xref: /freebsd/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_mman.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===-- tsan_mman.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "sanitizer_common/sanitizer_allocator_checks.h"
13 #include "sanitizer_common/sanitizer_allocator_interface.h"
14 #include "sanitizer_common/sanitizer_allocator_report.h"
15 #include "sanitizer_common/sanitizer_common.h"
16 #include "sanitizer_common/sanitizer_errno.h"
17 #include "sanitizer_common/sanitizer_placement_new.h"
18 #include "tsan_mman.h"
19 #include "tsan_rtl.h"
20 #include "tsan_report.h"
21 #include "tsan_flags.h"
22 
23 // May be overriden by front-end.
24 SANITIZER_WEAK_DEFAULT_IMPL
25 void __sanitizer_malloc_hook(void *ptr, uptr size) {
26   (void)ptr;
27   (void)size;
28 }
29 
30 SANITIZER_WEAK_DEFAULT_IMPL
31 void __sanitizer_free_hook(void *ptr) {
32   (void)ptr;
33 }
34 
35 namespace __tsan {
36 
37 struct MapUnmapCallback {
38   void OnMap(uptr p, uptr size) const { }
39   void OnUnmap(uptr p, uptr size) const {
40     // We are about to unmap a chunk of user memory.
41     // Mark the corresponding shadow memory as not needed.
42     DontNeedShadowFor(p, size);
43     // Mark the corresponding meta shadow memory as not needed.
44     // Note the block does not contain any meta info at this point
45     // (this happens after free).
46     const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
47     const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
48     // Block came from LargeMmapAllocator, so must be large.
49     // We rely on this in the calculations below.
50     CHECK_GE(size, 2 * kPageSize);
51     uptr diff = RoundUp(p, kPageSize) - p;
52     if (diff != 0) {
53       p += diff;
54       size -= diff;
55     }
56     diff = p + size - RoundDown(p + size, kPageSize);
57     if (diff != 0)
58       size -= diff;
59     uptr p_meta = (uptr)MemToMeta(p);
60     ReleaseMemoryPagesToOS(p_meta, p_meta + size / kMetaRatio);
61   }
62 };
63 
64 static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
65 Allocator *allocator() {
66   return reinterpret_cast<Allocator*>(&allocator_placeholder);
67 }
68 
69 struct GlobalProc {
70   Mutex mtx;
71   Processor *proc;
72 
73   GlobalProc() : mtx(MutexTypeGlobalProc), proc(ProcCreate()) {}
74 };
75 
76 static char global_proc_placeholder[sizeof(GlobalProc)] ALIGNED(64);
77 GlobalProc *global_proc() {
78   return reinterpret_cast<GlobalProc*>(&global_proc_placeholder);
79 }
80 
81 ScopedGlobalProcessor::ScopedGlobalProcessor() {
82   GlobalProc *gp = global_proc();
83   ThreadState *thr = cur_thread();
84   if (thr->proc())
85     return;
86   // If we don't have a proc, use the global one.
87   // There are currently only two known case where this path is triggered:
88   //   __interceptor_free
89   //   __nptl_deallocate_tsd
90   //   start_thread
91   //   clone
92   // and:
93   //   ResetRange
94   //   __interceptor_munmap
95   //   __deallocate_stack
96   //   start_thread
97   //   clone
98   // Ideally, we destroy thread state (and unwire proc) when a thread actually
99   // exits (i.e. when we join/wait it). Then we would not need the global proc
100   gp->mtx.Lock();
101   ProcWire(gp->proc, thr);
102 }
103 
104 ScopedGlobalProcessor::~ScopedGlobalProcessor() {
105   GlobalProc *gp = global_proc();
106   ThreadState *thr = cur_thread();
107   if (thr->proc() != gp->proc)
108     return;
109   ProcUnwire(gp->proc, thr);
110   gp->mtx.Unlock();
111 }
112 
113 static constexpr uptr kMaxAllowedMallocSize = 1ull << 40;
114 static uptr max_user_defined_malloc_size;
115 
116 void InitializeAllocator() {
117   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
118   allocator()->Init(common_flags()->allocator_release_to_os_interval_ms);
119   max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
120                                      ? common_flags()->max_allocation_size_mb
121                                            << 20
122                                      : kMaxAllowedMallocSize;
123 }
124 
125 void InitializeAllocatorLate() {
126   new(global_proc()) GlobalProc();
127 }
128 
129 void AllocatorProcStart(Processor *proc) {
130   allocator()->InitCache(&proc->alloc_cache);
131   internal_allocator()->InitCache(&proc->internal_alloc_cache);
132 }
133 
134 void AllocatorProcFinish(Processor *proc) {
135   allocator()->DestroyCache(&proc->alloc_cache);
136   internal_allocator()->DestroyCache(&proc->internal_alloc_cache);
137 }
138 
139 void AllocatorPrintStats() {
140   allocator()->PrintStats();
141 }
142 
143 static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
144   if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
145       !ShouldReport(thr, ReportTypeSignalUnsafe))
146     return;
147   VarSizeStackTrace stack;
148   ObtainCurrentStack(thr, pc, &stack);
149   if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
150     return;
151   ThreadRegistryLock l(ctx->thread_registry);
152   ScopedReport rep(ReportTypeSignalUnsafe);
153   rep.AddStack(stack, true);
154   OutputReport(thr, rep);
155 }
156 
157 
158 void *user_alloc_internal(ThreadState *thr, uptr pc, uptr sz, uptr align,
159                           bool signal) {
160   if (sz >= kMaxAllowedMallocSize || align >= kMaxAllowedMallocSize ||
161       sz > max_user_defined_malloc_size) {
162     if (AllocatorMayReturnNull())
163       return nullptr;
164     uptr malloc_limit =
165         Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
166     GET_STACK_TRACE_FATAL(thr, pc);
167     ReportAllocationSizeTooBig(sz, malloc_limit, &stack);
168   }
169   void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align);
170   if (UNLIKELY(!p)) {
171     SetAllocatorOutOfMemory();
172     if (AllocatorMayReturnNull())
173       return nullptr;
174     GET_STACK_TRACE_FATAL(thr, pc);
175     ReportOutOfMemory(sz, &stack);
176   }
177   if (ctx && ctx->initialized)
178     OnUserAlloc(thr, pc, (uptr)p, sz, true);
179   if (signal)
180     SignalUnsafeCall(thr, pc);
181   return p;
182 }
183 
184 void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
185   ScopedGlobalProcessor sgp;
186   if (ctx && ctx->initialized)
187     OnUserFree(thr, pc, (uptr)p, true);
188   allocator()->Deallocate(&thr->proc()->alloc_cache, p);
189   if (signal)
190     SignalUnsafeCall(thr, pc);
191 }
192 
193 void *user_alloc(ThreadState *thr, uptr pc, uptr sz) {
194   return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, kDefaultAlignment));
195 }
196 
197 void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
198   if (UNLIKELY(CheckForCallocOverflow(size, n))) {
199     if (AllocatorMayReturnNull())
200       return SetErrnoOnNull(nullptr);
201     GET_STACK_TRACE_FATAL(thr, pc);
202     ReportCallocOverflow(n, size, &stack);
203   }
204   void *p = user_alloc_internal(thr, pc, n * size);
205   if (p)
206     internal_memset(p, 0, n * size);
207   return SetErrnoOnNull(p);
208 }
209 
210 void *user_reallocarray(ThreadState *thr, uptr pc, void *p, uptr size, uptr n) {
211   if (UNLIKELY(CheckForCallocOverflow(size, n))) {
212     if (AllocatorMayReturnNull())
213       return SetErrnoOnNull(nullptr);
214     GET_STACK_TRACE_FATAL(thr, pc);
215     ReportReallocArrayOverflow(size, n, &stack);
216   }
217   return user_realloc(thr, pc, p, size * n);
218 }
219 
220 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
221   DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
222   ctx->metamap.AllocBlock(thr, pc, p, sz);
223   if (write && thr->ignore_reads_and_writes == 0)
224     MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
225   else
226     MemoryResetRange(thr, pc, (uptr)p, sz);
227 }
228 
229 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
230   CHECK_NE(p, (void*)0);
231   uptr sz = ctx->metamap.FreeBlock(thr->proc(), p);
232   DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
233   if (write && thr->ignore_reads_and_writes == 0)
234     MemoryRangeFreed(thr, pc, (uptr)p, sz);
235 }
236 
237 void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
238   // FIXME: Handle "shrinking" more efficiently,
239   // it seems that some software actually does this.
240   if (!p)
241     return SetErrnoOnNull(user_alloc_internal(thr, pc, sz));
242   if (!sz) {
243     user_free(thr, pc, p);
244     return nullptr;
245   }
246   void *new_p = user_alloc_internal(thr, pc, sz);
247   if (new_p) {
248     uptr old_sz = user_alloc_usable_size(p);
249     internal_memcpy(new_p, p, min(old_sz, sz));
250     user_free(thr, pc, p);
251   }
252   return SetErrnoOnNull(new_p);
253 }
254 
255 void *user_memalign(ThreadState *thr, uptr pc, uptr align, uptr sz) {
256   if (UNLIKELY(!IsPowerOfTwo(align))) {
257     errno = errno_EINVAL;
258     if (AllocatorMayReturnNull())
259       return nullptr;
260     GET_STACK_TRACE_FATAL(thr, pc);
261     ReportInvalidAllocationAlignment(align, &stack);
262   }
263   return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
264 }
265 
266 int user_posix_memalign(ThreadState *thr, uptr pc, void **memptr, uptr align,
267                         uptr sz) {
268   if (UNLIKELY(!CheckPosixMemalignAlignment(align))) {
269     if (AllocatorMayReturnNull())
270       return errno_EINVAL;
271     GET_STACK_TRACE_FATAL(thr, pc);
272     ReportInvalidPosixMemalignAlignment(align, &stack);
273   }
274   void *ptr = user_alloc_internal(thr, pc, sz, align);
275   if (UNLIKELY(!ptr))
276     // OOM error is already taken care of by user_alloc_internal.
277     return errno_ENOMEM;
278   CHECK(IsAligned((uptr)ptr, align));
279   *memptr = ptr;
280   return 0;
281 }
282 
283 void *user_aligned_alloc(ThreadState *thr, uptr pc, uptr align, uptr sz) {
284   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(align, sz))) {
285     errno = errno_EINVAL;
286     if (AllocatorMayReturnNull())
287       return nullptr;
288     GET_STACK_TRACE_FATAL(thr, pc);
289     ReportInvalidAlignedAllocAlignment(sz, align, &stack);
290   }
291   return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
292 }
293 
294 void *user_valloc(ThreadState *thr, uptr pc, uptr sz) {
295   return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, GetPageSizeCached()));
296 }
297 
298 void *user_pvalloc(ThreadState *thr, uptr pc, uptr sz) {
299   uptr PageSize = GetPageSizeCached();
300   if (UNLIKELY(CheckForPvallocOverflow(sz, PageSize))) {
301     errno = errno_ENOMEM;
302     if (AllocatorMayReturnNull())
303       return nullptr;
304     GET_STACK_TRACE_FATAL(thr, pc);
305     ReportPvallocOverflow(sz, &stack);
306   }
307   // pvalloc(0) should allocate one page.
308   sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
309   return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, PageSize));
310 }
311 
312 uptr user_alloc_usable_size(const void *p) {
313   if (p == 0)
314     return 0;
315   MBlock *b = ctx->metamap.GetBlock((uptr)p);
316   if (!b)
317     return 0;  // Not a valid pointer.
318   if (b->siz == 0)
319     return 1;  // Zero-sized allocations are actually 1 byte.
320   return b->siz;
321 }
322 
323 void invoke_malloc_hook(void *ptr, uptr size) {
324   ThreadState *thr = cur_thread();
325   if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
326     return;
327   __sanitizer_malloc_hook(ptr, size);
328   RunMallocHooks(ptr, size);
329 }
330 
331 void invoke_free_hook(void *ptr) {
332   ThreadState *thr = cur_thread();
333   if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
334     return;
335   __sanitizer_free_hook(ptr);
336   RunFreeHooks(ptr);
337 }
338 
339 void *internal_alloc(MBlockType typ, uptr sz) {
340   ThreadState *thr = cur_thread();
341   if (thr->nomalloc) {
342     thr->nomalloc = 0;  // CHECK calls internal_malloc().
343     CHECK(0);
344   }
345   return InternalAlloc(sz, &thr->proc()->internal_alloc_cache);
346 }
347 
348 void internal_free(void *p) {
349   ThreadState *thr = cur_thread();
350   if (thr->nomalloc) {
351     thr->nomalloc = 0;  // CHECK calls internal_malloc().
352     CHECK(0);
353   }
354   InternalFree(p, &thr->proc()->internal_alloc_cache);
355 }
356 
357 }  // namespace __tsan
358 
359 using namespace __tsan;
360 
361 extern "C" {
362 uptr __sanitizer_get_current_allocated_bytes() {
363   uptr stats[AllocatorStatCount];
364   allocator()->GetStats(stats);
365   return stats[AllocatorStatAllocated];
366 }
367 
368 uptr __sanitizer_get_heap_size() {
369   uptr stats[AllocatorStatCount];
370   allocator()->GetStats(stats);
371   return stats[AllocatorStatMapped];
372 }
373 
374 uptr __sanitizer_get_free_bytes() {
375   return 1;
376 }
377 
378 uptr __sanitizer_get_unmapped_bytes() {
379   return 1;
380 }
381 
382 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
383   return size;
384 }
385 
386 int __sanitizer_get_ownership(const void *p) {
387   return allocator()->GetBlockBegin(p) != 0;
388 }
389 
390 uptr __sanitizer_get_allocated_size(const void *p) {
391   return user_alloc_usable_size(p);
392 }
393 
394 void __tsan_on_thread_idle() {
395   ThreadState *thr = cur_thread();
396   thr->clock.ResetCached(&thr->proc()->clock_cache);
397   thr->last_sleep_clock.ResetCached(&thr->proc()->clock_cache);
398   allocator()->SwallowCache(&thr->proc()->alloc_cache);
399   internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache);
400   ctx->metamap.OnProcIdle(thr->proc());
401 }
402 }  // extern "C"
403