1 //===-- tsan_rtl.cpp ------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer (TSan), a race detector. 10 // 11 // Main file (entry points) for the TSan run-time. 12 //===----------------------------------------------------------------------===// 13 14 #include "tsan_rtl.h" 15 16 #include "sanitizer_common/sanitizer_atomic.h" 17 #include "sanitizer_common/sanitizer_common.h" 18 #include "sanitizer_common/sanitizer_file.h" 19 #include "sanitizer_common/sanitizer_interface_internal.h" 20 #include "sanitizer_common/sanitizer_libc.h" 21 #include "sanitizer_common/sanitizer_placement_new.h" 22 #include "sanitizer_common/sanitizer_stackdepot.h" 23 #include "sanitizer_common/sanitizer_symbolizer.h" 24 #include "tsan_defs.h" 25 #include "tsan_interface.h" 26 #include "tsan_mman.h" 27 #include "tsan_platform.h" 28 #include "tsan_suppressions.h" 29 #include "tsan_symbolize.h" 30 #include "ubsan/ubsan_init.h" 31 32 volatile int __tsan_resumed = 0; 33 34 extern "C" void __tsan_resume() { 35 __tsan_resumed = 1; 36 } 37 38 SANITIZER_WEAK_DEFAULT_IMPL 39 void __tsan_test_only_on_fork() {} 40 41 namespace __tsan { 42 43 #if !SANITIZER_GO 44 void (*on_initialize)(void); 45 int (*on_finalize)(int); 46 #endif 47 48 #if !SANITIZER_GO && !SANITIZER_APPLE 49 __attribute__((tls_model("initial-exec"))) 50 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED( 51 SANITIZER_CACHE_LINE_SIZE); 52 #endif 53 static char ctx_placeholder[sizeof(Context)] ALIGNED(SANITIZER_CACHE_LINE_SIZE); 54 Context *ctx; 55 56 // Can be overriden by a front-end. 57 #ifdef TSAN_EXTERNAL_HOOKS 58 bool OnFinalize(bool failed); 59 void OnInitialize(); 60 #else 61 SANITIZER_WEAK_CXX_DEFAULT_IMPL 62 bool OnFinalize(bool failed) { 63 # if !SANITIZER_GO 64 if (on_finalize) 65 return on_finalize(failed); 66 # endif 67 return failed; 68 } 69 70 SANITIZER_WEAK_CXX_DEFAULT_IMPL 71 void OnInitialize() { 72 # if !SANITIZER_GO 73 if (on_initialize) 74 on_initialize(); 75 # endif 76 } 77 #endif 78 79 static TracePart* TracePartAlloc(ThreadState* thr) { 80 TracePart* part = nullptr; 81 { 82 Lock lock(&ctx->slot_mtx); 83 uptr max_parts = Trace::kMinParts + flags()->history_size; 84 Trace* trace = &thr->tctx->trace; 85 if (trace->parts_allocated == max_parts || 86 ctx->trace_part_finished_excess) { 87 part = ctx->trace_part_recycle.PopFront(); 88 DPrintf("#%d: TracePartAlloc: part=%p\n", thr->tid, part); 89 if (part && part->trace) { 90 Trace* trace1 = part->trace; 91 Lock trace_lock(&trace1->mtx); 92 part->trace = nullptr; 93 TracePart* part1 = trace1->parts.PopFront(); 94 CHECK_EQ(part, part1); 95 if (trace1->parts_allocated > trace1->parts.Size()) { 96 ctx->trace_part_finished_excess += 97 trace1->parts_allocated - trace1->parts.Size(); 98 trace1->parts_allocated = trace1->parts.Size(); 99 } 100 } 101 } 102 if (trace->parts_allocated < max_parts) { 103 trace->parts_allocated++; 104 if (ctx->trace_part_finished_excess) 105 ctx->trace_part_finished_excess--; 106 } 107 if (!part) 108 ctx->trace_part_total_allocated++; 109 else if (ctx->trace_part_recycle_finished) 110 ctx->trace_part_recycle_finished--; 111 } 112 if (!part) 113 part = new (MmapOrDie(sizeof(*part), "TracePart")) TracePart(); 114 return part; 115 } 116 117 static void TracePartFree(TracePart* part) SANITIZER_REQUIRES(ctx->slot_mtx) { 118 DCHECK(part->trace); 119 part->trace = nullptr; 120 ctx->trace_part_recycle.PushFront(part); 121 } 122 123 void TraceResetForTesting() { 124 Lock lock(&ctx->slot_mtx); 125 while (auto* part = ctx->trace_part_recycle.PopFront()) { 126 if (auto trace = part->trace) 127 CHECK_EQ(trace->parts.PopFront(), part); 128 UnmapOrDie(part, sizeof(*part)); 129 } 130 ctx->trace_part_total_allocated = 0; 131 ctx->trace_part_recycle_finished = 0; 132 ctx->trace_part_finished_excess = 0; 133 } 134 135 static void DoResetImpl(uptr epoch) { 136 ThreadRegistryLock lock0(&ctx->thread_registry); 137 Lock lock1(&ctx->slot_mtx); 138 CHECK_EQ(ctx->global_epoch, epoch); 139 ctx->global_epoch++; 140 CHECK(!ctx->resetting); 141 ctx->resetting = true; 142 for (u32 i = ctx->thread_registry.NumThreadsLocked(); i--;) { 143 ThreadContext* tctx = (ThreadContext*)ctx->thread_registry.GetThreadLocked( 144 static_cast<Tid>(i)); 145 // Potentially we could purge all ThreadStatusDead threads from the 146 // registry. Since we reset all shadow, they can't race with anything 147 // anymore. However, their tid's can still be stored in some aux places 148 // (e.g. tid of thread that created something). 149 auto trace = &tctx->trace; 150 Lock lock(&trace->mtx); 151 bool attached = tctx->thr && tctx->thr->slot; 152 auto parts = &trace->parts; 153 bool local = false; 154 while (!parts->Empty()) { 155 auto part = parts->Front(); 156 local = local || part == trace->local_head; 157 if (local) 158 CHECK(!ctx->trace_part_recycle.Queued(part)); 159 else 160 ctx->trace_part_recycle.Remove(part); 161 if (attached && parts->Size() == 1) { 162 // The thread is running and this is the last/current part. 163 // Set the trace position to the end of the current part 164 // to force the thread to call SwitchTracePart and re-attach 165 // to a new slot and allocate a new trace part. 166 // Note: the thread is concurrently modifying the position as well, 167 // so this is only best-effort. The thread can only modify position 168 // within this part, because switching parts is protected by 169 // slot/trace mutexes that we hold here. 170 atomic_store_relaxed( 171 &tctx->thr->trace_pos, 172 reinterpret_cast<uptr>(&part->events[TracePart::kSize])); 173 break; 174 } 175 parts->Remove(part); 176 TracePartFree(part); 177 } 178 CHECK_LE(parts->Size(), 1); 179 trace->local_head = parts->Front(); 180 if (tctx->thr && !tctx->thr->slot) { 181 atomic_store_relaxed(&tctx->thr->trace_pos, 0); 182 tctx->thr->trace_prev_pc = 0; 183 } 184 if (trace->parts_allocated > trace->parts.Size()) { 185 ctx->trace_part_finished_excess += 186 trace->parts_allocated - trace->parts.Size(); 187 trace->parts_allocated = trace->parts.Size(); 188 } 189 } 190 while (ctx->slot_queue.PopFront()) { 191 } 192 for (auto& slot : ctx->slots) { 193 slot.SetEpoch(kEpochZero); 194 slot.journal.Reset(); 195 slot.thr = nullptr; 196 ctx->slot_queue.PushBack(&slot); 197 } 198 199 DPrintf("Resetting shadow...\n"); 200 auto shadow_begin = ShadowBeg(); 201 auto shadow_end = ShadowEnd(); 202 #if SANITIZER_GO 203 CHECK_NE(0, ctx->mapped_shadow_begin); 204 shadow_begin = ctx->mapped_shadow_begin; 205 shadow_end = ctx->mapped_shadow_end; 206 VPrintf(2, "shadow_begin-shadow_end: (0x%zx-0x%zx)\n", 207 shadow_begin, shadow_end); 208 #endif 209 210 #if SANITIZER_WINDOWS 211 auto resetFailed = 212 !ZeroMmapFixedRegion(shadow_begin, shadow_end - shadow_begin); 213 #else 214 auto resetFailed = 215 !MmapFixedSuperNoReserve(shadow_begin, shadow_end-shadow_begin, "shadow"); 216 # if !SANITIZER_GO 217 DontDumpShadow(shadow_begin, shadow_end - shadow_begin); 218 # endif 219 #endif 220 if (resetFailed) { 221 Printf("failed to reset shadow memory\n"); 222 Die(); 223 } 224 DPrintf("Resetting meta shadow...\n"); 225 ctx->metamap.ResetClocks(); 226 StoreShadow(&ctx->last_spurious_race, Shadow::kEmpty); 227 ctx->resetting = false; 228 } 229 230 // Clang does not understand locking all slots in the loop: 231 // error: expecting mutex 'slot.mtx' to be held at start of each loop 232 void DoReset(ThreadState* thr, uptr epoch) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 233 for (auto& slot : ctx->slots) { 234 slot.mtx.Lock(); 235 if (UNLIKELY(epoch == 0)) 236 epoch = ctx->global_epoch; 237 if (UNLIKELY(epoch != ctx->global_epoch)) { 238 // Epoch can't change once we've locked the first slot. 239 CHECK_EQ(slot.sid, 0); 240 slot.mtx.Unlock(); 241 return; 242 } 243 } 244 DPrintf("#%d: DoReset epoch=%lu\n", thr ? thr->tid : -1, epoch); 245 DoResetImpl(epoch); 246 for (auto& slot : ctx->slots) slot.mtx.Unlock(); 247 } 248 249 void FlushShadowMemory() { DoReset(nullptr, 0); } 250 251 static TidSlot* FindSlotAndLock(ThreadState* thr) 252 SANITIZER_ACQUIRE(thr->slot->mtx) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 253 CHECK(!thr->slot); 254 TidSlot* slot = nullptr; 255 for (;;) { 256 uptr epoch; 257 { 258 Lock lock(&ctx->slot_mtx); 259 epoch = ctx->global_epoch; 260 if (slot) { 261 // This is an exhausted slot from the previous iteration. 262 if (ctx->slot_queue.Queued(slot)) 263 ctx->slot_queue.Remove(slot); 264 thr->slot_locked = false; 265 slot->mtx.Unlock(); 266 } 267 for (;;) { 268 slot = ctx->slot_queue.PopFront(); 269 if (!slot) 270 break; 271 if (slot->epoch() != kEpochLast) { 272 ctx->slot_queue.PushBack(slot); 273 break; 274 } 275 } 276 } 277 if (!slot) { 278 DoReset(thr, epoch); 279 continue; 280 } 281 slot->mtx.Lock(); 282 CHECK(!thr->slot_locked); 283 thr->slot_locked = true; 284 if (slot->thr) { 285 DPrintf("#%d: preempting sid=%d tid=%d\n", thr->tid, (u32)slot->sid, 286 slot->thr->tid); 287 slot->SetEpoch(slot->thr->fast_state.epoch()); 288 slot->thr = nullptr; 289 } 290 if (slot->epoch() != kEpochLast) 291 return slot; 292 } 293 } 294 295 void SlotAttachAndLock(ThreadState* thr) { 296 TidSlot* slot = FindSlotAndLock(thr); 297 DPrintf("#%d: SlotAttach: slot=%u\n", thr->tid, static_cast<int>(slot->sid)); 298 CHECK(!slot->thr); 299 CHECK(!thr->slot); 300 slot->thr = thr; 301 thr->slot = slot; 302 Epoch epoch = EpochInc(slot->epoch()); 303 CHECK(!EpochOverflow(epoch)); 304 slot->SetEpoch(epoch); 305 thr->fast_state.SetSid(slot->sid); 306 thr->fast_state.SetEpoch(epoch); 307 if (thr->slot_epoch != ctx->global_epoch) { 308 thr->slot_epoch = ctx->global_epoch; 309 thr->clock.Reset(); 310 #if !SANITIZER_GO 311 thr->last_sleep_stack_id = kInvalidStackID; 312 thr->last_sleep_clock.Reset(); 313 #endif 314 } 315 thr->clock.Set(slot->sid, epoch); 316 slot->journal.PushBack({thr->tid, epoch}); 317 } 318 319 static void SlotDetachImpl(ThreadState* thr, bool exiting) { 320 TidSlot* slot = thr->slot; 321 thr->slot = nullptr; 322 if (thr != slot->thr) { 323 slot = nullptr; // we don't own the slot anymore 324 if (thr->slot_epoch != ctx->global_epoch) { 325 TracePart* part = nullptr; 326 auto* trace = &thr->tctx->trace; 327 { 328 Lock l(&trace->mtx); 329 auto* parts = &trace->parts; 330 // The trace can be completely empty in an unlikely event 331 // the thread is preempted right after it acquired the slot 332 // in ThreadStart and did not trace any events yet. 333 CHECK_LE(parts->Size(), 1); 334 part = parts->PopFront(); 335 thr->tctx->trace.local_head = nullptr; 336 atomic_store_relaxed(&thr->trace_pos, 0); 337 thr->trace_prev_pc = 0; 338 } 339 if (part) { 340 Lock l(&ctx->slot_mtx); 341 TracePartFree(part); 342 } 343 } 344 return; 345 } 346 CHECK(exiting || thr->fast_state.epoch() == kEpochLast); 347 slot->SetEpoch(thr->fast_state.epoch()); 348 slot->thr = nullptr; 349 } 350 351 void SlotDetach(ThreadState* thr) { 352 Lock lock(&thr->slot->mtx); 353 SlotDetachImpl(thr, true); 354 } 355 356 void SlotLock(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 357 DCHECK(!thr->slot_locked); 358 #if SANITIZER_DEBUG 359 // Check these mutexes are not locked. 360 // We can call DoReset from SlotAttachAndLock, which will lock 361 // these mutexes, but it happens only every once in a while. 362 { ThreadRegistryLock lock(&ctx->thread_registry); } 363 { Lock lock(&ctx->slot_mtx); } 364 #endif 365 TidSlot* slot = thr->slot; 366 slot->mtx.Lock(); 367 thr->slot_locked = true; 368 if (LIKELY(thr == slot->thr && thr->fast_state.epoch() != kEpochLast)) 369 return; 370 SlotDetachImpl(thr, false); 371 thr->slot_locked = false; 372 slot->mtx.Unlock(); 373 SlotAttachAndLock(thr); 374 } 375 376 void SlotUnlock(ThreadState* thr) { 377 DCHECK(thr->slot_locked); 378 thr->slot_locked = false; 379 thr->slot->mtx.Unlock(); 380 } 381 382 Context::Context() 383 : initialized(), 384 report_mtx(MutexTypeReport), 385 nreported(), 386 thread_registry([](Tid tid) -> ThreadContextBase* { 387 return new (Alloc(sizeof(ThreadContext))) ThreadContext(tid); 388 }), 389 racy_mtx(MutexTypeRacy), 390 racy_stacks(), 391 fired_suppressions_mtx(MutexTypeFired), 392 slot_mtx(MutexTypeSlots), 393 resetting() { 394 fired_suppressions.reserve(8); 395 for (uptr i = 0; i < ARRAY_SIZE(slots); i++) { 396 TidSlot* slot = &slots[i]; 397 slot->sid = static_cast<Sid>(i); 398 slot_queue.PushBack(slot); 399 } 400 global_epoch = 1; 401 } 402 403 TidSlot::TidSlot() : mtx(MutexTypeSlot) {} 404 405 // The objects are allocated in TLS, so one may rely on zero-initialization. 406 ThreadState::ThreadState(Tid tid) 407 // Do not touch these, rely on zero initialization, 408 // they may be accessed before the ctor. 409 // ignore_reads_and_writes() 410 // ignore_interceptors() 411 : tid(tid) { 412 CHECK_EQ(reinterpret_cast<uptr>(this) % SANITIZER_CACHE_LINE_SIZE, 0); 413 #if !SANITIZER_GO 414 // C/C++ uses fixed size shadow stack. 415 const int kInitStackSize = kShadowStackSize; 416 shadow_stack = static_cast<uptr*>( 417 MmapNoReserveOrDie(kInitStackSize * sizeof(uptr), "shadow stack")); 418 SetShadowRegionHugePageMode(reinterpret_cast<uptr>(shadow_stack), 419 kInitStackSize * sizeof(uptr)); 420 #else 421 // Go uses malloc-allocated shadow stack with dynamic size. 422 const int kInitStackSize = 8; 423 shadow_stack = static_cast<uptr*>(Alloc(kInitStackSize * sizeof(uptr))); 424 #endif 425 shadow_stack_pos = shadow_stack; 426 shadow_stack_end = shadow_stack + kInitStackSize; 427 } 428 429 #if !SANITIZER_GO 430 void MemoryProfiler(u64 uptime) { 431 if (ctx->memprof_fd == kInvalidFd) 432 return; 433 InternalMmapVector<char> buf(4096); 434 WriteMemoryProfile(buf.data(), buf.size(), uptime); 435 WriteToFile(ctx->memprof_fd, buf.data(), internal_strlen(buf.data())); 436 } 437 438 static bool InitializeMemoryProfiler() { 439 ctx->memprof_fd = kInvalidFd; 440 const char *fname = flags()->profile_memory; 441 if (!fname || !fname[0]) 442 return false; 443 if (internal_strcmp(fname, "stdout") == 0) { 444 ctx->memprof_fd = 1; 445 } else if (internal_strcmp(fname, "stderr") == 0) { 446 ctx->memprof_fd = 2; 447 } else { 448 InternalScopedString filename; 449 filename.append("%s.%d", fname, (int)internal_getpid()); 450 ctx->memprof_fd = OpenFile(filename.data(), WrOnly); 451 if (ctx->memprof_fd == kInvalidFd) { 452 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", 453 filename.data()); 454 return false; 455 } 456 } 457 MemoryProfiler(0); 458 return true; 459 } 460 461 static void *BackgroundThread(void *arg) { 462 // This is a non-initialized non-user thread, nothing to see here. 463 // We don't use ScopedIgnoreInterceptors, because we want ignores to be 464 // enabled even when the thread function exits (e.g. during pthread thread 465 // shutdown code). 466 cur_thread_init()->ignore_interceptors++; 467 const u64 kMs2Ns = 1000 * 1000; 468 const u64 start = NanoTime(); 469 470 u64 last_flush = start; 471 uptr last_rss = 0; 472 while (!atomic_load_relaxed(&ctx->stop_background_thread)) { 473 SleepForMillis(100); 474 u64 now = NanoTime(); 475 476 // Flush memory if requested. 477 if (flags()->flush_memory_ms > 0) { 478 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { 479 VReport(1, "ThreadSanitizer: periodic memory flush\n"); 480 FlushShadowMemory(); 481 now = last_flush = NanoTime(); 482 } 483 } 484 if (flags()->memory_limit_mb > 0) { 485 uptr rss = GetRSS(); 486 uptr limit = uptr(flags()->memory_limit_mb) << 20; 487 VReport(1, 488 "ThreadSanitizer: memory flush check" 489 " RSS=%llu LAST=%llu LIMIT=%llu\n", 490 (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); 491 if (2 * rss > limit + last_rss) { 492 VReport(1, "ThreadSanitizer: flushing memory due to RSS\n"); 493 FlushShadowMemory(); 494 rss = GetRSS(); 495 now = NanoTime(); 496 VReport(1, "ThreadSanitizer: memory flushed RSS=%llu\n", 497 (u64)rss >> 20); 498 } 499 last_rss = rss; 500 } 501 502 MemoryProfiler(now - start); 503 504 // Flush symbolizer cache if requested. 505 if (flags()->flush_symbolizer_ms > 0) { 506 u64 last = atomic_load(&ctx->last_symbolize_time_ns, 507 memory_order_relaxed); 508 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { 509 Lock l(&ctx->report_mtx); 510 ScopedErrorReportLock l2; 511 SymbolizeFlush(); 512 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); 513 } 514 } 515 } 516 return nullptr; 517 } 518 519 static void StartBackgroundThread() { 520 ctx->background_thread = internal_start_thread(&BackgroundThread, 0); 521 } 522 523 #ifndef __mips__ 524 static void StopBackgroundThread() { 525 atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); 526 internal_join_thread(ctx->background_thread); 527 ctx->background_thread = 0; 528 } 529 #endif 530 #endif 531 532 void DontNeedShadowFor(uptr addr, uptr size) { 533 ReleaseMemoryPagesToOS(reinterpret_cast<uptr>(MemToShadow(addr)), 534 reinterpret_cast<uptr>(MemToShadow(addr + size))); 535 } 536 537 #if !SANITIZER_GO 538 // We call UnmapShadow before the actual munmap, at that point we don't yet 539 // know if the provided address/size are sane. We can't call UnmapShadow 540 // after the actual munmap becuase at that point the memory range can 541 // already be reused for something else, so we can't rely on the munmap 542 // return value to understand is the values are sane. 543 // While calling munmap with insane values (non-canonical address, negative 544 // size, etc) is an error, the kernel won't crash. We must also try to not 545 // crash as the failure mode is very confusing (paging fault inside of the 546 // runtime on some derived shadow address). 547 static bool IsValidMmapRange(uptr addr, uptr size) { 548 if (size == 0) 549 return true; 550 if (static_cast<sptr>(size) < 0) 551 return false; 552 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) 553 return false; 554 // Check that if the start of the region belongs to one of app ranges, 555 // end of the region belongs to the same region. 556 const uptr ranges[][2] = { 557 {LoAppMemBeg(), LoAppMemEnd()}, 558 {MidAppMemBeg(), MidAppMemEnd()}, 559 {HiAppMemBeg(), HiAppMemEnd()}, 560 }; 561 for (auto range : ranges) { 562 if (addr >= range[0] && addr < range[1]) 563 return addr + size <= range[1]; 564 } 565 return false; 566 } 567 568 void UnmapShadow(ThreadState *thr, uptr addr, uptr size) { 569 if (size == 0 || !IsValidMmapRange(addr, size)) 570 return; 571 DontNeedShadowFor(addr, size); 572 ScopedGlobalProcessor sgp; 573 SlotLocker locker(thr, true); 574 ctx->metamap.ResetRange(thr->proc(), addr, size, true); 575 } 576 #endif 577 578 void MapShadow(uptr addr, uptr size) { 579 // Ensure thead registry lock held, so as to synchronize 580 // with DoReset, which also access the mapped_shadow_* ctxt fields. 581 ThreadRegistryLock lock0(&ctx->thread_registry); 582 static bool data_mapped = false; 583 584 #if !SANITIZER_GO 585 // Global data is not 64K aligned, but there are no adjacent mappings, 586 // so we can get away with unaligned mapping. 587 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment 588 const uptr kPageSize = GetPageSizeCached(); 589 uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize); 590 uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize); 591 if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) 592 Die(); 593 #else 594 uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), (64 << 10)); 595 uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), (64 << 10)); 596 VPrintf(2, "MapShadow for (0x%zx-0x%zx), begin/end: (0x%zx-0x%zx)\n", 597 addr, addr + size, shadow_begin, shadow_end); 598 599 if (!data_mapped) { 600 // First call maps data+bss. 601 if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) 602 Die(); 603 } else { 604 VPrintf(2, "ctx->mapped_shadow_{begin,end} = (0x%zx-0x%zx)\n", 605 ctx->mapped_shadow_begin, ctx->mapped_shadow_end); 606 // Second and subsequent calls map heap. 607 if (shadow_end <= ctx->mapped_shadow_end) 608 return; 609 if (!ctx->mapped_shadow_begin || ctx->mapped_shadow_begin > shadow_begin) 610 ctx->mapped_shadow_begin = shadow_begin; 611 if (shadow_begin < ctx->mapped_shadow_end) 612 shadow_begin = ctx->mapped_shadow_end; 613 VPrintf(2, "MapShadow begin/end = (0x%zx-0x%zx)\n", 614 shadow_begin, shadow_end); 615 if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, 616 "shadow")) 617 Die(); 618 ctx->mapped_shadow_end = shadow_end; 619 } 620 #endif 621 622 // Meta shadow is 2:1, so tread carefully. 623 static uptr mapped_meta_end = 0; 624 uptr meta_begin = (uptr)MemToMeta(addr); 625 uptr meta_end = (uptr)MemToMeta(addr + size); 626 meta_begin = RoundDownTo(meta_begin, 64 << 10); 627 meta_end = RoundUpTo(meta_end, 64 << 10); 628 if (!data_mapped) { 629 // First call maps data+bss. 630 data_mapped = true; 631 if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, 632 "meta shadow")) 633 Die(); 634 } else { 635 // Mapping continuous heap. 636 // Windows wants 64K alignment. 637 meta_begin = RoundDownTo(meta_begin, 64 << 10); 638 meta_end = RoundUpTo(meta_end, 64 << 10); 639 CHECK_GT(meta_end, mapped_meta_end); 640 if (meta_begin < mapped_meta_end) 641 meta_begin = mapped_meta_end; 642 if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, 643 "meta shadow")) 644 Die(); 645 mapped_meta_end = meta_end; 646 } 647 VPrintf(2, "mapped meta shadow for (0x%zx-0x%zx) at (0x%zx-0x%zx)\n", addr, 648 addr + size, meta_begin, meta_end); 649 } 650 651 #if !SANITIZER_GO 652 static void OnStackUnwind(const SignalContext &sig, const void *, 653 BufferedStackTrace *stack) { 654 stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context, 655 common_flags()->fast_unwind_on_fatal); 656 } 657 658 static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) { 659 HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr); 660 } 661 #endif 662 663 void CheckUnwind() { 664 // There is high probability that interceptors will check-fail as well, 665 // on the other hand there is no sense in processing interceptors 666 // since we are going to die soon. 667 ScopedIgnoreInterceptors ignore; 668 #if !SANITIZER_GO 669 ThreadState* thr = cur_thread(); 670 thr->nomalloc = false; 671 thr->ignore_sync++; 672 thr->ignore_reads_and_writes++; 673 atomic_store_relaxed(&thr->in_signal_handler, 0); 674 #endif 675 PrintCurrentStackSlow(StackTrace::GetCurrentPc()); 676 } 677 678 bool is_initialized; 679 680 void Initialize(ThreadState *thr) { 681 // Thread safe because done before all threads exist. 682 if (is_initialized) 683 return; 684 is_initialized = true; 685 // We are not ready to handle interceptors yet. 686 ScopedIgnoreInterceptors ignore; 687 SanitizerToolName = "ThreadSanitizer"; 688 // Install tool-specific callbacks in sanitizer_common. 689 SetCheckUnwindCallback(CheckUnwind); 690 691 ctx = new(ctx_placeholder) Context; 692 const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS"; 693 const char *options = GetEnv(env_name); 694 CacheBinaryName(); 695 CheckASLR(); 696 InitializeFlags(&ctx->flags, options, env_name); 697 AvoidCVE_2016_2143(); 698 __sanitizer::InitializePlatformEarly(); 699 __tsan::InitializePlatformEarly(); 700 701 #if !SANITIZER_GO 702 InitializeAllocator(); 703 ReplaceSystemMalloc(); 704 #endif 705 if (common_flags()->detect_deadlocks) 706 ctx->dd = DDetector::Create(flags()); 707 Processor *proc = ProcCreate(); 708 ProcWire(proc, thr); 709 InitializeInterceptors(); 710 InitializePlatform(); 711 InitializeDynamicAnnotations(); 712 #if !SANITIZER_GO 713 InitializeShadowMemory(); 714 InitializeAllocatorLate(); 715 InstallDeadlySignalHandlers(TsanOnDeadlySignal); 716 #endif 717 // Setup correct file descriptor for error reports. 718 __sanitizer_set_report_path(common_flags()->log_path); 719 InitializeSuppressions(); 720 #if !SANITIZER_GO 721 InitializeLibIgnore(); 722 Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); 723 #endif 724 725 VPrintf(1, "***** Running under ThreadSanitizer v3 (pid %d) *****\n", 726 (int)internal_getpid()); 727 728 // Initialize thread 0. 729 Tid tid = ThreadCreate(nullptr, 0, 0, true); 730 CHECK_EQ(tid, kMainTid); 731 ThreadStart(thr, tid, GetTid(), ThreadType::Regular); 732 #if TSAN_CONTAINS_UBSAN 733 __ubsan::InitAsPlugin(); 734 #endif 735 736 #if !SANITIZER_GO 737 Symbolizer::LateInitialize(); 738 if (InitializeMemoryProfiler() || flags()->force_background_thread) 739 MaybeSpawnBackgroundThread(); 740 #endif 741 ctx->initialized = true; 742 743 if (flags()->stop_on_start) { 744 Printf("ThreadSanitizer is suspended at startup (pid %d)." 745 " Call __tsan_resume().\n", 746 (int)internal_getpid()); 747 while (__tsan_resumed == 0) {} 748 } 749 750 OnInitialize(); 751 } 752 753 void MaybeSpawnBackgroundThread() { 754 // On MIPS, TSan initialization is run before 755 // __pthread_initialize_minimal_internal() is finished, so we can not spawn 756 // new threads. 757 #if !SANITIZER_GO && !defined(__mips__) 758 static atomic_uint32_t bg_thread = {}; 759 if (atomic_load(&bg_thread, memory_order_relaxed) == 0 && 760 atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) { 761 StartBackgroundThread(); 762 SetSandboxingCallback(StopBackgroundThread); 763 } 764 #endif 765 } 766 767 int Finalize(ThreadState *thr) { 768 bool failed = false; 769 770 #if !SANITIZER_GO 771 if (common_flags()->print_module_map == 1) 772 DumpProcessMap(); 773 #endif 774 775 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) 776 internal_usleep(u64(flags()->atexit_sleep_ms) * 1000); 777 778 { 779 // Wait for pending reports. 780 ScopedErrorReportLock lock; 781 } 782 783 #if !SANITIZER_GO 784 if (Verbosity()) AllocatorPrintStats(); 785 #endif 786 787 ThreadFinalize(thr); 788 789 if (ctx->nreported) { 790 failed = true; 791 #if !SANITIZER_GO 792 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); 793 #else 794 Printf("Found %d data race(s)\n", ctx->nreported); 795 #endif 796 } 797 798 if (common_flags()->print_suppressions) 799 PrintMatchedSuppressions(); 800 801 failed = OnFinalize(failed); 802 803 return failed ? common_flags()->exitcode : 0; 804 } 805 806 #if !SANITIZER_GO 807 void ForkBefore(ThreadState* thr, uptr pc) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 808 GlobalProcessorLock(); 809 // Detaching from the slot makes OnUserFree skip writing to the shadow. 810 // The slot will be locked so any attempts to use it will deadlock anyway. 811 SlotDetach(thr); 812 for (auto& slot : ctx->slots) slot.mtx.Lock(); 813 ctx->thread_registry.Lock(); 814 ctx->slot_mtx.Lock(); 815 ScopedErrorReportLock::Lock(); 816 AllocatorLock(); 817 // Suppress all reports in the pthread_atfork callbacks. 818 // Reports will deadlock on the report_mtx. 819 // We could ignore sync operations as well, 820 // but so far it's unclear if it will do more good or harm. 821 // Unnecessarily ignoring things can lead to false positives later. 822 thr->suppress_reports++; 823 // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and 824 // we'll assert in CheckNoLocks() unless we ignore interceptors. 825 // On OS X libSystem_atfork_prepare/parent/child callbacks are called 826 // after/before our callbacks and they call free. 827 thr->ignore_interceptors++; 828 // Disables memory write in OnUserAlloc/Free. 829 thr->ignore_reads_and_writes++; 830 831 __tsan_test_only_on_fork(); 832 } 833 834 static void ForkAfter(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 835 thr->suppress_reports--; // Enabled in ForkBefore. 836 thr->ignore_interceptors--; 837 thr->ignore_reads_and_writes--; 838 AllocatorUnlock(); 839 ScopedErrorReportLock::Unlock(); 840 ctx->slot_mtx.Unlock(); 841 ctx->thread_registry.Unlock(); 842 for (auto& slot : ctx->slots) slot.mtx.Unlock(); 843 SlotAttachAndLock(thr); 844 SlotUnlock(thr); 845 GlobalProcessorUnlock(); 846 } 847 848 void ForkParentAfter(ThreadState* thr, uptr pc) { ForkAfter(thr); } 849 850 void ForkChildAfter(ThreadState* thr, uptr pc, bool start_thread) { 851 ForkAfter(thr); 852 u32 nthread = ctx->thread_registry.OnFork(thr->tid); 853 VPrintf(1, 854 "ThreadSanitizer: forked new process with pid %d," 855 " parent had %d threads\n", 856 (int)internal_getpid(), (int)nthread); 857 if (nthread == 1) { 858 if (start_thread) 859 StartBackgroundThread(); 860 } else { 861 // We've just forked a multi-threaded process. We cannot reasonably function 862 // after that (some mutexes may be locked before fork). So just enable 863 // ignores for everything in the hope that we will exec soon. 864 ctx->after_multithreaded_fork = true; 865 thr->ignore_interceptors++; 866 thr->suppress_reports++; 867 ThreadIgnoreBegin(thr, pc); 868 ThreadIgnoreSyncBegin(thr, pc); 869 } 870 } 871 #endif 872 873 #if SANITIZER_GO 874 NOINLINE 875 void GrowShadowStack(ThreadState *thr) { 876 const int sz = thr->shadow_stack_end - thr->shadow_stack; 877 const int newsz = 2 * sz; 878 auto *newstack = (uptr *)Alloc(newsz * sizeof(uptr)); 879 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); 880 Free(thr->shadow_stack); 881 thr->shadow_stack = newstack; 882 thr->shadow_stack_pos = newstack + sz; 883 thr->shadow_stack_end = newstack + newsz; 884 } 885 #endif 886 887 StackID CurrentStackId(ThreadState *thr, uptr pc) { 888 #if !SANITIZER_GO 889 if (!thr->is_inited) // May happen during bootstrap. 890 return kInvalidStackID; 891 #endif 892 if (pc != 0) { 893 #if !SANITIZER_GO 894 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 895 #else 896 if (thr->shadow_stack_pos == thr->shadow_stack_end) 897 GrowShadowStack(thr); 898 #endif 899 thr->shadow_stack_pos[0] = pc; 900 thr->shadow_stack_pos++; 901 } 902 StackID id = StackDepotPut( 903 StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); 904 if (pc != 0) 905 thr->shadow_stack_pos--; 906 return id; 907 } 908 909 static bool TraceSkipGap(ThreadState* thr) { 910 Trace *trace = &thr->tctx->trace; 911 Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos)); 912 DCHECK_EQ(reinterpret_cast<uptr>(pos + 1) & TracePart::kAlignment, 0); 913 auto *part = trace->parts.Back(); 914 DPrintf("#%d: TraceSwitchPart enter trace=%p parts=%p-%p pos=%p\n", thr->tid, 915 trace, trace->parts.Front(), part, pos); 916 if (!part) 917 return false; 918 // We can get here when we still have space in the current trace part. 919 // The fast-path check in TraceAcquire has false positives in the middle of 920 // the part. Check if we are indeed at the end of the current part or not, 921 // and fill any gaps with NopEvent's. 922 Event* end = &part->events[TracePart::kSize]; 923 DCHECK_GE(pos, &part->events[0]); 924 DCHECK_LE(pos, end); 925 if (pos + 1 < end) { 926 if ((reinterpret_cast<uptr>(pos) & TracePart::kAlignment) == 927 TracePart::kAlignment) 928 *pos++ = NopEvent; 929 *pos++ = NopEvent; 930 DCHECK_LE(pos + 2, end); 931 atomic_store_relaxed(&thr->trace_pos, reinterpret_cast<uptr>(pos)); 932 return true; 933 } 934 // We are indeed at the end. 935 for (; pos < end; pos++) *pos = NopEvent; 936 return false; 937 } 938 939 NOINLINE 940 void TraceSwitchPart(ThreadState* thr) { 941 if (TraceSkipGap(thr)) 942 return; 943 #if !SANITIZER_GO 944 if (ctx->after_multithreaded_fork) { 945 // We just need to survive till exec. 946 TracePart* part = thr->tctx->trace.parts.Back(); 947 if (part) { 948 atomic_store_relaxed(&thr->trace_pos, 949 reinterpret_cast<uptr>(&part->events[0])); 950 return; 951 } 952 } 953 #endif 954 TraceSwitchPartImpl(thr); 955 } 956 957 void TraceSwitchPartImpl(ThreadState* thr) { 958 SlotLocker locker(thr, true); 959 Trace* trace = &thr->tctx->trace; 960 TracePart* part = TracePartAlloc(thr); 961 part->trace = trace; 962 thr->trace_prev_pc = 0; 963 TracePart* recycle = nullptr; 964 // Keep roughly half of parts local to the thread 965 // (not queued into the recycle queue). 966 uptr local_parts = (Trace::kMinParts + flags()->history_size + 1) / 2; 967 { 968 Lock lock(&trace->mtx); 969 if (trace->parts.Empty()) 970 trace->local_head = part; 971 if (trace->parts.Size() >= local_parts) { 972 recycle = trace->local_head; 973 trace->local_head = trace->parts.Next(recycle); 974 } 975 trace->parts.PushBack(part); 976 atomic_store_relaxed(&thr->trace_pos, 977 reinterpret_cast<uptr>(&part->events[0])); 978 } 979 // Make this part self-sufficient by restoring the current stack 980 // and mutex set in the beginning of the trace. 981 TraceTime(thr); 982 { 983 // Pathologically large stacks may not fit into the part. 984 // In these cases we log only fixed number of top frames. 985 const uptr kMaxFrames = 1000; 986 // Check that kMaxFrames won't consume the whole part. 987 static_assert(kMaxFrames < TracePart::kSize / 2, "kMaxFrames is too big"); 988 uptr* pos = Max(&thr->shadow_stack[0], thr->shadow_stack_pos - kMaxFrames); 989 for (; pos < thr->shadow_stack_pos; pos++) { 990 if (TryTraceFunc(thr, *pos)) 991 continue; 992 CHECK(TraceSkipGap(thr)); 993 CHECK(TryTraceFunc(thr, *pos)); 994 } 995 } 996 for (uptr i = 0; i < thr->mset.Size(); i++) { 997 MutexSet::Desc d = thr->mset.Get(i); 998 for (uptr i = 0; i < d.count; i++) 999 TraceMutexLock(thr, d.write ? EventType::kLock : EventType::kRLock, 0, 1000 d.addr, d.stack_id); 1001 } 1002 // Callers of TraceSwitchPart expect that TraceAcquire will always succeed 1003 // after the call. It's possible that TryTraceFunc/TraceMutexLock above 1004 // filled the trace part exactly up to the TracePart::kAlignment gap 1005 // and the next TraceAcquire won't succeed. Skip the gap to avoid that. 1006 EventFunc *ev; 1007 if (!TraceAcquire(thr, &ev)) { 1008 CHECK(TraceSkipGap(thr)); 1009 CHECK(TraceAcquire(thr, &ev)); 1010 } 1011 { 1012 Lock lock(&ctx->slot_mtx); 1013 // There is a small chance that the slot may be not queued at this point. 1014 // This can happen if the slot has kEpochLast epoch and another thread 1015 // in FindSlotAndLock discovered that it's exhausted and removed it from 1016 // the slot queue. kEpochLast can happen in 2 cases: (1) if TraceSwitchPart 1017 // was called with the slot locked and epoch already at kEpochLast, 1018 // or (2) if we've acquired a new slot in SlotLock in the beginning 1019 // of the function and the slot was at kEpochLast - 1, so after increment 1020 // in SlotAttachAndLock it become kEpochLast. 1021 if (ctx->slot_queue.Queued(thr->slot)) { 1022 ctx->slot_queue.Remove(thr->slot); 1023 ctx->slot_queue.PushBack(thr->slot); 1024 } 1025 if (recycle) 1026 ctx->trace_part_recycle.PushBack(recycle); 1027 } 1028 DPrintf("#%d: TraceSwitchPart exit parts=%p-%p pos=0x%zx\n", thr->tid, 1029 trace->parts.Front(), trace->parts.Back(), 1030 atomic_load_relaxed(&thr->trace_pos)); 1031 } 1032 1033 void ThreadIgnoreBegin(ThreadState* thr, uptr pc) { 1034 DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); 1035 thr->ignore_reads_and_writes++; 1036 CHECK_GT(thr->ignore_reads_and_writes, 0); 1037 thr->fast_state.SetIgnoreBit(); 1038 #if !SANITIZER_GO 1039 if (pc && !ctx->after_multithreaded_fork) 1040 thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); 1041 #endif 1042 } 1043 1044 void ThreadIgnoreEnd(ThreadState *thr) { 1045 DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); 1046 CHECK_GT(thr->ignore_reads_and_writes, 0); 1047 thr->ignore_reads_and_writes--; 1048 if (thr->ignore_reads_and_writes == 0) { 1049 thr->fast_state.ClearIgnoreBit(); 1050 #if !SANITIZER_GO 1051 thr->mop_ignore_set.Reset(); 1052 #endif 1053 } 1054 } 1055 1056 #if !SANITIZER_GO 1057 extern "C" SANITIZER_INTERFACE_ATTRIBUTE 1058 uptr __tsan_testonly_shadow_stack_current_size() { 1059 ThreadState *thr = cur_thread(); 1060 return thr->shadow_stack_pos - thr->shadow_stack; 1061 } 1062 #endif 1063 1064 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) { 1065 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); 1066 thr->ignore_sync++; 1067 CHECK_GT(thr->ignore_sync, 0); 1068 #if !SANITIZER_GO 1069 if (pc && !ctx->after_multithreaded_fork) 1070 thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); 1071 #endif 1072 } 1073 1074 void ThreadIgnoreSyncEnd(ThreadState *thr) { 1075 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); 1076 CHECK_GT(thr->ignore_sync, 0); 1077 thr->ignore_sync--; 1078 #if !SANITIZER_GO 1079 if (thr->ignore_sync == 0) 1080 thr->sync_ignore_set.Reset(); 1081 #endif 1082 } 1083 1084 bool MD5Hash::operator==(const MD5Hash &other) const { 1085 return hash[0] == other.hash[0] && hash[1] == other.hash[1]; 1086 } 1087 1088 #if SANITIZER_DEBUG 1089 void build_consistency_debug() {} 1090 #else 1091 void build_consistency_release() {} 1092 #endif 1093 } // namespace __tsan 1094 1095 #if SANITIZER_CHECK_DEADLOCKS 1096 namespace __sanitizer { 1097 using namespace __tsan; 1098 MutexMeta mutex_meta[] = { 1099 {MutexInvalid, "Invalid", {}}, 1100 {MutexThreadRegistry, 1101 "ThreadRegistry", 1102 {MutexTypeSlots, MutexTypeTrace, MutexTypeReport}}, 1103 {MutexTypeReport, "Report", {MutexTypeTrace}}, 1104 {MutexTypeSyncVar, "SyncVar", {MutexTypeReport, MutexTypeTrace}}, 1105 {MutexTypeAnnotations, "Annotations", {}}, 1106 {MutexTypeAtExit, "AtExit", {}}, 1107 {MutexTypeFired, "Fired", {MutexLeaf}}, 1108 {MutexTypeRacy, "Racy", {MutexLeaf}}, 1109 {MutexTypeGlobalProc, "GlobalProc", {MutexTypeSlot, MutexTypeSlots}}, 1110 {MutexTypeInternalAlloc, "InternalAlloc", {MutexLeaf}}, 1111 {MutexTypeTrace, "Trace", {}}, 1112 {MutexTypeSlot, 1113 "Slot", 1114 {MutexMulti, MutexTypeTrace, MutexTypeSyncVar, MutexThreadRegistry, 1115 MutexTypeSlots}}, 1116 {MutexTypeSlots, "Slots", {MutexTypeTrace, MutexTypeReport}}, 1117 {}, 1118 }; 1119 1120 void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); } 1121 1122 } // namespace __sanitizer 1123 #endif 1124