadow_end: (0x%zx-0x%zx)\n",
207           shadow_begin, shadow_end);
208 #endif
209 
210 #if SANITIZER_WINDOWS
211   auto resetFailed =
212       !ZeroMmapFixedRegion(shadow_begin, shadow_end - shadow_begin);
213 #else
214   auto resetFailed =
215       !MmapFixedSuperNoReserve(shadow_begin, shadow_end-shadow_begin, "shadow");
216 #endif
217   if (resetFailed) {
218     Printf("failed to reset shadow memory\n");
219     Die();
220   }
221   DPrintf("Resetting meta shadow...\n");
222   ctx->metamap.ResetClocks();
223   StoreShadow(&ctx->last_spurious_race, Shadow::kEmpty);
224   ctx->resetting = false;
225 }
226 
227 // Clang does not understand locking all slots in the loop:
228 // error: expecting mutex 'slot.mtx' to be held at start of each loop
229 void DoReset(ThreadState* thr, uptr epoch) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
230   for (auto& slot : ctx->slots) {
231     slot.mtx.Lock();
232     if (UNLIKELY(epoch == 0))
233       epoch = ctx->global_epoch;
234     if (UNLIKELY(epoch != ctx->global_epoch)) {
235       // Epoch can't change once we've locked the first slot.
236       CHECK_EQ(slot.sid, 0);
237       slot.mtx.Unlock();
238       return;
239     }
240   }
241   DPrintf("#%d: DoReset epoch=%lu\n", thr ? thr->tid : -1, epoch);
242   DoResetImpl(epoch);
243   for (auto& slot : ctx->slots) slot.mtx.Unlock();
244 }
245 
246 void FlushShadowMemory() { DoReset(nullptr, 0); }
247 
248 static TidSlot* FindSlotAndLock(ThreadState* thr)
249     SANITIZER_ACQUIRE(thr->slot->mtx) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
250   CHECK(!thr->slot);
251   TidSlot* slot = nullptr;
252   for (;;) {
253     uptr epoch;
254     {
255       Lock lock(&ctx->slot_mtx);
256       epoch = ctx->global_epoch;
257       if (slot) {
258         // This is an exhausted slot from the previous iteration.
259         if (ctx->slot_queue.Queued(slot))
260           ctx->slot_queue.Remove(slot);
261         thr->slot_locked = false;
262         slot->mtx.Unlock();
263       }
264       for (;;) {
265         slot = ctx->slot_queue.PopFront();
266         if (!slot)
267           break;
268         if (slot->epoch() != kEpochLast) {
269           ctx->slot_queue.PushBack(slot);
270           break;
271         }
272       }
273     }
274     if (!slot) {
275       DoReset(thr, epoch);
276       continue;
277     }
278     slot->mtx.Lock();
279     CHECK(!thr->slot_locked);
280     thr->slot_locked = true;
281     if (slot->thr) {
282       DPrintf("#%d: preempting sid=%d tid=%d\n", thr->tid, (u32)slot->sid,
283               slot->thr->tid);
284       slot->SetEpoch(slot->thr->fast_state.epoch());
285       slot->thr = nullptr;
286     }
287     if (slot->epoch() != kEpochLast)
288       return slot;
289   }
290 }
291 
292 void SlotAttachAndLock(ThreadState* thr) {
293   TidSlot* slot = FindSlotAndLock(thr);
294   DPrintf("#%d: SlotAttach: slot=%u\n", thr->tid, static_cast<int>(slot->sid));
295   CHECK(!slot->thr);
296   CHECK(!thr->slot);
297   slot->thr = thr;
298   thr->slot = slot;
299   Epoch epoch = EpochInc(slot->epoch());
300   CHECK(!EpochOverflow(epoch));
301   slot->SetEpoch(epoch);
302   thr->fast_state.SetSid(slot->sid);
303   thr->fast_state.SetEpoch(epoch);
304   if (thr->slot_epoch != ctx->global_epoch) {
305     thr->slot_epoch = ctx->global_epoch;
306     thr->clock.Reset();
307 #if !SANITIZER_GO
308     thr->last_sleep_stack_id = kInvalidStackID;
309     thr->last_sleep_clock.Reset();
310 #endif
311   }
312   thr->clock.Set(slot->sid, epoch);
313   slot->journal.PushBack({thr->tid, epoch});
314 }
315 
316 static void SlotDetachImpl(ThreadState* thr, bool exiting) {
317   TidSlot* slot = thr->slot;
318   thr->slot = nullptr;
319   if (thr != slot->thr) {
320     slot = nullptr;  // we don't own the slot anymore
321     if (thr->slot_epoch != ctx->global_epoch) {
322       TracePart* part = nullptr;
323       auto* trace = &thr->tctx->trace;
324       {
325         Lock l(&trace->mtx);
326         auto* parts = &trace->parts;
327         // The trace can be completely empty in an unlikely event
328         // the thread is preempted right after it acquired the slot
329         // in ThreadStart and did not trace any events yet.
330         CHECK_LE(parts->Size(), 1);
331         part = parts->PopFront();
332         thr->tctx->trace.local_head = nullptr;
333         atomic_store_relaxed(&thr->trace_pos, 0);
334         thr->trace_prev_pc = 0;
335       }
336       if (part) {
337         Lock l(&ctx->slot_mtx);
338         TracePartFree(part);
339       }
340     }
341     return;
342   }
343   CHECK(exiting || thr->fast_state.epoch() == kEpochLast);
344   slot->SetEpoch(thr->fast_state.epoch());
345   slot->thr = nullptr;
346 }
347 
348 void SlotDetach(ThreadState* thr) {
349   Lock lock(&thr->slot->mtx);
350   SlotDetachImpl(thr, true);
351 }
352 
353 void SlotLock(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
354   DCHECK(!thr->slot_locked);
355 #if SANITIZER_DEBUG
356   // Check these mutexes are not locked.
357   // We can call DoReset from SlotAttachAndLock, which will lock
358   // these mutexes, but it happens only every once in a while.
359   { ThreadRegistryLock lock(&ctx->thread_registry); }
360   { Lock lock(&ctx->slot_mtx); }
361 #endif
362   TidSlot* slot = thr->slot;
363   slot->mtx.Lock();
364   thr->slot_locked = true;
365   if (LIKELY(thr == slot->thr && thr->fast_state.epoch() != kEpochLast))
366     return;
367   SlotDetachImpl(thr, false);
368   thr->slot_locked = false;
369   slot->mtx.Unlock();
370   SlotAttachAndLock(thr);
371 }
372 
373 void SlotUnlock(ThreadState* thr) {
374   DCHECK(thr->slot_locked);
375   thr->slot_locked = false;
376   thr->slot->mtx.Unlock();
377 }
378 
379 Context::Context()
380     : initialized(),
381       report_mtx(MutexTypeReport),
382       nreported(),
383       thread_registry([](Tid tid) -> ThreadContextBase* {
384         return new (Alloc(sizeof(ThreadContext))) ThreadContext(tid);
385       }),
386       racy_mtx(MutexTypeRacy),
387       racy_stacks(),
388       fired_suppressions_mtx(MutexTypeFired),
389       slot_mtx(MutexTypeSlots),
390       resetting() {
391   fired_suppressions.reserve(8);
392   for (uptr i = 0; i < ARRAY_SIZE(slots); i++) {
393     TidSlot* slot = &slots[i];
394     slot->sid = static_cast<Sid>(i);
395     slot_queue.PushBack(slot);
396   }
397   global_epoch = 1;
398 }
399 
400 TidSlot::TidSlot() : mtx(MutexTypeSlot) {}
401 
402 // The objects are allocated in TLS, so one may rely on zero-initialization.
403 ThreadState::ThreadState(Tid tid)
404     // Do not touch these, rely on zero initialization,
405     // they may be accessed before the ctor.
406     // ignore_reads_and_writes()
407     // ignore_interceptors()
408     : tid(tid) {
409   CHECK_EQ(reinterpret_cast<uptr>(this) % SANITIZER_CACHE_LINE_SIZE, 0);
410 #if !SANITIZER_GO
411   // C/C++ uses fixed size shadow stack.
412   const int kInitStackSize = kShadowStackSize;
413   shadow_stack = static_cast<uptr*>(
414       MmapNoReserveOrDie(kInitStackSize * sizeof(uptr), "shadow stack"));
415   SetShadowRegionHugePageMode(reinterpret_cast<uptr>(shadow_stack),
416                               kInitStackSize * sizeof(uptr));
417 #else
418   // Go uses malloc-allocated shadow stack with dynamic size.
419   const int kInitStackSize = 8;
420   shadow_stack = static_cast<uptr*>(Alloc(kInitStackSize * sizeof(uptr)));
421 #endif
422   shadow_stack_pos = shadow_stack;
423   shadow_stack_end = shadow_stack + kInitStackSize;
424 }
425 
426 #if !SANITIZER_GO
427 void MemoryProfiler(u64 uptime) {
428   if (ctx->memprof_fd == kInvalidFd)
429     return;
430   InternalMmapVector<char> buf(4096);
431   WriteMemoryProfile(buf.data(), buf.size(), uptime);
432   WriteToFile(ctx->memprof_fd, buf.data(), internal_strlen(buf.data()));
433 }
434 
435 static bool InitializeMemoryProfiler() {
436   ctx->memprof_fd = kInvalidFd;
437   const char *fname = flags()->profile_memory;
438   if (!fname || !fname[0])
439     return false;
440   if (internal_strcmp(fname, "stdout") == 0) {
441     ctx->memprof_fd = 1;
442   } else if (internal_strcmp(fname, "stderr") == 0) {
443     ctx->memprof_fd = 2;
444   } else {
445     InternalScopedString filename;
446     filename.append("%s.%d", fname, (int)internal_getpid());
447     ctx->memprof_fd = OpenFile(filename.data(), WrOnly);
448     if (ctx->memprof_fd == kInvalidFd) {
449       Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
450              filename.data());
451       return false;
452     }
453   }
454   MemoryProfiler(0);
455   return true;
456 }
457 
458 static void *BackgroundThread(void *arg) {
459   // This is a non-initialized non-user thread, nothing to see here.
460   // We don't use ScopedIgnoreInterceptors, because we want ignores to be
461   // enabled even when the thread function exits (e.g. during pthread thread
462   // shutdown code).
463   cur_thread_init()->ignore_interceptors++;
464   const u64 kMs2Ns = 1000 * 1000;
465   const u64 start = NanoTime();
466 
467   u64 last_flush = start;
468   uptr last_rss = 0;
469   while (!atomic_load_relaxed(&ctx->stop_background_thread)) {
470     SleepForMillis(100);
471     u64 now = NanoTime();
472 
473     // Flush memory if requested.
474     if (flags()->flush_memory_ms > 0) {
475       if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
476         VReport(1, "ThreadSanitizer: periodic memory flush\n");
477         FlushShadowMemory();
478         now = last_flush = NanoTime();
479       }
480     }
481     if (flags()->memory_limit_mb > 0) {
482       uptr rss = GetRSS();
483       uptr limit = uptr(flags()->memory_limit_mb) << 20;
484       VReport(1,
485               "ThreadSanitizer: memory flush check"
486               " RSS=%llu LAST=%llu LIMIT=%llu\n",
487               (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
488       if (2 * rss > limit + last_rss) {
489         VReport(1, "ThreadSanitizer: flushing memory due to RSS\n");
490         FlushShadowMemory();
491         rss = GetRSS();
492         now = NanoTime();
493         VReport(1, "ThreadSanitizer: memory flushed RSS=%llu\n",
494                 (u64)rss >> 20);
495       }
496       last_rss = rss;
497     }
498 
499     MemoryProfiler(now - start);
500 
501     // Flush symbolizer cache if requested.
502     if (flags()->flush_symbolizer_ms > 0) {
503       u64 last = atomic_load(&ctx->last_symbolize_time_ns,
504                              memory_order_relaxed);
505       if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
506         Lock l(&ctx->report_mtx);
507         ScopedErrorReportLock l2;
508         SymbolizeFlush();
509         atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
510       }
511     }
512   }
513   return nullptr;
514 }
515 
516 static void StartBackgroundThread() {
517   ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
518 }
519 
520 #ifndef __mips__
521 static void StopBackgroundThread() {
522   atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
523   internal_join_thread(ctx->background_thread);
524   ctx->background_thread = 0;
525 }
526 #endif
527 #endif
528 
529 void DontNeedShadowFor(uptr addr, uptr size) {
530   ReleaseMemoryPagesToOS(reinterpret_cast<uptr>(MemToShadow(addr)),
531                          reinterpret_cast<uptr>(MemToShadow(addr + size)));
532 }
533 
534 #if !SANITIZER_GO
535 // We call UnmapShadow before the actual munmap, at that point we don't yet
536 // know if the provided address/size are sane. We can't call UnmapShadow
537 // after the actual munmap becuase at that point the memory range can
538 // already be reused for something else, so we can't rely on the munmap
539 // return value to understand is the values are sane.
540 // While calling munmap with insane values (non-canonical address, negative
541 // size, etc) is an error, the kernel won't crash. We must also try to not
542 // crash as the failure mode is very confusing (paging fault inside of the
543 // runtime on some derived shadow address).
544 static bool IsValidMmapRange(uptr addr, uptr size) {
545   if (size == 0)
546     return true;
547   if (static_cast<sptr>(size) < 0)
548     return false;
549   if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
550     return false;
551   // Check that if the start of the region belongs to one of app ranges,
552   // end of the region belongs to the same region.
553   const uptr ranges[][2] = {
554       {LoAppMemBeg(), LoAppMemEnd()},
555       {MidAppMemBeg(), MidAppMemEnd()},
556       {HiAppMemBeg(), HiAppMemEnd()},
557   };
558   for (auto range : ranges) {
559     if (addr >= range[0] && addr < range[1])
560       return addr + size <= range[1];
561   }
562   return false;
563 }
564 
565 void UnmapShadow(ThreadState *thr, uptr addr, uptr size) {
566   if (size == 0 || !IsValidMmapRange(addr, size))
567     return;
568   DontNeedShadowFor(addr, size);
569   ScopedGlobalProcessor sgp;
570   SlotLocker locker(thr, true);
571   ctx->metamap.ResetRange(thr->proc(), addr, size, true);
572 }
573 #endif
574 
575 void MapShadow(uptr addr, uptr size) {
576   // Ensure thead registry lock held, so as to synchronize
577   // with DoReset, which also access the mapped_shadow_* ctxt fields.
578   ThreadRegistryLock lock0(&ctx->thread_registry);
579   static bool data_mapped = false;
580 
581 #if !SANITIZER_GO
582   // Global data is not 64K aligned, but there are no adjacent mappings,
583   // so we can get away with unaligned mapping.
584   // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
585   const uptr kPageSize = GetPageSizeCached();
586   uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
587   uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
588   if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
589     Die();
590 #else
591   uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), (64 << 10));
592   uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), (64 << 10));
593   VPrintf(2, "MapShadow for (0x%zx-0x%zx), begin/end: (0x%zx-0x%zx)\n",
594           addr, addr + size, shadow_begin, shadow_end);
595 
596   if (!data_mapped) {
597     // First call maps data+bss.
598     if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
599       Die();
600   } else {
601     VPrintf(2, "ctx->mapped_shadow_{begin,end} = (0x%zx-0x%zx)\n",
602             ctx->mapped_shadow_begin, ctx->mapped_shadow_end);
603     // Second and subsequent calls map heap.
604     if (shadow_end <= ctx->mapped_shadow_end)
605       return;
606     if (ctx->mapped_shadow_begin < shadow_begin)
607       ctx->mapped_shadow_begin = shadow_begin;
608     if (shadow_begin < ctx->mapped_shadow_end)
609       shadow_begin = ctx->mapped_shadow_end;
610     VPrintf(2, "MapShadow begin/end = (0x%zx-0x%zx)\n",
611             shadow_begin, shadow_end);
612     if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin,
613                                  "shadow"))
614       Die();
615     ctx->mapped_shadow_end = shadow_end;
616   }
617 #endif
618 
619   // Meta shadow is 2:1, so tread carefully.
620   static uptr mapped_meta_end = 0;
621   uptr meta_begin = (uptr)MemToMeta(addr);
622   uptr meta_end = (uptr)MemToMeta(addr + size);
623   meta_begin = RoundDownTo(meta_begin, 64 << 10);
624   meta_end = RoundUpTo(meta_end, 64 << 10);
625   if (!data_mapped) {
626     // First call maps data+bss.
627     data_mapped = true;
628     if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
629                                  "meta shadow"))
630       Die();
631   } else {
632     // Mapping continuous heap.
633     // Windows wants 64K alignment.
634     meta_begin = RoundDownTo(meta_begin, 64 << 10);
635     meta_end = RoundUpTo(meta_end, 64 << 10);
636     CHECK_GT(meta_end, mapped_meta_end);
637     if (meta_begin < mapped_meta_end)
638       meta_begin = mapped_meta_end;
639     if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
640                                  "meta shadow"))
641       Die();
642     mapped_meta_end = meta_end;
643   }
644   VPrintf(2, "mapped meta shadow for (0x%zx-0x%zx) at (0x%zx-0x%zx)\n", addr,
645           addr + size, meta_begin, meta_end);
646 }
647 
648 #if !SANITIZER_GO
649 static void OnStackUnwind(const SignalContext &sig, const void *,
650                           BufferedStackTrace *stack) {
651   stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
652                 common_flags()->fast_unwind_on_fatal);
653 }
654 
655 static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
656   HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
657 }
658 #endif
659 
660 void CheckUnwind() {
661   // There is high probability that interceptors will check-fail as well,
662   // on the other hand there is no sense in processing interceptors
663   // since we are going to die soon.
664   ScopedIgnoreInterceptors ignore;
665 #if !SANITIZER_GO
666   ThreadState* thr = cur_thread();
667   thr->nomalloc = false;
668   thr->ignore_sync++;
669   thr->ignore_reads_and_writes++;
670   atomic_store_relaxed(&thr->in_signal_handler, 0);
671 #endif
672   PrintCurrentStackSlow(StackTrace::GetCurrentPc());
673 }
674 
675 bool is_initialized;
676 
677 void Initialize(ThreadState *thr) {
678   // Thread safe because done before all threads exist.
679   if (is_initialized)
680     return;
681   is_initialized = true;
682   // We are not ready to handle interceptors yet.
683   ScopedIgnoreInterceptors ignore;
684   SanitizerToolName = "ThreadSanitizer";
685   // Install tool-specific callbacks in sanitizer_common.
686   SetCheckUnwindCallback(CheckUnwind);
687 
688   ctx = new(ctx_placeholder) Context;
689   const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS";
690   const char *options = GetEnv(env_name);
691   CacheBinaryName();
692   CheckASLR();
693   InitializeFlags(&ctx->flags, options, env_name);
694   AvoidCVE_2016_2143();
695   __sanitizer::InitializePlatformEarly();
696   __tsan::InitializePlatformEarly();
697 
698 #if !SANITIZER_GO
699   InitializeAllocator();
700   ReplaceSystemMalloc();
701 #endif
702   if (common_flags()->detect_deadlocks)
703     ctx->dd = DDetector::Create(flags());
704   Processor *proc = ProcCreate();
705   ProcWire(proc, thr);
706   InitializeInterceptors();
707   InitializePlatform();
708   InitializeDynamicAnnotations();
709 #if !SANITIZER_GO
710   InitializeShadowMemory();
711   InitializeAllocatorLate();
712   InstallDeadlySignalHandlers(TsanOnDeadlySignal);
713 #endif
714   // Setup correct file descriptor for error reports.
715   __sanitizer_set_report_path(common_flags()->log_path);
716   InitializeSuppressions();
717 #if !SANITIZER_GO
718   InitializeLibIgnore();
719   Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
720 #endif
721 
722   VPrintf(1, "***** Running under ThreadSanitizer v3 (pid %d) *****\n",
723           (int)internal_getpid());
724 
725   // Initialize thread 0.
726   Tid tid = ThreadCreate(nullptr, 0, 0, true);
727   CHECK_EQ(tid, kMainTid);
728   ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
729 #if TSAN_CONTAINS_UBSAN
730   __ubsan::InitAsPlugin();
731 #endif
732 
733 #if !SANITIZER_GO
734   Symbolizer::LateInitialize();
735   if (InitializeMemoryProfiler() || flags()->force_background_thread)
736     MaybeSpawnBackgroundThread();
737 #endif
738   ctx->initialized = true;
739 
740   if (flags()->stop_on_start) {
741     Printf("ThreadSanitizer is suspended at startup (pid %d)."
742            " Call __tsan_resume().\n",
743            (int)internal_getpid());
744     while (__tsan_resumed == 0) {}
745   }
746 
747   OnInitialize();
748 }
749 
750 void MaybeSpawnBackgroundThread() {
751   // On MIPS, TSan initialization is run before
752   // __pthread_initialize_minimal_internal() is finished, so we can not spawn
753   // new threads.
754 #if !SANITIZER_GO && !defined(__mips__)
755   static atomic_uint32_t bg_thread = {};
756   if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
757       atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
758     StartBackgroundThread();
759     SetSandboxingCallback(StopBackgroundThread);
760   }
761 #endif
762 }
763 
764 int Finalize(ThreadState *thr) {
765   bool failed = false;
766 
767 #if !SANITIZER_GO
768   if (common_flags()->print_module_map == 1)
769     DumpProcessMap();
770 #endif
771 
772   if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
773     internal_usleep(u64(flags()->atexit_sleep_ms) * 1000);
774 
775   {
776     // Wait for pending reports.
777     ScopedErrorReportLock lock;
778   }
779 
780 #if !SANITIZER_GO
781   if (Verbosity()) AllocatorPrintStats();
782 #endif
783 
784   ThreadFinalize(thr);
785 
786   if (ctx->nreported) {
787     failed = true;
788 #if !SANITIZER_GO
789     Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
790 #else
791     Printf("Found %d data race(s)\n", ctx->nreported);
792 #endif
793   }
794 
795   if (common_flags()->print_suppressions)
796     PrintMatchedSuppressions();
797 
798   failed = OnFinalize(failed);
799 
800   return failed ? common_flags()->exitcode : 0;
801 }
802 
803 #if !SANITIZER_GO
804 void ForkBefore(ThreadState* thr, uptr pc) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
805   GlobalProcessorLock();
806   // Detaching from the slot makes OnUserFree skip writing to the shadow.
807   // The slot will be locked so any attempts to use it will deadlock anyway.
808   SlotDetach(thr);
809   for (auto& slot : ctx->slots) slot.mtx.Lock();
810   ctx->thread_registry.Lock();
811   ctx->slot_mtx.Lock();
812   ScopedErrorReportLock::Lock();
813   AllocatorLock();
814   // Suppress all reports in the pthread_atfork callbacks.
815   // Reports will deadlock on the report_mtx.
816   // We could ignore sync operations as well,
817   // but so far it's unclear if it will do more good or harm.
818   // Unnecessarily ignoring things can lead to false positives later.
819   thr->suppress_reports++;
820   // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
821   // we'll assert in CheckNoLocks() unless we ignore interceptors.
822   // On OS X libSystem_atfork_prepare/parent/child callbacks are called
823   // after/before our callbacks and they call free.
824   thr->ignore_interceptors++;
825   // Disables memory write in OnUserAlloc/Free.
826   thr->ignore_reads_and_writes++;
827 
828   __tsan_test_only_on_fork();
829 }
830 
831 static void ForkAfter(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
832   thr->suppress_reports--;  // Enabled in ForkBefore.
833   thr->ignore_interceptors--;
834   thr->ignore_reads_and_writes--;
835   AllocatorUnlock();
836   ScopedErrorReportLock::Unlock();
837   ctx->slot_mtx.Unlock();
838   ctx->thread_registry.Unlock();
839   for (auto& slot : ctx->slots) slot.mtx.Unlock();
840   SlotAttachAndLock(thr);
841   SlotUnlock(thr);
842   GlobalProcessorUnlock();
843 }
844 
845 void ForkParentAfter(ThreadState* thr, uptr pc) { ForkAfter(thr); }
846 
847 void ForkChildAfter(ThreadState* thr, uptr pc, bool start_thread) {
848   ForkAfter(thr);
849   u32 nthread = ctx->thread_registry.OnFork(thr->tid);
850   VPrintf(1,
851           "ThreadSanitizer: forked new process with pid %d,"
852           " parent had %d threads\n",
853           (int)internal_getpid(), (int)nthread);
854   if (nthread == 1) {
855     if (start_thread)
856       StartBackgroundThread();
857   } else {
858     // We've just forked a multi-threaded process. We cannot reasonably function
859     // after that (some mutexes may be locked before fork). So just enable
860     // ignores for everything in the hope that we will exec soon.
861     ctx->after_multithreaded_fork = true;
862     thr->ignore_interceptors++;
863     thr->suppress_reports++;
864     ThreadIgnoreBegin(thr, pc);
865     ThreadIgnoreSyncBegin(thr, pc);
866   }
867 }
868 #endif
869 
870 #if SANITIZER_GO
871 NOINLINE
872 void GrowShadowStack(ThreadState *thr) {
873   const int sz = thr->shadow_stack_end - thr->shadow_stack;
874   const int newsz = 2 * sz;
875   auto *newstack = (uptr *)Alloc(newsz * sizeof(uptr));
876   internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
877   Free(thr->shadow_stack);
878   thr->shadow_stack = newstack;
879   thr->shadow_stack_pos = newstack + sz;
880   thr->shadow_stack_end = newstack + newsz;
881 }
882 #endif
883 
884 StackID CurrentStackId(ThreadState *thr, uptr pc) {
885 #if !SANITIZER_GO
886   if (!thr->is_inited)  // May happen during bootstrap.
887     return kInvalidStackID;
888 #endif
889   if (pc != 0) {
890 #if !SANITIZER_GO
891     DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
892 #else
893     if (thr->shadow_stack_pos == thr->shadow_stack_end)
894       GrowShadowStack(thr);
895 #endif
896     thr->shadow_stack_pos[0] = pc;
897     thr->shadow_stack_pos++;
898   }
899   StackID id = StackDepotPut(
900       StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
901   if (pc != 0)
902     thr->shadow_stack_pos--;
903   return id;
904 }
905 
906 static bool TraceSkipGap(ThreadState* thr) {
907   Trace *trace = &thr->tctx->trace;
908   Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
909   DCHECK_EQ(reinterpret_cast<uptr>(pos + 1) & TracePart::kAlignment, 0);
910   auto *part = trace->parts.Back();
911   DPrintf("#%d: TraceSwitchPart enter trace=%p parts=%p-%p pos=%p\n", thr->tid,
912           trace, trace->parts.Front(), part, pos);
913   if (!part)
914     return false;
915   // We can get here when we still have space in the current trace part.
916   // The fast-path check in TraceAcquire has false positives in the middle of
917   // the part. Check if we are indeed at the end of the current part or not,
918   // and fill any gaps with NopEvent's.
919   Event* end = &part->events[TracePart::kSize];
920   DCHECK_GE(pos, &part->events[0]);
921   DCHECK_LE(pos, end);
922   if (pos + 1 < end) {
923     if ((reinterpret_cast<uptr>(pos) & TracePart::kAlignment) ==
924         TracePart::kAlignment)
925       *pos++ = NopEvent;
926     *pos++ = NopEvent;
927     DCHECK_LE(pos + 2, end);
928     atomic_store_relaxed(&thr->trace_pos, reinterpret_cast<uptr>(pos));
929     return true;
930   }
931   // We are indeed at the end.
932   for (; pos < end; pos++) *pos = NopEvent;
933   return false;
934 }
935 
936 NOINLINE
937 void TraceSwitchPart(ThreadState* thr) {
938   if (TraceSkipGap(thr))
939     return;
940 #if !SANITIZER_GO
941   if (ctx->after_multithreaded_fork) {
942     // We just need to survive till exec.
943     TracePart* part = thr->tctx->trace.parts.Back();
944     if (part) {
945       atomic_store_relaxed(&thr->trace_pos,
946                            reinterpret_cast<uptr>(&part->events[0]));
947       return;
948     }
949   }
950 #endif
951   TraceSwitchPartImpl(thr);
952 }
953 
954 void TraceSwitchPartImpl(ThreadState* thr) {
955   SlotLocker locker(thr, true);
956   Trace* trace = &thr->tctx->trace;
957   TracePart* part = TracePartAlloc(thr);
958   part->trace = trace;
959   thr->trace_prev_pc = 0;
960   TracePart* recycle = nullptr;
961   // Keep roughly half of parts local to the thread
962   // (not queued into the recycle queue).
963   uptr local_parts = (Trace::kMinParts + flags()->history_size + 1) / 2;
964   {
965     Lock lock(&trace->mtx);
966     if (trace->parts.Empty())
967       trace->local_head = part;
968     if (trace->parts.Size() >= local_parts) {
969       recycle = trace->local_head;
970       trace->local_head = trace->parts.Next(recycle);
971     }
972     trace->parts.PushBack(part);
973     atomic_store_relaxed(&thr->trace_pos,
974                          reinterpret_cast<uptr>(&part->events[0]));
975   }
976   // Make this part self-sufficient by restoring the current stack
977   // and mutex set in the beginning of the trace.
978   TraceTime(thr);
979   {
980     // Pathologically large stacks may not fit into the part.
981     // In these cases we log only fixed number of top frames.
982     const uptr kMaxFrames = 1000;
983     // Check that kMaxFrames won't consume the whole part.
984     static_assert(kMaxFrames < TracePart::kSize / 2, "kMaxFrames is too big");
985     uptr* pos = Max(&thr->shadow_stack[0], thr->shadow_stack_pos - kMaxFrames);
986     for (; pos < thr->shadow_stack_pos; pos++) {
987       if (TryTraceFunc(thr, *pos))
988         continue;
989       CHECK(TraceSkipGap(thr));
990       CHECK(TryTraceFunc(thr, *pos));
991     }
992   }
993   for (uptr i = 0; i < thr->mset.Size(); i++) {
994     MutexSet::Desc d = thr->mset.Get(i);
995     for (uptr i = 0; i < d.count; i++)
996       TraceMutexLock(thr, d.write ? EventType::kLock : EventType::kRLock, 0,
997                      d.addr, d.stack_id);
998   }
999   // Callers of TraceSwitchPart expect that TraceAcquire will always succeed
1000   // after the call. It's possible that TryTraceFunc/TraceMutexLock above
1001   // filled the trace part exactly up to the TracePart::kAlignment gap
1002   // and the next TraceAcquire won't succeed. Skip the gap to avoid that.
1003   EventFunc *ev;
1004   if (!TraceAcquire(thr, &ev)) {
1005     CHECK(TraceSkipGap(thr));
1006     CHECK(TraceAcquire(thr, &ev));
1007   }
1008   {
1009     Lock lock(&ctx->slot_mtx);
1010     // There is a small chance that the slot may be not queued at this point.
1011     // This can happen if the slot has kEpochLast epoch and another thread
1012     // in FindSlotAndLock discovered that it's exhausted and removed it from
1013     // the slot queue. kEpochLast can happen in 2 cases: (1) if TraceSwitchPart
1014     // was called with the slot locked and epoch already at kEpochLast,
1015     // or (2) if we've acquired a new slot in SlotLock in the beginning
1016     // of the function and the slot was at kEpochLast - 1, so after increment
1017     // in SlotAttachAndLock it become kEpochLast.
1018     if (ctx->slot_queue.Queued(thr->slot)) {
1019       ctx->slot_queue.Remove(thr->slot);
1020       ctx->slot_queue.PushBack(thr->slot);
1021     }
1022     if (recycle)
1023       ctx->trace_part_recycle.PushBack(recycle);
1024   }
1025   DPrintf("#%d: TraceSwitchPart exit parts=%p-%p pos=0x%zx\n", thr->tid,
1026           trace->parts.Front(), trace->parts.Back(),
1027           atomic_load_relaxed(&thr->trace_pos));
1028 }
1029 
1030 void ThreadIgnoreBegin(ThreadState* thr, uptr pc) {
1031   DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
1032   thr->ignore_reads_and_writes++;
1033   CHECK_GT(thr->ignore_reads_and_writes, 0);
1034   thr->fast_state.SetIgnoreBit();
1035 #if !SANITIZER_GO
1036   if (pc && !ctx->after_multithreaded_fork)
1037     thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
1038 #endif
1039 }
1040 
1041 void ThreadIgnoreEnd(ThreadState *thr) {
1042   DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
1043   CHECK_GT(thr->ignore_reads_and_writes, 0);
1044   thr->ignore_reads_and_writes--;
1045   if (thr->ignore_reads_and_writes == 0) {
1046     thr->fast_state.ClearIgnoreBit();
1047 #if !SANITIZER_GO
1048     thr->mop_ignore_set.Reset();
1049 #endif
1050   }
1051 }
1052 
1053 #if !SANITIZER_GO
1054 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
1055 uptr __tsan_testonly_shadow_stack_current_size() {
1056   ThreadState *thr = cur_thread();
1057   return thr->shadow_stack_pos - thr->shadow_stack;
1058 }
1059 #endif
1060 
1061 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
1062   DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
1063   thr->ignore_sync++;
1064   CHECK_GT(thr->ignore_sync, 0);
1065 #if !SANITIZER_GO
1066   if (pc && !ctx->after_multithreaded_fork)
1067     thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
1068 #endif
1069 }
1070 
1071 void ThreadIgnoreSyncEnd(ThreadState *thr) {
1072   DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
1073   CHECK_GT(thr->ignore_sync, 0);
1074   thr->ignore_sync--;
1075 #if !SANITIZER_GO
1076   if (thr->ignore_sync == 0)
1077     thr->sync_ignore_set.Reset();
1078 #endif
1079 }
1080 
1081 bool MD5Hash::operator==(const MD5Hash &other) const {
1082   return hash[0] == other.hash[0] && hash[1] == other.hash[1];
1083 }
1084 
1085 #if SANITIZER_DEBUG
1086 void build_consistency_debug() {}
1087 #else
1088 void build_consistency_release() {}
1089 #endif
1090 }  // namespace __tsan
1091 
1092 #if SANITIZER_CHECK_DEADLOCKS
1093 namespace __sanitizer {
1094 using namespace __tsan;
1095 MutexMeta mutex_meta[] = {
1096     {MutexInvalid, "Invalid", {}},
1097     {MutexThreadRegistry,
1098      "ThreadRegistry",
1099      {MutexTypeSlots, MutexTypeTrace, MutexTypeReport}},
1100     {MutexTypeReport, "Report", {MutexTypeTrace}},
1101     {MutexTypeSyncVar, "SyncVar", {MutexTypeReport, MutexTypeTrace}},
1102     {MutexTypeAnnotations, "Annotations", {}},
1103     {MutexTypeAtExit, "AtExit", {}},
1104     {MutexTypeFired, "Fired", {MutexLeaf}},
1105     {MutexTypeRacy, "Racy", {MutexLeaf}},
1106     {MutexTypeGlobalProc, "GlobalProc", {MutexTypeSlot, MutexTypeSlots}},
1107     {MutexTypeInternalAlloc, "InternalAlloc", {MutexLeaf}},
1108     {MutexTypeTrace, "Trace", {}},
1109     {MutexTypeSlot,
1110      "Slot",
1111      {MutexMulti, MutexTypeTrace, MutexTypeSyncVar, MutexThreadRegistry,
1112       MutexTypeSlots}},
1113     {MutexTypeSlots, "Slots", {MutexTypeTrace, MutexTypeReport}},
1114     {},
1115 };
1116 
1117 void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); }
1118 
1119 }  // namespace __sanitizer
1120 #endif
1121