1 //===-- tsan_rtl.cpp ------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer (TSan), a race detector. 10 // 11 // Main file (entry points) for the TSan run-time. 12 //===----------------------------------------------------------------------===// 13 14 #include "tsan_rtl.h" 15 16 #include "sanitizer_common/sanitizer_atomic.h" 17 #include "sanitizer_common/sanitizer_common.h" 18 #include "sanitizer_common/sanitizer_file.h" 19 #include "sanitizer_common/sanitizer_libc.h" 20 #include "sanitizer_common/sanitizer_placement_new.h" 21 #include "sanitizer_common/sanitizer_stackdepot.h" 22 #include "sanitizer_common/sanitizer_symbolizer.h" 23 #include "tsan_defs.h" 24 #include "tsan_interface.h" 25 #include "tsan_mman.h" 26 #include "tsan_platform.h" 27 #include "tsan_suppressions.h" 28 #include "tsan_symbolize.h" 29 #include "ubsan/ubsan_init.h" 30 31 volatile int __tsan_resumed = 0; 32 33 extern "C" void __tsan_resume() { 34 __tsan_resumed = 1; 35 } 36 37 SANITIZER_WEAK_DEFAULT_IMPL 38 void __tsan_test_only_on_fork() {} 39 40 namespace __tsan { 41 42 #if !SANITIZER_GO 43 void (*on_initialize)(void); 44 int (*on_finalize)(int); 45 #endif 46 47 #if !SANITIZER_GO && !SANITIZER_MAC 48 __attribute__((tls_model("initial-exec"))) 49 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED( 50 SANITIZER_CACHE_LINE_SIZE); 51 #endif 52 static char ctx_placeholder[sizeof(Context)] ALIGNED(SANITIZER_CACHE_LINE_SIZE); 53 Context *ctx; 54 55 // Can be overriden by a front-end. 56 #ifdef TSAN_EXTERNAL_HOOKS 57 bool OnFinalize(bool failed); 58 void OnInitialize(); 59 #else 60 SANITIZER_WEAK_CXX_DEFAULT_IMPL 61 bool OnFinalize(bool failed) { 62 # if !SANITIZER_GO 63 if (on_finalize) 64 return on_finalize(failed); 65 # endif 66 return failed; 67 } 68 69 SANITIZER_WEAK_CXX_DEFAULT_IMPL 70 void OnInitialize() { 71 # if !SANITIZER_GO 72 if (on_initialize) 73 on_initialize(); 74 # endif 75 } 76 #endif 77 78 static TracePart* TracePartAlloc(ThreadState* thr) { 79 TracePart* part = nullptr; 80 { 81 Lock lock(&ctx->slot_mtx); 82 uptr max_parts = Trace::kMinParts + flags()->history_size; 83 Trace* trace = &thr->tctx->trace; 84 if (trace->parts_allocated == max_parts || 85 ctx->trace_part_finished_excess) { 86 part = ctx->trace_part_recycle.PopFront(); 87 DPrintf("#%d: TracePartAlloc: part=%p\n", thr->tid, part); 88 if (part && part->trace) { 89 Trace* trace1 = part->trace; 90 Lock trace_lock(&trace1->mtx); 91 part->trace = nullptr; 92 TracePart* part1 = trace1->parts.PopFront(); 93 CHECK_EQ(part, part1); 94 if (trace1->parts_allocated > trace1->parts.Size()) { 95 ctx->trace_part_finished_excess += 96 trace1->parts_allocated - trace1->parts.Size(); 97 trace1->parts_allocated = trace1->parts.Size(); 98 } 99 } 100 } 101 if (trace->parts_allocated < max_parts) { 102 trace->parts_allocated++; 103 if (ctx->trace_part_finished_excess) 104 ctx->trace_part_finished_excess--; 105 } 106 if (!part) 107 ctx->trace_part_total_allocated++; 108 else if (ctx->trace_part_recycle_finished) 109 ctx->trace_part_recycle_finished--; 110 } 111 if (!part) 112 part = new (MmapOrDie(sizeof(*part), "TracePart")) TracePart(); 113 return part; 114 } 115 116 static void TracePartFree(TracePart* part) SANITIZER_REQUIRES(ctx->slot_mtx) { 117 DCHECK(part->trace); 118 part->trace = nullptr; 119 ctx->trace_part_recycle.PushFront(part); 120 } 121 122 void TraceResetForTesting() { 123 Lock lock(&ctx->slot_mtx); 124 while (auto* part = ctx->trace_part_recycle.PopFront()) { 125 if (auto trace = part->trace) 126 CHECK_EQ(trace->parts.PopFront(), part); 127 UnmapOrDie(part, sizeof(*part)); 128 } 129 ctx->trace_part_total_allocated = 0; 130 ctx->trace_part_recycle_finished = 0; 131 ctx->trace_part_finished_excess = 0; 132 } 133 134 static void DoResetImpl(uptr epoch) { 135 ThreadRegistryLock lock0(&ctx->thread_registry); 136 Lock lock1(&ctx->slot_mtx); 137 CHECK_EQ(ctx->global_epoch, epoch); 138 ctx->global_epoch++; 139 CHECK(!ctx->resetting); 140 ctx->resetting = true; 141 for (u32 i = ctx->thread_registry.NumThreadsLocked(); i--;) { 142 ThreadContext* tctx = (ThreadContext*)ctx->thread_registry.GetThreadLocked( 143 static_cast<Tid>(i)); 144 // Potentially we could purge all ThreadStatusDead threads from the 145 // registry. Since we reset all shadow, they can't race with anything 146 // anymore. However, their tid's can still be stored in some aux places 147 // (e.g. tid of thread that created something). 148 auto trace = &tctx->trace; 149 Lock lock(&trace->mtx); 150 bool attached = tctx->thr && tctx->thr->slot; 151 auto parts = &trace->parts; 152 bool local = false; 153 while (!parts->Empty()) { 154 auto part = parts->Front(); 155 local = local || part == trace->local_head; 156 if (local) 157 CHECK(!ctx->trace_part_recycle.Queued(part)); 158 else 159 ctx->trace_part_recycle.Remove(part); 160 if (attached && parts->Size() == 1) { 161 // The thread is running and this is the last/current part. 162 // Set the trace position to the end of the current part 163 // to force the thread to call SwitchTracePart and re-attach 164 // to a new slot and allocate a new trace part. 165 // Note: the thread is concurrently modifying the position as well, 166 // so this is only best-effort. The thread can only modify position 167 // within this part, because switching parts is protected by 168 // slot/trace mutexes that we hold here. 169 atomic_store_relaxed( 170 &tctx->thr->trace_pos, 171 reinterpret_cast<uptr>(&part->events[TracePart::kSize])); 172 break; 173 } 174 parts->Remove(part); 175 TracePartFree(part); 176 } 177 CHECK_LE(parts->Size(), 1); 178 trace->local_head = parts->Front(); 179 if (tctx->thr && !tctx->thr->slot) { 180 atomic_store_relaxed(&tctx->thr->trace_pos, 0); 181 tctx->thr->trace_prev_pc = 0; 182 } 183 if (trace->parts_allocated > trace->parts.Size()) { 184 ctx->trace_part_finished_excess += 185 trace->parts_allocated - trace->parts.Size(); 186 trace->parts_allocated = trace->parts.Size(); 187 } 188 } 189 while (ctx->slot_queue.PopFront()) { 190 } 191 for (auto& slot : ctx->slots) { 192 slot.SetEpoch(kEpochZero); 193 slot.journal.Reset(); 194 slot.thr = nullptr; 195 ctx->slot_queue.PushBack(&slot); 196 } 197 198 DPrintf("Resetting shadow...\n"); 199 if (!MmapFixedSuperNoReserve(ShadowBeg(), ShadowEnd() - ShadowBeg(), 200 "shadow")) { 201 Printf("failed to reset shadow memory\n"); 202 Die(); 203 } 204 DPrintf("Resetting meta shadow...\n"); 205 ctx->metamap.ResetClocks(); 206 ctx->resetting = false; 207 } 208 209 // Clang does not understand locking all slots in the loop: 210 // error: expecting mutex 'slot.mtx' to be held at start of each loop 211 void DoReset(ThreadState* thr, uptr epoch) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 212 { 213 for (auto& slot : ctx->slots) { 214 slot.mtx.Lock(); 215 if (UNLIKELY(epoch == 0)) 216 epoch = ctx->global_epoch; 217 if (UNLIKELY(epoch != ctx->global_epoch)) { 218 // Epoch can't change once we've locked the first slot. 219 CHECK_EQ(slot.sid, 0); 220 slot.mtx.Unlock(); 221 return; 222 } 223 } 224 } 225 DPrintf("#%d: DoReset epoch=%lu\n", thr ? thr->tid : -1, epoch); 226 DoResetImpl(epoch); 227 for (auto& slot : ctx->slots) slot.mtx.Unlock(); 228 } 229 230 void FlushShadowMemory() { DoReset(nullptr, 0); } 231 232 static TidSlot* FindSlotAndLock(ThreadState* thr) 233 SANITIZER_ACQUIRE(thr->slot->mtx) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 234 CHECK(!thr->slot); 235 TidSlot* slot = nullptr; 236 for (;;) { 237 uptr epoch; 238 { 239 Lock lock(&ctx->slot_mtx); 240 epoch = ctx->global_epoch; 241 if (slot) { 242 // This is an exhausted slot from the previous iteration. 243 if (ctx->slot_queue.Queued(slot)) 244 ctx->slot_queue.Remove(slot); 245 thr->slot_locked = false; 246 slot->mtx.Unlock(); 247 } 248 for (;;) { 249 slot = ctx->slot_queue.PopFront(); 250 if (!slot) 251 break; 252 if (slot->epoch() != kEpochLast) { 253 ctx->slot_queue.PushBack(slot); 254 break; 255 } 256 } 257 } 258 if (!slot) { 259 DoReset(thr, epoch); 260 continue; 261 } 262 slot->mtx.Lock(); 263 CHECK(!thr->slot_locked); 264 thr->slot_locked = true; 265 if (slot->thr) { 266 DPrintf("#%d: preempting sid=%d tid=%d\n", thr->tid, (u32)slot->sid, 267 slot->thr->tid); 268 slot->SetEpoch(slot->thr->fast_state.epoch()); 269 slot->thr = nullptr; 270 } 271 if (slot->epoch() != kEpochLast) 272 return slot; 273 } 274 } 275 276 void SlotAttachAndLock(ThreadState* thr) { 277 TidSlot* slot = FindSlotAndLock(thr); 278 DPrintf("#%d: SlotAttach: slot=%u\n", thr->tid, static_cast<int>(slot->sid)); 279 CHECK(!slot->thr); 280 CHECK(!thr->slot); 281 slot->thr = thr; 282 thr->slot = slot; 283 Epoch epoch = EpochInc(slot->epoch()); 284 CHECK(!EpochOverflow(epoch)); 285 slot->SetEpoch(epoch); 286 thr->fast_state.SetSid(slot->sid); 287 thr->fast_state.SetEpoch(epoch); 288 if (thr->slot_epoch != ctx->global_epoch) { 289 thr->slot_epoch = ctx->global_epoch; 290 thr->clock.Reset(); 291 #if !SANITIZER_GO 292 thr->last_sleep_stack_id = kInvalidStackID; 293 thr->last_sleep_clock.Reset(); 294 #endif 295 } 296 thr->clock.Set(slot->sid, epoch); 297 slot->journal.PushBack({thr->tid, epoch}); 298 } 299 300 static void SlotDetachImpl(ThreadState* thr, bool exiting) { 301 TidSlot* slot = thr->slot; 302 thr->slot = nullptr; 303 if (thr != slot->thr) { 304 slot = nullptr; // we don't own the slot anymore 305 if (thr->slot_epoch != ctx->global_epoch) { 306 TracePart* part = nullptr; 307 auto* trace = &thr->tctx->trace; 308 { 309 Lock l(&trace->mtx); 310 auto* parts = &trace->parts; 311 // The trace can be completely empty in an unlikely event 312 // the thread is preempted right after it acquired the slot 313 // in ThreadStart and did not trace any events yet. 314 CHECK_LE(parts->Size(), 1); 315 part = parts->PopFront(); 316 thr->tctx->trace.local_head = nullptr; 317 atomic_store_relaxed(&thr->trace_pos, 0); 318 thr->trace_prev_pc = 0; 319 } 320 if (part) { 321 Lock l(&ctx->slot_mtx); 322 TracePartFree(part); 323 } 324 } 325 return; 326 } 327 CHECK(exiting || thr->fast_state.epoch() == kEpochLast); 328 slot->SetEpoch(thr->fast_state.epoch()); 329 slot->thr = nullptr; 330 } 331 332 void SlotDetach(ThreadState* thr) { 333 Lock lock(&thr->slot->mtx); 334 SlotDetachImpl(thr, true); 335 } 336 337 void SlotLock(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 338 DCHECK(!thr->slot_locked); 339 #if SANITIZER_DEBUG 340 // Check these mutexes are not locked. 341 // We can call DoReset from SlotAttachAndLock, which will lock 342 // these mutexes, but it happens only every once in a while. 343 { ThreadRegistryLock lock(&ctx->thread_registry); } 344 { Lock lock(&ctx->slot_mtx); } 345 #endif 346 TidSlot* slot = thr->slot; 347 slot->mtx.Lock(); 348 thr->slot_locked = true; 349 if (LIKELY(thr == slot->thr && thr->fast_state.epoch() != kEpochLast)) 350 return; 351 SlotDetachImpl(thr, false); 352 thr->slot_locked = false; 353 slot->mtx.Unlock(); 354 SlotAttachAndLock(thr); 355 } 356 357 void SlotUnlock(ThreadState* thr) { 358 DCHECK(thr->slot_locked); 359 thr->slot_locked = false; 360 thr->slot->mtx.Unlock(); 361 } 362 363 Context::Context() 364 : initialized(), 365 report_mtx(MutexTypeReport), 366 nreported(), 367 thread_registry([](Tid tid) -> ThreadContextBase* { 368 return new (Alloc(sizeof(ThreadContext))) ThreadContext(tid); 369 }), 370 racy_mtx(MutexTypeRacy), 371 racy_stacks(), 372 racy_addresses(), 373 fired_suppressions_mtx(MutexTypeFired), 374 slot_mtx(MutexTypeSlots), 375 resetting() { 376 fired_suppressions.reserve(8); 377 for (uptr i = 0; i < ARRAY_SIZE(slots); i++) { 378 TidSlot* slot = &slots[i]; 379 slot->sid = static_cast<Sid>(i); 380 slot_queue.PushBack(slot); 381 } 382 global_epoch = 1; 383 } 384 385 TidSlot::TidSlot() : mtx(MutexTypeSlot) {} 386 387 // The objects are allocated in TLS, so one may rely on zero-initialization. 388 ThreadState::ThreadState(Tid tid) 389 // Do not touch these, rely on zero initialization, 390 // they may be accessed before the ctor. 391 // ignore_reads_and_writes() 392 // ignore_interceptors() 393 : tid(tid) { 394 CHECK_EQ(reinterpret_cast<uptr>(this) % SANITIZER_CACHE_LINE_SIZE, 0); 395 #if !SANITIZER_GO 396 // C/C++ uses fixed size shadow stack. 397 const int kInitStackSize = kShadowStackSize; 398 shadow_stack = static_cast<uptr*>( 399 MmapNoReserveOrDie(kInitStackSize * sizeof(uptr), "shadow stack")); 400 SetShadowRegionHugePageMode(reinterpret_cast<uptr>(shadow_stack), 401 kInitStackSize * sizeof(uptr)); 402 #else 403 // Go uses malloc-allocated shadow stack with dynamic size. 404 const int kInitStackSize = 8; 405 shadow_stack = static_cast<uptr*>(Alloc(kInitStackSize * sizeof(uptr))); 406 #endif 407 shadow_stack_pos = shadow_stack; 408 shadow_stack_end = shadow_stack + kInitStackSize; 409 } 410 411 #if !SANITIZER_GO 412 void MemoryProfiler(u64 uptime) { 413 if (ctx->memprof_fd == kInvalidFd) 414 return; 415 InternalMmapVector<char> buf(4096); 416 WriteMemoryProfile(buf.data(), buf.size(), uptime); 417 WriteToFile(ctx->memprof_fd, buf.data(), internal_strlen(buf.data())); 418 } 419 420 static bool InitializeMemoryProfiler() { 421 ctx->memprof_fd = kInvalidFd; 422 const char *fname = flags()->profile_memory; 423 if (!fname || !fname[0]) 424 return false; 425 if (internal_strcmp(fname, "stdout") == 0) { 426 ctx->memprof_fd = 1; 427 } else if (internal_strcmp(fname, "stderr") == 0) { 428 ctx->memprof_fd = 2; 429 } else { 430 InternalScopedString filename; 431 filename.append("%s.%d", fname, (int)internal_getpid()); 432 ctx->memprof_fd = OpenFile(filename.data(), WrOnly); 433 if (ctx->memprof_fd == kInvalidFd) { 434 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", 435 filename.data()); 436 return false; 437 } 438 } 439 MemoryProfiler(0); 440 return true; 441 } 442 443 static void *BackgroundThread(void *arg) { 444 // This is a non-initialized non-user thread, nothing to see here. 445 // We don't use ScopedIgnoreInterceptors, because we want ignores to be 446 // enabled even when the thread function exits (e.g. during pthread thread 447 // shutdown code). 448 cur_thread_init()->ignore_interceptors++; 449 const u64 kMs2Ns = 1000 * 1000; 450 const u64 start = NanoTime(); 451 452 u64 last_flush = start; 453 uptr last_rss = 0; 454 while (!atomic_load_relaxed(&ctx->stop_background_thread)) { 455 SleepForMillis(100); 456 u64 now = NanoTime(); 457 458 // Flush memory if requested. 459 if (flags()->flush_memory_ms > 0) { 460 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { 461 VReport(1, "ThreadSanitizer: periodic memory flush\n"); 462 FlushShadowMemory(); 463 now = last_flush = NanoTime(); 464 } 465 } 466 if (flags()->memory_limit_mb > 0) { 467 uptr rss = GetRSS(); 468 uptr limit = uptr(flags()->memory_limit_mb) << 20; 469 VReport(1, 470 "ThreadSanitizer: memory flush check" 471 " RSS=%llu LAST=%llu LIMIT=%llu\n", 472 (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); 473 if (2 * rss > limit + last_rss) { 474 VReport(1, "ThreadSanitizer: flushing memory due to RSS\n"); 475 FlushShadowMemory(); 476 rss = GetRSS(); 477 now = NanoTime(); 478 VReport(1, "ThreadSanitizer: memory flushed RSS=%llu\n", 479 (u64)rss >> 20); 480 } 481 last_rss = rss; 482 } 483 484 MemoryProfiler(now - start); 485 486 // Flush symbolizer cache if requested. 487 if (flags()->flush_symbolizer_ms > 0) { 488 u64 last = atomic_load(&ctx->last_symbolize_time_ns, 489 memory_order_relaxed); 490 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { 491 Lock l(&ctx->report_mtx); 492 ScopedErrorReportLock l2; 493 SymbolizeFlush(); 494 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); 495 } 496 } 497 } 498 return nullptr; 499 } 500 501 static void StartBackgroundThread() { 502 ctx->background_thread = internal_start_thread(&BackgroundThread, 0); 503 } 504 505 #ifndef __mips__ 506 static void StopBackgroundThread() { 507 atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); 508 internal_join_thread(ctx->background_thread); 509 ctx->background_thread = 0; 510 } 511 #endif 512 #endif 513 514 void DontNeedShadowFor(uptr addr, uptr size) { 515 ReleaseMemoryPagesToOS(reinterpret_cast<uptr>(MemToShadow(addr)), 516 reinterpret_cast<uptr>(MemToShadow(addr + size))); 517 } 518 519 #if !SANITIZER_GO 520 // We call UnmapShadow before the actual munmap, at that point we don't yet 521 // know if the provided address/size are sane. We can't call UnmapShadow 522 // after the actual munmap becuase at that point the memory range can 523 // already be reused for something else, so we can't rely on the munmap 524 // return value to understand is the values are sane. 525 // While calling munmap with insane values (non-canonical address, negative 526 // size, etc) is an error, the kernel won't crash. We must also try to not 527 // crash as the failure mode is very confusing (paging fault inside of the 528 // runtime on some derived shadow address). 529 static bool IsValidMmapRange(uptr addr, uptr size) { 530 if (size == 0) 531 return true; 532 if (static_cast<sptr>(size) < 0) 533 return false; 534 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) 535 return false; 536 // Check that if the start of the region belongs to one of app ranges, 537 // end of the region belongs to the same region. 538 const uptr ranges[][2] = { 539 {LoAppMemBeg(), LoAppMemEnd()}, 540 {MidAppMemBeg(), MidAppMemEnd()}, 541 {HiAppMemBeg(), HiAppMemEnd()}, 542 }; 543 for (auto range : ranges) { 544 if (addr >= range[0] && addr < range[1]) 545 return addr + size <= range[1]; 546 } 547 return false; 548 } 549 550 void UnmapShadow(ThreadState *thr, uptr addr, uptr size) { 551 if (size == 0 || !IsValidMmapRange(addr, size)) 552 return; 553 DontNeedShadowFor(addr, size); 554 ScopedGlobalProcessor sgp; 555 SlotLocker locker(thr, true); 556 ctx->metamap.ResetRange(thr->proc(), addr, size, true); 557 } 558 #endif 559 560 void MapShadow(uptr addr, uptr size) { 561 // Global data is not 64K aligned, but there are no adjacent mappings, 562 // so we can get away with unaligned mapping. 563 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment 564 const uptr kPageSize = GetPageSizeCached(); 565 uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize); 566 uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize); 567 if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, 568 "shadow")) 569 Die(); 570 571 // Meta shadow is 2:1, so tread carefully. 572 static bool data_mapped = false; 573 static uptr mapped_meta_end = 0; 574 uptr meta_begin = (uptr)MemToMeta(addr); 575 uptr meta_end = (uptr)MemToMeta(addr + size); 576 meta_begin = RoundDownTo(meta_begin, 64 << 10); 577 meta_end = RoundUpTo(meta_end, 64 << 10); 578 if (!data_mapped) { 579 // First call maps data+bss. 580 data_mapped = true; 581 if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, 582 "meta shadow")) 583 Die(); 584 } else { 585 // Mapping continuous heap. 586 // Windows wants 64K alignment. 587 meta_begin = RoundDownTo(meta_begin, 64 << 10); 588 meta_end = RoundUpTo(meta_end, 64 << 10); 589 if (meta_end <= mapped_meta_end) 590 return; 591 if (meta_begin < mapped_meta_end) 592 meta_begin = mapped_meta_end; 593 if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, 594 "meta shadow")) 595 Die(); 596 mapped_meta_end = meta_end; 597 } 598 VPrintf(2, "mapped meta shadow for (0x%zx-0x%zx) at (0x%zx-0x%zx)\n", addr, 599 addr + size, meta_begin, meta_end); 600 } 601 602 #if !SANITIZER_GO 603 static void OnStackUnwind(const SignalContext &sig, const void *, 604 BufferedStackTrace *stack) { 605 stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context, 606 common_flags()->fast_unwind_on_fatal); 607 } 608 609 static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) { 610 HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr); 611 } 612 #endif 613 614 void CheckUnwind() { 615 // There is high probability that interceptors will check-fail as well, 616 // on the other hand there is no sense in processing interceptors 617 // since we are going to die soon. 618 ScopedIgnoreInterceptors ignore; 619 #if !SANITIZER_GO 620 ThreadState* thr = cur_thread(); 621 thr->nomalloc = false; 622 thr->ignore_sync++; 623 thr->ignore_reads_and_writes++; 624 atomic_store_relaxed(&thr->in_signal_handler, 0); 625 #endif 626 PrintCurrentStackSlow(StackTrace::GetCurrentPc()); 627 } 628 629 bool is_initialized; 630 631 void Initialize(ThreadState *thr) { 632 // Thread safe because done before all threads exist. 633 if (is_initialized) 634 return; 635 is_initialized = true; 636 // We are not ready to handle interceptors yet. 637 ScopedIgnoreInterceptors ignore; 638 SanitizerToolName = "ThreadSanitizer"; 639 // Install tool-specific callbacks in sanitizer_common. 640 SetCheckUnwindCallback(CheckUnwind); 641 642 ctx = new(ctx_placeholder) Context; 643 const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS"; 644 const char *options = GetEnv(env_name); 645 CacheBinaryName(); 646 CheckASLR(); 647 InitializeFlags(&ctx->flags, options, env_name); 648 AvoidCVE_2016_2143(); 649 __sanitizer::InitializePlatformEarly(); 650 __tsan::InitializePlatformEarly(); 651 652 #if !SANITIZER_GO 653 // Re-exec ourselves if we need to set additional env or command line args. 654 MaybeReexec(); 655 656 InitializeAllocator(); 657 ReplaceSystemMalloc(); 658 #endif 659 if (common_flags()->detect_deadlocks) 660 ctx->dd = DDetector::Create(flags()); 661 Processor *proc = ProcCreate(); 662 ProcWire(proc, thr); 663 InitializeInterceptors(); 664 InitializePlatform(); 665 InitializeDynamicAnnotations(); 666 #if !SANITIZER_GO 667 InitializeShadowMemory(); 668 InitializeAllocatorLate(); 669 InstallDeadlySignalHandlers(TsanOnDeadlySignal); 670 #endif 671 // Setup correct file descriptor for error reports. 672 __sanitizer_set_report_path(common_flags()->log_path); 673 InitializeSuppressions(); 674 #if !SANITIZER_GO 675 InitializeLibIgnore(); 676 Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); 677 #endif 678 679 VPrintf(1, "***** Running under ThreadSanitizer v3 (pid %d) *****\n", 680 (int)internal_getpid()); 681 682 // Initialize thread 0. 683 Tid tid = ThreadCreate(nullptr, 0, 0, true); 684 CHECK_EQ(tid, kMainTid); 685 ThreadStart(thr, tid, GetTid(), ThreadType::Regular); 686 #if TSAN_CONTAINS_UBSAN 687 __ubsan::InitAsPlugin(); 688 #endif 689 690 #if !SANITIZER_GO 691 Symbolizer::LateInitialize(); 692 if (InitializeMemoryProfiler() || flags()->force_background_thread) 693 MaybeSpawnBackgroundThread(); 694 #endif 695 ctx->initialized = true; 696 697 if (flags()->stop_on_start) { 698 Printf("ThreadSanitizer is suspended at startup (pid %d)." 699 " Call __tsan_resume().\n", 700 (int)internal_getpid()); 701 while (__tsan_resumed == 0) {} 702 } 703 704 OnInitialize(); 705 } 706 707 void MaybeSpawnBackgroundThread() { 708 // On MIPS, TSan initialization is run before 709 // __pthread_initialize_minimal_internal() is finished, so we can not spawn 710 // new threads. 711 #if !SANITIZER_GO && !defined(__mips__) 712 static atomic_uint32_t bg_thread = {}; 713 if (atomic_load(&bg_thread, memory_order_relaxed) == 0 && 714 atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) { 715 StartBackgroundThread(); 716 SetSandboxingCallback(StopBackgroundThread); 717 } 718 #endif 719 } 720 721 int Finalize(ThreadState *thr) { 722 bool failed = false; 723 724 if (common_flags()->print_module_map == 1) 725 DumpProcessMap(); 726 727 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) 728 internal_usleep(u64(flags()->atexit_sleep_ms) * 1000); 729 730 { 731 // Wait for pending reports. 732 ScopedErrorReportLock lock; 733 } 734 735 #if !SANITIZER_GO 736 if (Verbosity()) AllocatorPrintStats(); 737 #endif 738 739 ThreadFinalize(thr); 740 741 if (ctx->nreported) { 742 failed = true; 743 #if !SANITIZER_GO 744 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); 745 #else 746 Printf("Found %d data race(s)\n", ctx->nreported); 747 #endif 748 } 749 750 if (common_flags()->print_suppressions) 751 PrintMatchedSuppressions(); 752 753 failed = OnFinalize(failed); 754 755 return failed ? common_flags()->exitcode : 0; 756 } 757 758 #if !SANITIZER_GO 759 void ForkBefore(ThreadState* thr, uptr pc) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 760 GlobalProcessorLock(); 761 // Detaching from the slot makes OnUserFree skip writing to the shadow. 762 // The slot will be locked so any attempts to use it will deadlock anyway. 763 SlotDetach(thr); 764 for (auto& slot : ctx->slots) slot.mtx.Lock(); 765 ctx->thread_registry.Lock(); 766 ctx->slot_mtx.Lock(); 767 ScopedErrorReportLock::Lock(); 768 AllocatorLock(); 769 // Suppress all reports in the pthread_atfork callbacks. 770 // Reports will deadlock on the report_mtx. 771 // We could ignore sync operations as well, 772 // but so far it's unclear if it will do more good or harm. 773 // Unnecessarily ignoring things can lead to false positives later. 774 thr->suppress_reports++; 775 // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and 776 // we'll assert in CheckNoLocks() unless we ignore interceptors. 777 // On OS X libSystem_atfork_prepare/parent/child callbacks are called 778 // after/before our callbacks and they call free. 779 thr->ignore_interceptors++; 780 // Disables memory write in OnUserAlloc/Free. 781 thr->ignore_reads_and_writes++; 782 783 __tsan_test_only_on_fork(); 784 } 785 786 static void ForkAfter(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 787 thr->suppress_reports--; // Enabled in ForkBefore. 788 thr->ignore_interceptors--; 789 thr->ignore_reads_and_writes--; 790 AllocatorUnlock(); 791 ScopedErrorReportLock::Unlock(); 792 ctx->slot_mtx.Unlock(); 793 ctx->thread_registry.Unlock(); 794 for (auto& slot : ctx->slots) slot.mtx.Unlock(); 795 SlotAttachAndLock(thr); 796 SlotUnlock(thr); 797 GlobalProcessorUnlock(); 798 } 799 800 void ForkParentAfter(ThreadState* thr, uptr pc) { ForkAfter(thr); } 801 802 void ForkChildAfter(ThreadState* thr, uptr pc, bool start_thread) { 803 ForkAfter(thr); 804 u32 nthread = ctx->thread_registry.OnFork(thr->tid); 805 VPrintf(1, 806 "ThreadSanitizer: forked new process with pid %d," 807 " parent had %d threads\n", 808 (int)internal_getpid(), (int)nthread); 809 if (nthread == 1) { 810 if (start_thread) 811 StartBackgroundThread(); 812 } else { 813 // We've just forked a multi-threaded process. We cannot reasonably function 814 // after that (some mutexes may be locked before fork). So just enable 815 // ignores for everything in the hope that we will exec soon. 816 ctx->after_multithreaded_fork = true; 817 thr->ignore_interceptors++; 818 thr->suppress_reports++; 819 ThreadIgnoreBegin(thr, pc); 820 ThreadIgnoreSyncBegin(thr, pc); 821 } 822 } 823 #endif 824 825 #if SANITIZER_GO 826 NOINLINE 827 void GrowShadowStack(ThreadState *thr) { 828 const int sz = thr->shadow_stack_end - thr->shadow_stack; 829 const int newsz = 2 * sz; 830 auto *newstack = (uptr *)Alloc(newsz * sizeof(uptr)); 831 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); 832 Free(thr->shadow_stack); 833 thr->shadow_stack = newstack; 834 thr->shadow_stack_pos = newstack + sz; 835 thr->shadow_stack_end = newstack + newsz; 836 } 837 #endif 838 839 StackID CurrentStackId(ThreadState *thr, uptr pc) { 840 #if !SANITIZER_GO 841 if (!thr->is_inited) // May happen during bootstrap. 842 return kInvalidStackID; 843 #endif 844 if (pc != 0) { 845 #if !SANITIZER_GO 846 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 847 #else 848 if (thr->shadow_stack_pos == thr->shadow_stack_end) 849 GrowShadowStack(thr); 850 #endif 851 thr->shadow_stack_pos[0] = pc; 852 thr->shadow_stack_pos++; 853 } 854 StackID id = StackDepotPut( 855 StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); 856 if (pc != 0) 857 thr->shadow_stack_pos--; 858 return id; 859 } 860 861 static bool TraceSkipGap(ThreadState* thr) { 862 Trace *trace = &thr->tctx->trace; 863 Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos)); 864 DCHECK_EQ(reinterpret_cast<uptr>(pos + 1) & TracePart::kAlignment, 0); 865 auto *part = trace->parts.Back(); 866 DPrintf("#%d: TraceSwitchPart enter trace=%p parts=%p-%p pos=%p\n", thr->tid, 867 trace, trace->parts.Front(), part, pos); 868 if (!part) 869 return false; 870 // We can get here when we still have space in the current trace part. 871 // The fast-path check in TraceAcquire has false positives in the middle of 872 // the part. Check if we are indeed at the end of the current part or not, 873 // and fill any gaps with NopEvent's. 874 Event* end = &part->events[TracePart::kSize]; 875 DCHECK_GE(pos, &part->events[0]); 876 DCHECK_LE(pos, end); 877 if (pos + 1 < end) { 878 if ((reinterpret_cast<uptr>(pos) & TracePart::kAlignment) == 879 TracePart::kAlignment) 880 *pos++ = NopEvent; 881 *pos++ = NopEvent; 882 DCHECK_LE(pos + 2, end); 883 atomic_store_relaxed(&thr->trace_pos, reinterpret_cast<uptr>(pos)); 884 return true; 885 } 886 // We are indeed at the end. 887 for (; pos < end; pos++) *pos = NopEvent; 888 return false; 889 } 890 891 NOINLINE 892 void TraceSwitchPart(ThreadState* thr) { 893 if (TraceSkipGap(thr)) 894 return; 895 #if !SANITIZER_GO 896 if (ctx->after_multithreaded_fork) { 897 // We just need to survive till exec. 898 TracePart* part = thr->tctx->trace.parts.Back(); 899 if (part) { 900 atomic_store_relaxed(&thr->trace_pos, 901 reinterpret_cast<uptr>(&part->events[0])); 902 return; 903 } 904 } 905 #endif 906 TraceSwitchPartImpl(thr); 907 } 908 909 void TraceSwitchPartImpl(ThreadState* thr) { 910 SlotLocker locker(thr, true); 911 Trace* trace = &thr->tctx->trace; 912 TracePart* part = TracePartAlloc(thr); 913 part->trace = trace; 914 thr->trace_prev_pc = 0; 915 TracePart* recycle = nullptr; 916 // Keep roughly half of parts local to the thread 917 // (not queued into the recycle queue). 918 uptr local_parts = (Trace::kMinParts + flags()->history_size + 1) / 2; 919 { 920 Lock lock(&trace->mtx); 921 if (trace->parts.Empty()) 922 trace->local_head = part; 923 if (trace->parts.Size() >= local_parts) { 924 recycle = trace->local_head; 925 trace->local_head = trace->parts.Next(recycle); 926 } 927 trace->parts.PushBack(part); 928 atomic_store_relaxed(&thr->trace_pos, 929 reinterpret_cast<uptr>(&part->events[0])); 930 } 931 // Make this part self-sufficient by restoring the current stack 932 // and mutex set in the beginning of the trace. 933 TraceTime(thr); 934 { 935 // Pathologically large stacks may not fit into the part. 936 // In these cases we log only fixed number of top frames. 937 const uptr kMaxFrames = 1000; 938 // Sanity check that kMaxFrames won't consume the whole part. 939 static_assert(kMaxFrames < TracePart::kSize / 2, "kMaxFrames is too big"); 940 uptr* pos = Max(&thr->shadow_stack[0], thr->shadow_stack_pos - kMaxFrames); 941 for (; pos < thr->shadow_stack_pos; pos++) { 942 if (TryTraceFunc(thr, *pos)) 943 continue; 944 CHECK(TraceSkipGap(thr)); 945 CHECK(TryTraceFunc(thr, *pos)); 946 } 947 } 948 for (uptr i = 0; i < thr->mset.Size(); i++) { 949 MutexSet::Desc d = thr->mset.Get(i); 950 for (uptr i = 0; i < d.count; i++) 951 TraceMutexLock(thr, d.write ? EventType::kLock : EventType::kRLock, 0, 952 d.addr, d.stack_id); 953 } 954 { 955 Lock lock(&ctx->slot_mtx); 956 // There is a small chance that the slot may be not queued at this point. 957 // This can happen if the slot has kEpochLast epoch and another thread 958 // in FindSlotAndLock discovered that it's exhausted and removed it from 959 // the slot queue. kEpochLast can happen in 2 cases: (1) if TraceSwitchPart 960 // was called with the slot locked and epoch already at kEpochLast, 961 // or (2) if we've acquired a new slot in SlotLock in the beginning 962 // of the function and the slot was at kEpochLast - 1, so after increment 963 // in SlotAttachAndLock it become kEpochLast. 964 if (ctx->slot_queue.Queued(thr->slot)) { 965 ctx->slot_queue.Remove(thr->slot); 966 ctx->slot_queue.PushBack(thr->slot); 967 } 968 if (recycle) 969 ctx->trace_part_recycle.PushBack(recycle); 970 } 971 DPrintf("#%d: TraceSwitchPart exit parts=%p-%p pos=0x%zx\n", thr->tid, 972 trace->parts.Front(), trace->parts.Back(), 973 atomic_load_relaxed(&thr->trace_pos)); 974 } 975 976 void ThreadIgnoreBegin(ThreadState* thr, uptr pc) { 977 DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); 978 thr->ignore_reads_and_writes++; 979 CHECK_GT(thr->ignore_reads_and_writes, 0); 980 thr->fast_state.SetIgnoreBit(); 981 #if !SANITIZER_GO 982 if (pc && !ctx->after_multithreaded_fork) 983 thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); 984 #endif 985 } 986 987 void ThreadIgnoreEnd(ThreadState *thr) { 988 DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); 989 CHECK_GT(thr->ignore_reads_and_writes, 0); 990 thr->ignore_reads_and_writes--; 991 if (thr->ignore_reads_and_writes == 0) { 992 thr->fast_state.ClearIgnoreBit(); 993 #if !SANITIZER_GO 994 thr->mop_ignore_set.Reset(); 995 #endif 996 } 997 } 998 999 #if !SANITIZER_GO 1000 extern "C" SANITIZER_INTERFACE_ATTRIBUTE 1001 uptr __tsan_testonly_shadow_stack_current_size() { 1002 ThreadState *thr = cur_thread(); 1003 return thr->shadow_stack_pos - thr->shadow_stack; 1004 } 1005 #endif 1006 1007 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) { 1008 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); 1009 thr->ignore_sync++; 1010 CHECK_GT(thr->ignore_sync, 0); 1011 #if !SANITIZER_GO 1012 if (pc && !ctx->after_multithreaded_fork) 1013 thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); 1014 #endif 1015 } 1016 1017 void ThreadIgnoreSyncEnd(ThreadState *thr) { 1018 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); 1019 CHECK_GT(thr->ignore_sync, 0); 1020 thr->ignore_sync--; 1021 #if !SANITIZER_GO 1022 if (thr->ignore_sync == 0) 1023 thr->sync_ignore_set.Reset(); 1024 #endif 1025 } 1026 1027 bool MD5Hash::operator==(const MD5Hash &other) const { 1028 return hash[0] == other.hash[0] && hash[1] == other.hash[1]; 1029 } 1030 1031 #if SANITIZER_DEBUG 1032 void build_consistency_debug() {} 1033 #else 1034 void build_consistency_release() {} 1035 #endif 1036 } // namespace __tsan 1037 1038 #if SANITIZER_CHECK_DEADLOCKS 1039 namespace __sanitizer { 1040 using namespace __tsan; 1041 MutexMeta mutex_meta[] = { 1042 {MutexInvalid, "Invalid", {}}, 1043 {MutexThreadRegistry, 1044 "ThreadRegistry", 1045 {MutexTypeSlots, MutexTypeTrace, MutexTypeReport}}, 1046 {MutexTypeReport, "Report", {MutexTypeTrace}}, 1047 {MutexTypeSyncVar, "SyncVar", {MutexTypeReport, MutexTypeTrace}}, 1048 {MutexTypeAnnotations, "Annotations", {}}, 1049 {MutexTypeAtExit, "AtExit", {}}, 1050 {MutexTypeFired, "Fired", {MutexLeaf}}, 1051 {MutexTypeRacy, "Racy", {MutexLeaf}}, 1052 {MutexTypeGlobalProc, "GlobalProc", {MutexTypeSlot, MutexTypeSlots}}, 1053 {MutexTypeInternalAlloc, "InternalAlloc", {MutexLeaf}}, 1054 {MutexTypeTrace, "Trace", {}}, 1055 {MutexTypeSlot, 1056 "Slot", 1057 {MutexMulti, MutexTypeTrace, MutexTypeSyncVar, MutexThreadRegistry, 1058 MutexTypeSlots}}, 1059 {MutexTypeSlots, "Slots", {MutexTypeTrace, MutexTypeReport}}, 1060 {}, 1061 }; 1062 1063 void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); } 1064 1065 } // namespace __sanitizer 1066 #endif 1067