xref: /freebsd/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===-- tsan_rtl.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Main file (entry points) for the TSan run-time.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_common.h"
16 #include "sanitizer_common/sanitizer_file.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_stackdepot.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_symbolizer.h"
21 #include "tsan_defs.h"
22 #include "tsan_platform.h"
23 #include "tsan_rtl.h"
24 #include "tsan_mman.h"
25 #include "tsan_suppressions.h"
26 #include "tsan_symbolize.h"
27 #include "ubsan/ubsan_init.h"
28 
29 #ifdef __SSE3__
30 // <emmintrin.h> transitively includes <stdlib.h>,
31 // and it's prohibited to include std headers into tsan runtime.
32 // So we do this dirty trick.
33 #define _MM_MALLOC_H_INCLUDED
34 #define __MM_MALLOC_H
35 #include <emmintrin.h>
36 typedef __m128i m128;
37 #endif
38 
39 volatile int __tsan_resumed = 0;
40 
41 extern "C" void __tsan_resume() {
42   __tsan_resumed = 1;
43 }
44 
45 namespace __tsan {
46 
47 #if !SANITIZER_GO && !SANITIZER_MAC
48 __attribute__((tls_model("initial-exec")))
49 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
50 #endif
51 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
52 Context *ctx;
53 
54 // Can be overriden by a front-end.
55 #ifdef TSAN_EXTERNAL_HOOKS
56 bool OnFinalize(bool failed);
57 void OnInitialize();
58 #else
59 SANITIZER_WEAK_CXX_DEFAULT_IMPL
60 bool OnFinalize(bool failed) {
61   return failed;
62 }
63 SANITIZER_WEAK_CXX_DEFAULT_IMPL
64 void OnInitialize() {}
65 #endif
66 
67 static char thread_registry_placeholder[sizeof(ThreadRegistry)];
68 
69 static ThreadContextBase *CreateThreadContext(u32 tid) {
70   // Map thread trace when context is created.
71   char name[50];
72   internal_snprintf(name, sizeof(name), "trace %u", tid);
73   MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name);
74   const uptr hdr = GetThreadTraceHeader(tid);
75   internal_snprintf(name, sizeof(name), "trace header %u", tid);
76   MapThreadTrace(hdr, sizeof(Trace), name);
77   new((void*)hdr) Trace();
78   // We are going to use only a small part of the trace with the default
79   // value of history_size. However, the constructor writes to the whole trace.
80   // Unmap the unused part.
81   uptr hdr_end = hdr + sizeof(Trace);
82   hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
83   hdr_end = RoundUp(hdr_end, GetPageSizeCached());
84   if (hdr_end < hdr + sizeof(Trace))
85     UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
86   void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
87   return new(mem) ThreadContext(tid);
88 }
89 
90 #if !SANITIZER_GO
91 static const u32 kThreadQuarantineSize = 16;
92 #else
93 static const u32 kThreadQuarantineSize = 64;
94 #endif
95 
96 Context::Context()
97   : initialized()
98   , report_mtx(MutexTypeReport, StatMtxReport)
99   , nreported()
100   , nmissed_expected()
101   , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
102       CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
103   , racy_mtx(MutexTypeRacy, StatMtxRacy)
104   , racy_stacks()
105   , racy_addresses()
106   , fired_suppressions_mtx(MutexTypeFired, StatMtxFired)
107   , clock_alloc("clock allocator") {
108   fired_suppressions.reserve(8);
109 }
110 
111 // The objects are allocated in TLS, so one may rely on zero-initialization.
112 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
113                          unsigned reuse_count,
114                          uptr stk_addr, uptr stk_size,
115                          uptr tls_addr, uptr tls_size)
116   : fast_state(tid, epoch)
117   // Do not touch these, rely on zero initialization,
118   // they may be accessed before the ctor.
119   // , ignore_reads_and_writes()
120   // , ignore_interceptors()
121   , clock(tid, reuse_count)
122 #if !SANITIZER_GO
123   , jmp_bufs()
124 #endif
125   , tid(tid)
126   , unique_id(unique_id)
127   , stk_addr(stk_addr)
128   , stk_size(stk_size)
129   , tls_addr(tls_addr)
130   , tls_size(tls_size)
131 #if !SANITIZER_GO
132   , last_sleep_clock(tid)
133 #endif
134 {
135 }
136 
137 #if !SANITIZER_GO
138 static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
139   uptr n_threads;
140   uptr n_running_threads;
141   ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
142   InternalMmapVector<char> buf(4096);
143   WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
144   WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
145 }
146 
147 static void *BackgroundThread(void *arg) {
148   // This is a non-initialized non-user thread, nothing to see here.
149   // We don't use ScopedIgnoreInterceptors, because we want ignores to be
150   // enabled even when the thread function exits (e.g. during pthread thread
151   // shutdown code).
152   cur_thread_init();
153   cur_thread()->ignore_interceptors++;
154   const u64 kMs2Ns = 1000 * 1000;
155 
156   fd_t mprof_fd = kInvalidFd;
157   if (flags()->profile_memory && flags()->profile_memory[0]) {
158     if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
159       mprof_fd = 1;
160     } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
161       mprof_fd = 2;
162     } else {
163       InternalScopedString filename(kMaxPathLength);
164       filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
165       fd_t fd = OpenFile(filename.data(), WrOnly);
166       if (fd == kInvalidFd) {
167         Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
168             &filename[0]);
169       } else {
170         mprof_fd = fd;
171       }
172     }
173   }
174 
175   u64 last_flush = NanoTime();
176   uptr last_rss = 0;
177   for (int i = 0;
178       atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
179       i++) {
180     SleepForMillis(100);
181     u64 now = NanoTime();
182 
183     // Flush memory if requested.
184     if (flags()->flush_memory_ms > 0) {
185       if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
186         VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
187         FlushShadowMemory();
188         last_flush = NanoTime();
189       }
190     }
191     // GetRSS can be expensive on huge programs, so don't do it every 100ms.
192     if (flags()->memory_limit_mb > 0) {
193       uptr rss = GetRSS();
194       uptr limit = uptr(flags()->memory_limit_mb) << 20;
195       VPrintf(1, "ThreadSanitizer: memory flush check"
196                  " RSS=%llu LAST=%llu LIMIT=%llu\n",
197               (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
198       if (2 * rss > limit + last_rss) {
199         VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
200         FlushShadowMemory();
201         rss = GetRSS();
202         VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
203       }
204       last_rss = rss;
205     }
206 
207     // Write memory profile if requested.
208     if (mprof_fd != kInvalidFd)
209       MemoryProfiler(ctx, mprof_fd, i);
210 
211     // Flush symbolizer cache if requested.
212     if (flags()->flush_symbolizer_ms > 0) {
213       u64 last = atomic_load(&ctx->last_symbolize_time_ns,
214                              memory_order_relaxed);
215       if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
216         Lock l(&ctx->report_mtx);
217         ScopedErrorReportLock l2;
218         SymbolizeFlush();
219         atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
220       }
221     }
222   }
223   return nullptr;
224 }
225 
226 static void StartBackgroundThread() {
227   ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
228 }
229 
230 #ifndef __mips__
231 static void StopBackgroundThread() {
232   atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
233   internal_join_thread(ctx->background_thread);
234   ctx->background_thread = 0;
235 }
236 #endif
237 #endif
238 
239 void DontNeedShadowFor(uptr addr, uptr size) {
240   ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size));
241 }
242 
243 #if !SANITIZER_GO
244 void UnmapShadow(ThreadState *thr, uptr addr, uptr size) {
245   if (size == 0) return;
246   DontNeedShadowFor(addr, size);
247   ScopedGlobalProcessor sgp;
248   ctx->metamap.ResetRange(thr->proc(), addr, size);
249 }
250 #endif
251 
252 void MapShadow(uptr addr, uptr size) {
253   // Global data is not 64K aligned, but there are no adjacent mappings,
254   // so we can get away with unaligned mapping.
255   // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
256   const uptr kPageSize = GetPageSizeCached();
257   uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
258   uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
259   if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin,
260                                "shadow"))
261     Die();
262 
263   // Meta shadow is 2:1, so tread carefully.
264   static bool data_mapped = false;
265   static uptr mapped_meta_end = 0;
266   uptr meta_begin = (uptr)MemToMeta(addr);
267   uptr meta_end = (uptr)MemToMeta(addr + size);
268   meta_begin = RoundDownTo(meta_begin, 64 << 10);
269   meta_end = RoundUpTo(meta_end, 64 << 10);
270   if (!data_mapped) {
271     // First call maps data+bss.
272     data_mapped = true;
273     if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
274                                  "meta shadow"))
275       Die();
276   } else {
277     // Mapping continous heap.
278     // Windows wants 64K alignment.
279     meta_begin = RoundDownTo(meta_begin, 64 << 10);
280     meta_end = RoundUpTo(meta_end, 64 << 10);
281     if (meta_end <= mapped_meta_end)
282       return;
283     if (meta_begin < mapped_meta_end)
284       meta_begin = mapped_meta_end;
285     if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
286                                  "meta shadow"))
287       Die();
288     mapped_meta_end = meta_end;
289   }
290   VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
291       addr, addr+size, meta_begin, meta_end);
292 }
293 
294 void MapThreadTrace(uptr addr, uptr size, const char *name) {
295   DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
296   CHECK_GE(addr, TraceMemBeg());
297   CHECK_LE(addr + size, TraceMemEnd());
298   CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
299   if (!MmapFixedSuperNoReserve(addr, size, name)) {
300     Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p)\n",
301         addr, size);
302     Die();
303   }
304 }
305 
306 static void CheckShadowMapping() {
307   uptr beg, end;
308   for (int i = 0; GetUserRegion(i, &beg, &end); i++) {
309     // Skip cases for empty regions (heap definition for architectures that
310     // do not use 64-bit allocator).
311     if (beg == end)
312       continue;
313     VPrintf(3, "checking shadow region %p-%p\n", beg, end);
314     uptr prev = 0;
315     for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
316       for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
317         const uptr p = RoundDown(p0 + x, kShadowCell);
318         if (p < beg || p >= end)
319           continue;
320         const uptr s = MemToShadow(p);
321         const uptr m = (uptr)MemToMeta(p);
322         VPrintf(3, "  checking pointer %p: shadow=%p meta=%p\n", p, s, m);
323         CHECK(IsAppMem(p));
324         CHECK(IsShadowMem(s));
325         CHECK_EQ(p, ShadowToMem(s));
326         CHECK(IsMetaMem(m));
327         if (prev) {
328           // Ensure that shadow and meta mappings are linear within a single
329           // user range. Lots of code that processes memory ranges assumes it.
330           const uptr prev_s = MemToShadow(prev);
331           const uptr prev_m = (uptr)MemToMeta(prev);
332           CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
333           CHECK_EQ((m - prev_m) / kMetaShadowSize,
334                    (p - prev) / kMetaShadowCell);
335         }
336         prev = p;
337       }
338     }
339   }
340 }
341 
342 #if !SANITIZER_GO
343 static void OnStackUnwind(const SignalContext &sig, const void *,
344                           BufferedStackTrace *stack) {
345   stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
346                 common_flags()->fast_unwind_on_fatal);
347 }
348 
349 static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
350   HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
351 }
352 #endif
353 
354 void Initialize(ThreadState *thr) {
355   // Thread safe because done before all threads exist.
356   static bool is_initialized = false;
357   if (is_initialized)
358     return;
359   is_initialized = true;
360   // We are not ready to handle interceptors yet.
361   ScopedIgnoreInterceptors ignore;
362   SanitizerToolName = "ThreadSanitizer";
363   // Install tool-specific callbacks in sanitizer_common.
364   SetCheckFailedCallback(TsanCheckFailed);
365 
366   ctx = new(ctx_placeholder) Context;
367   const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS";
368   const char *options = GetEnv(env_name);
369   CacheBinaryName();
370   CheckASLR();
371   InitializeFlags(&ctx->flags, options, env_name);
372   AvoidCVE_2016_2143();
373   __sanitizer::InitializePlatformEarly();
374   __tsan::InitializePlatformEarly();
375 
376 #if !SANITIZER_GO
377   // Re-exec ourselves if we need to set additional env or command line args.
378   MaybeReexec();
379 
380   InitializeAllocator();
381   ReplaceSystemMalloc();
382 #endif
383   if (common_flags()->detect_deadlocks)
384     ctx->dd = DDetector::Create(flags());
385   Processor *proc = ProcCreate();
386   ProcWire(proc, thr);
387   InitializeInterceptors();
388   CheckShadowMapping();
389   InitializePlatform();
390   InitializeMutex();
391   InitializeDynamicAnnotations();
392 #if !SANITIZER_GO
393   InitializeShadowMemory();
394   InitializeAllocatorLate();
395   InstallDeadlySignalHandlers(TsanOnDeadlySignal);
396 #endif
397   // Setup correct file descriptor for error reports.
398   __sanitizer_set_report_path(common_flags()->log_path);
399   InitializeSuppressions();
400 #if !SANITIZER_GO
401   InitializeLibIgnore();
402   Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
403 #endif
404 
405   VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
406           (int)internal_getpid());
407 
408   // Initialize thread 0.
409   int tid = ThreadCreate(thr, 0, 0, true);
410   CHECK_EQ(tid, 0);
411   ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
412 #if TSAN_CONTAINS_UBSAN
413   __ubsan::InitAsPlugin();
414 #endif
415   ctx->initialized = true;
416 
417 #if !SANITIZER_GO
418   Symbolizer::LateInitialize();
419 #endif
420 
421   if (flags()->stop_on_start) {
422     Printf("ThreadSanitizer is suspended at startup (pid %d)."
423            " Call __tsan_resume().\n",
424            (int)internal_getpid());
425     while (__tsan_resumed == 0) {}
426   }
427 
428   OnInitialize();
429 }
430 
431 void MaybeSpawnBackgroundThread() {
432   // On MIPS, TSan initialization is run before
433   // __pthread_initialize_minimal_internal() is finished, so we can not spawn
434   // new threads.
435 #if !SANITIZER_GO && !defined(__mips__)
436   static atomic_uint32_t bg_thread = {};
437   if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
438       atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
439     StartBackgroundThread();
440     SetSandboxingCallback(StopBackgroundThread);
441   }
442 #endif
443 }
444 
445 
446 int Finalize(ThreadState *thr) {
447   bool failed = false;
448 
449   if (common_flags()->print_module_map == 1)
450     DumpProcessMap();
451 
452   if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
453     SleepForMillis(flags()->atexit_sleep_ms);
454 
455   // Wait for pending reports.
456   ctx->report_mtx.Lock();
457   { ScopedErrorReportLock l; }
458   ctx->report_mtx.Unlock();
459 
460 #if !SANITIZER_GO
461   if (Verbosity()) AllocatorPrintStats();
462 #endif
463 
464   ThreadFinalize(thr);
465 
466   if (ctx->nreported) {
467     failed = true;
468 #if !SANITIZER_GO
469     Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
470 #else
471     Printf("Found %d data race(s)\n", ctx->nreported);
472 #endif
473   }
474 
475   if (ctx->nmissed_expected) {
476     failed = true;
477     Printf("ThreadSanitizer: missed %d expected races\n",
478         ctx->nmissed_expected);
479   }
480 
481   if (common_flags()->print_suppressions)
482     PrintMatchedSuppressions();
483 #if !SANITIZER_GO
484   if (flags()->print_benign)
485     PrintMatchedBenignRaces();
486 #endif
487 
488   failed = OnFinalize(failed);
489 
490 #if TSAN_COLLECT_STATS
491   StatAggregate(ctx->stat, thr->stat);
492   StatOutput(ctx->stat);
493 #endif
494 
495   return failed ? common_flags()->exitcode : 0;
496 }
497 
498 #if !SANITIZER_GO
499 void ForkBefore(ThreadState *thr, uptr pc) {
500   ctx->thread_registry->Lock();
501   ctx->report_mtx.Lock();
502   // Ignore memory accesses in the pthread_atfork callbacks.
503   // If any of them triggers a data race we will deadlock
504   // on the report_mtx.
505   // We could ignore interceptors and sync operations as well,
506   // but so far it's unclear if it will do more good or harm.
507   // Unnecessarily ignoring things can lead to false positives later.
508   ThreadIgnoreBegin(thr, pc);
509 }
510 
511 void ForkParentAfter(ThreadState *thr, uptr pc) {
512   ThreadIgnoreEnd(thr, pc);  // Begin is in ForkBefore.
513   ctx->report_mtx.Unlock();
514   ctx->thread_registry->Unlock();
515 }
516 
517 void ForkChildAfter(ThreadState *thr, uptr pc) {
518   ThreadIgnoreEnd(thr, pc);  // Begin is in ForkBefore.
519   ctx->report_mtx.Unlock();
520   ctx->thread_registry->Unlock();
521 
522   uptr nthread = 0;
523   ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
524   VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
525       " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
526   if (nthread == 1) {
527     StartBackgroundThread();
528   } else {
529     // We've just forked a multi-threaded process. We cannot reasonably function
530     // after that (some mutexes may be locked before fork). So just enable
531     // ignores for everything in the hope that we will exec soon.
532     ctx->after_multithreaded_fork = true;
533     thr->ignore_interceptors++;
534     ThreadIgnoreBegin(thr, pc);
535     ThreadIgnoreSyncBegin(thr, pc);
536   }
537 }
538 #endif
539 
540 #if SANITIZER_GO
541 NOINLINE
542 void GrowShadowStack(ThreadState *thr) {
543   const int sz = thr->shadow_stack_end - thr->shadow_stack;
544   const int newsz = 2 * sz;
545   uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
546       newsz * sizeof(uptr));
547   internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
548   internal_free(thr->shadow_stack);
549   thr->shadow_stack = newstack;
550   thr->shadow_stack_pos = newstack + sz;
551   thr->shadow_stack_end = newstack + newsz;
552 }
553 #endif
554 
555 u32 CurrentStackId(ThreadState *thr, uptr pc) {
556   if (!thr->is_inited)  // May happen during bootstrap.
557     return 0;
558   if (pc != 0) {
559 #if !SANITIZER_GO
560     DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
561 #else
562     if (thr->shadow_stack_pos == thr->shadow_stack_end)
563       GrowShadowStack(thr);
564 #endif
565     thr->shadow_stack_pos[0] = pc;
566     thr->shadow_stack_pos++;
567   }
568   u32 id = StackDepotPut(
569       StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
570   if (pc != 0)
571     thr->shadow_stack_pos--;
572   return id;
573 }
574 
575 void TraceSwitch(ThreadState *thr) {
576 #if !SANITIZER_GO
577   if (ctx->after_multithreaded_fork)
578     return;
579 #endif
580   thr->nomalloc++;
581   Trace *thr_trace = ThreadTrace(thr->tid);
582   Lock l(&thr_trace->mtx);
583   unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
584   TraceHeader *hdr = &thr_trace->headers[trace];
585   hdr->epoch0 = thr->fast_state.epoch();
586   ObtainCurrentStack(thr, 0, &hdr->stack0);
587   hdr->mset0 = thr->mset;
588   thr->nomalloc--;
589 }
590 
591 Trace *ThreadTrace(int tid) {
592   return (Trace*)GetThreadTraceHeader(tid);
593 }
594 
595 uptr TraceTopPC(ThreadState *thr) {
596   Event *events = (Event*)GetThreadTrace(thr->tid);
597   uptr pc = events[thr->fast_state.GetTracePos()];
598   return pc;
599 }
600 
601 uptr TraceSize() {
602   return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
603 }
604 
605 uptr TraceParts() {
606   return TraceSize() / kTracePartSize;
607 }
608 
609 #if !SANITIZER_GO
610 extern "C" void __tsan_trace_switch() {
611   TraceSwitch(cur_thread());
612 }
613 
614 extern "C" void __tsan_report_race() {
615   ReportRace(cur_thread());
616 }
617 #endif
618 
619 ALWAYS_INLINE
620 Shadow LoadShadow(u64 *p) {
621   u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
622   return Shadow(raw);
623 }
624 
625 ALWAYS_INLINE
626 void StoreShadow(u64 *sp, u64 s) {
627   atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
628 }
629 
630 ALWAYS_INLINE
631 void StoreIfNotYetStored(u64 *sp, u64 *s) {
632   StoreShadow(sp, *s);
633   *s = 0;
634 }
635 
636 ALWAYS_INLINE
637 void HandleRace(ThreadState *thr, u64 *shadow_mem,
638                               Shadow cur, Shadow old) {
639   thr->racy_state[0] = cur.raw();
640   thr->racy_state[1] = old.raw();
641   thr->racy_shadow_addr = shadow_mem;
642 #if !SANITIZER_GO
643   HACKY_CALL(__tsan_report_race);
644 #else
645   ReportRace(thr);
646 #endif
647 }
648 
649 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
650   return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
651 }
652 
653 ALWAYS_INLINE
654 void MemoryAccessImpl1(ThreadState *thr, uptr addr,
655     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
656     u64 *shadow_mem, Shadow cur) {
657   StatInc(thr, StatMop);
658   StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
659   StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
660 
661   // This potentially can live in an MMX/SSE scratch register.
662   // The required intrinsics are:
663   // __m128i _mm_move_epi64(__m128i*);
664   // _mm_storel_epi64(u64*, __m128i);
665   u64 store_word = cur.raw();
666   bool stored = false;
667 
668   // scan all the shadow values and dispatch to 4 categories:
669   // same, replace, candidate and race (see comments below).
670   // we consider only 3 cases regarding access sizes:
671   // equal, intersect and not intersect. initially I considered
672   // larger and smaller as well, it allowed to replace some
673   // 'candidates' with 'same' or 'replace', but I think
674   // it's just not worth it (performance- and complexity-wise).
675 
676   Shadow old(0);
677 
678   // It release mode we manually unroll the loop,
679   // because empirically gcc generates better code this way.
680   // However, we can't afford unrolling in debug mode, because the function
681   // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
682   // threads, which is not enough for the unrolled loop.
683 #if SANITIZER_DEBUG
684   for (int idx = 0; idx < 4; idx++) {
685 #include "tsan_update_shadow_word_inl.h"
686   }
687 #else
688   int idx = 0;
689 #include "tsan_update_shadow_word_inl.h"
690   idx = 1;
691   if (stored) {
692 #include "tsan_update_shadow_word_inl.h"
693   } else {
694 #include "tsan_update_shadow_word_inl.h"
695   }
696   idx = 2;
697   if (stored) {
698 #include "tsan_update_shadow_word_inl.h"
699   } else {
700 #include "tsan_update_shadow_word_inl.h"
701   }
702   idx = 3;
703   if (stored) {
704 #include "tsan_update_shadow_word_inl.h"
705   } else {
706 #include "tsan_update_shadow_word_inl.h"
707   }
708 #endif
709 
710   // we did not find any races and had already stored
711   // the current access info, so we are done
712   if (LIKELY(stored))
713     return;
714   // choose a random candidate slot and replace it
715   StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
716   StatInc(thr, StatShadowReplace);
717   return;
718  RACE:
719   HandleRace(thr, shadow_mem, cur, old);
720   return;
721 }
722 
723 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
724     int size, bool kAccessIsWrite, bool kIsAtomic) {
725   while (size) {
726     int size1 = 1;
727     int kAccessSizeLog = kSizeLog1;
728     if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
729       size1 = 8;
730       kAccessSizeLog = kSizeLog8;
731     } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
732       size1 = 4;
733       kAccessSizeLog = kSizeLog4;
734     } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
735       size1 = 2;
736       kAccessSizeLog = kSizeLog2;
737     }
738     MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
739     addr += size1;
740     size -= size1;
741   }
742 }
743 
744 ALWAYS_INLINE
745 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
746   Shadow cur(a);
747   for (uptr i = 0; i < kShadowCnt; i++) {
748     Shadow old(LoadShadow(&s[i]));
749     if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
750         old.TidWithIgnore() == cur.TidWithIgnore() &&
751         old.epoch() > sync_epoch &&
752         old.IsAtomic() == cur.IsAtomic() &&
753         old.IsRead() <= cur.IsRead())
754       return true;
755   }
756   return false;
757 }
758 
759 #if defined(__SSE3__)
760 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
761     _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
762     (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
763 ALWAYS_INLINE
764 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
765   // This is an optimized version of ContainsSameAccessSlow.
766   // load current access into access[0:63]
767   const m128 access     = _mm_cvtsi64_si128(a);
768   // duplicate high part of access in addr0:
769   // addr0[0:31]        = access[32:63]
770   // addr0[32:63]       = access[32:63]
771   // addr0[64:95]       = access[32:63]
772   // addr0[96:127]      = access[32:63]
773   const m128 addr0      = SHUF(access, access, 1, 1, 1, 1);
774   // load 4 shadow slots
775   const m128 shadow0    = _mm_load_si128((__m128i*)s);
776   const m128 shadow1    = _mm_load_si128((__m128i*)s + 1);
777   // load high parts of 4 shadow slots into addr_vect:
778   // addr_vect[0:31]    = shadow0[32:63]
779   // addr_vect[32:63]   = shadow0[96:127]
780   // addr_vect[64:95]   = shadow1[32:63]
781   // addr_vect[96:127]  = shadow1[96:127]
782   m128 addr_vect        = SHUF(shadow0, shadow1, 1, 3, 1, 3);
783   if (!is_write) {
784     // set IsRead bit in addr_vect
785     const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
786     const m128 rw_mask  = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
787     addr_vect           = _mm_or_si128(addr_vect, rw_mask);
788   }
789   // addr0 == addr_vect?
790   const m128 addr_res   = _mm_cmpeq_epi32(addr0, addr_vect);
791   // epoch1[0:63]       = sync_epoch
792   const m128 epoch1     = _mm_cvtsi64_si128(sync_epoch);
793   // epoch[0:31]        = sync_epoch[0:31]
794   // epoch[32:63]       = sync_epoch[0:31]
795   // epoch[64:95]       = sync_epoch[0:31]
796   // epoch[96:127]      = sync_epoch[0:31]
797   const m128 epoch      = SHUF(epoch1, epoch1, 0, 0, 0, 0);
798   // load low parts of shadow cell epochs into epoch_vect:
799   // epoch_vect[0:31]   = shadow0[0:31]
800   // epoch_vect[32:63]  = shadow0[64:95]
801   // epoch_vect[64:95]  = shadow1[0:31]
802   // epoch_vect[96:127] = shadow1[64:95]
803   const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
804   // epoch_vect >= sync_epoch?
805   const m128 epoch_res  = _mm_cmpgt_epi32(epoch_vect, epoch);
806   // addr_res & epoch_res
807   const m128 res        = _mm_and_si128(addr_res, epoch_res);
808   // mask[0] = res[7]
809   // mask[1] = res[15]
810   // ...
811   // mask[15] = res[127]
812   const int mask        = _mm_movemask_epi8(res);
813   return mask != 0;
814 }
815 #endif
816 
817 ALWAYS_INLINE
818 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
819 #if defined(__SSE3__)
820   bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
821   // NOTE: this check can fail if the shadow is concurrently mutated
822   // by other threads. But it still can be useful if you modify
823   // ContainsSameAccessFast and want to ensure that it's not completely broken.
824   // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
825   return res;
826 #else
827   return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
828 #endif
829 }
830 
831 ALWAYS_INLINE USED
832 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
833     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
834   u64 *shadow_mem = (u64*)MemToShadow(addr);
835   DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
836       " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
837       (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
838       (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
839       (uptr)shadow_mem[0], (uptr)shadow_mem[1],
840       (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
841 #if SANITIZER_DEBUG
842   if (!IsAppMem(addr)) {
843     Printf("Access to non app mem %zx\n", addr);
844     DCHECK(IsAppMem(addr));
845   }
846   if (!IsShadowMem((uptr)shadow_mem)) {
847     Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
848     DCHECK(IsShadowMem((uptr)shadow_mem));
849   }
850 #endif
851 
852   if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) {
853     // Access to .rodata section, no races here.
854     // Measurements show that it can be 10-20% of all memory accesses.
855     StatInc(thr, StatMop);
856     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
857     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
858     StatInc(thr, StatMopRodata);
859     return;
860   }
861 
862   FastState fast_state = thr->fast_state;
863   if (UNLIKELY(fast_state.GetIgnoreBit())) {
864     StatInc(thr, StatMop);
865     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
866     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
867     StatInc(thr, StatMopIgnored);
868     return;
869   }
870 
871   Shadow cur(fast_state);
872   cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
873   cur.SetWrite(kAccessIsWrite);
874   cur.SetAtomic(kIsAtomic);
875 
876   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
877       thr->fast_synch_epoch, kAccessIsWrite))) {
878     StatInc(thr, StatMop);
879     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
880     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
881     StatInc(thr, StatMopSame);
882     return;
883   }
884 
885   if (kCollectHistory) {
886     fast_state.IncrementEpoch();
887     thr->fast_state = fast_state;
888     TraceAddEvent(thr, fast_state, EventTypeMop, pc);
889     cur.IncrementEpoch();
890   }
891 
892   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
893       shadow_mem, cur);
894 }
895 
896 // Called by MemoryAccessRange in tsan_rtl_thread.cpp
897 ALWAYS_INLINE USED
898 void MemoryAccessImpl(ThreadState *thr, uptr addr,
899     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
900     u64 *shadow_mem, Shadow cur) {
901   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
902       thr->fast_synch_epoch, kAccessIsWrite))) {
903     StatInc(thr, StatMop);
904     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
905     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
906     StatInc(thr, StatMopSame);
907     return;
908   }
909 
910   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
911       shadow_mem, cur);
912 }
913 
914 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
915                            u64 val) {
916   (void)thr;
917   (void)pc;
918   if (size == 0)
919     return;
920   // FIXME: fix me.
921   uptr offset = addr % kShadowCell;
922   if (offset) {
923     offset = kShadowCell - offset;
924     if (size <= offset)
925       return;
926     addr += offset;
927     size -= offset;
928   }
929   DCHECK_EQ(addr % 8, 0);
930   // If a user passes some insane arguments (memset(0)),
931   // let it just crash as usual.
932   if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
933     return;
934   // Don't want to touch lots of shadow memory.
935   // If a program maps 10MB stack, there is no need reset the whole range.
936   size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
937   // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
938   if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
939     u64 *p = (u64*)MemToShadow(addr);
940     CHECK(IsShadowMem((uptr)p));
941     CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
942     // FIXME: may overwrite a part outside the region
943     for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
944       p[i++] = val;
945       for (uptr j = 1; j < kShadowCnt; j++)
946         p[i++] = 0;
947     }
948   } else {
949     // The region is big, reset only beginning and end.
950     const uptr kPageSize = GetPageSizeCached();
951     u64 *begin = (u64*)MemToShadow(addr);
952     u64 *end = begin + size / kShadowCell * kShadowCnt;
953     u64 *p = begin;
954     // Set at least first kPageSize/2 to page boundary.
955     while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
956       *p++ = val;
957       for (uptr j = 1; j < kShadowCnt; j++)
958         *p++ = 0;
959     }
960     // Reset middle part.
961     u64 *p1 = p;
962     p = RoundDown(end, kPageSize);
963     UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
964     if (!MmapFixedSuperNoReserve((uptr)p1, (uptr)p - (uptr)p1))
965       Die();
966     // Set the ending.
967     while (p < end) {
968       *p++ = val;
969       for (uptr j = 1; j < kShadowCnt; j++)
970         *p++ = 0;
971     }
972   }
973 }
974 
975 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
976   MemoryRangeSet(thr, pc, addr, size, 0);
977 }
978 
979 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
980   // Processing more than 1k (4k of shadow) is expensive,
981   // can cause excessive memory consumption (user does not necessary touch
982   // the whole range) and most likely unnecessary.
983   if (size > 1024)
984     size = 1024;
985   CHECK_EQ(thr->is_freeing, false);
986   thr->is_freeing = true;
987   MemoryAccessRange(thr, pc, addr, size, true);
988   thr->is_freeing = false;
989   if (kCollectHistory) {
990     thr->fast_state.IncrementEpoch();
991     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
992   }
993   Shadow s(thr->fast_state);
994   s.ClearIgnoreBit();
995   s.MarkAsFreed();
996   s.SetWrite(true);
997   s.SetAddr0AndSizeLog(0, 3);
998   MemoryRangeSet(thr, pc, addr, size, s.raw());
999 }
1000 
1001 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
1002   if (kCollectHistory) {
1003     thr->fast_state.IncrementEpoch();
1004     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
1005   }
1006   Shadow s(thr->fast_state);
1007   s.ClearIgnoreBit();
1008   s.SetWrite(true);
1009   s.SetAddr0AndSizeLog(0, 3);
1010   MemoryRangeSet(thr, pc, addr, size, s.raw());
1011 }
1012 
1013 void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
1014                                          uptr size) {
1015   if (thr->ignore_reads_and_writes == 0)
1016     MemoryRangeImitateWrite(thr, pc, addr, size);
1017   else
1018     MemoryResetRange(thr, pc, addr, size);
1019 }
1020 
1021 ALWAYS_INLINE USED
1022 void FuncEntry(ThreadState *thr, uptr pc) {
1023   StatInc(thr, StatFuncEnter);
1024   DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
1025   if (kCollectHistory) {
1026     thr->fast_state.IncrementEpoch();
1027     TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
1028   }
1029 
1030   // Shadow stack maintenance can be replaced with
1031   // stack unwinding during trace switch (which presumably must be faster).
1032   DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
1033 #if !SANITIZER_GO
1034   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
1035 #else
1036   if (thr->shadow_stack_pos == thr->shadow_stack_end)
1037     GrowShadowStack(thr);
1038 #endif
1039   thr->shadow_stack_pos[0] = pc;
1040   thr->shadow_stack_pos++;
1041 }
1042 
1043 ALWAYS_INLINE USED
1044 void FuncExit(ThreadState *thr) {
1045   StatInc(thr, StatFuncExit);
1046   DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
1047   if (kCollectHistory) {
1048     thr->fast_state.IncrementEpoch();
1049     TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
1050   }
1051 
1052   DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
1053 #if !SANITIZER_GO
1054   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
1055 #endif
1056   thr->shadow_stack_pos--;
1057 }
1058 
1059 void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) {
1060   DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
1061   thr->ignore_reads_and_writes++;
1062   CHECK_GT(thr->ignore_reads_and_writes, 0);
1063   thr->fast_state.SetIgnoreBit();
1064 #if !SANITIZER_GO
1065   if (save_stack && !ctx->after_multithreaded_fork)
1066     thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
1067 #endif
1068 }
1069 
1070 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
1071   DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
1072   CHECK_GT(thr->ignore_reads_and_writes, 0);
1073   thr->ignore_reads_and_writes--;
1074   if (thr->ignore_reads_and_writes == 0) {
1075     thr->fast_state.ClearIgnoreBit();
1076 #if !SANITIZER_GO
1077     thr->mop_ignore_set.Reset();
1078 #endif
1079   }
1080 }
1081 
1082 #if !SANITIZER_GO
1083 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
1084 uptr __tsan_testonly_shadow_stack_current_size() {
1085   ThreadState *thr = cur_thread();
1086   return thr->shadow_stack_pos - thr->shadow_stack;
1087 }
1088 #endif
1089 
1090 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) {
1091   DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
1092   thr->ignore_sync++;
1093   CHECK_GT(thr->ignore_sync, 0);
1094 #if !SANITIZER_GO
1095   if (save_stack && !ctx->after_multithreaded_fork)
1096     thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
1097 #endif
1098 }
1099 
1100 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
1101   DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
1102   CHECK_GT(thr->ignore_sync, 0);
1103   thr->ignore_sync--;
1104 #if !SANITIZER_GO
1105   if (thr->ignore_sync == 0)
1106     thr->sync_ignore_set.Reset();
1107 #endif
1108 }
1109 
1110 bool MD5Hash::operator==(const MD5Hash &other) const {
1111   return hash[0] == other.hash[0] && hash[1] == other.hash[1];
1112 }
1113 
1114 #if SANITIZER_DEBUG
1115 void build_consistency_debug() {}
1116 #else
1117 void build_consistency_release() {}
1118 #endif
1119 
1120 #if TSAN_COLLECT_STATS
1121 void build_consistency_stats() {}
1122 #else
1123 void build_consistency_nostats() {}
1124 #endif
1125 
1126 }  // namespace __tsan
1127 
1128 #if !SANITIZER_GO
1129 // Must be included in this file to make sure everything is inlined.
1130 #include "tsan_interface_inl.h"
1131 #endif
1132