xref: /freebsd/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_interface_atomic.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===-- tsan_interface_atomic.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 // ThreadSanitizer atomic operations are based on C++11/C1x standards.
14 // For background see C++11 standard.  A slightly older, publicly
15 // available draft of the standard (not entirely up-to-date, but close enough
16 // for casual browsing) is available here:
17 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
18 // The following page contains more background information:
19 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
20 
21 #include "sanitizer_common/sanitizer_placement_new.h"
22 #include "sanitizer_common/sanitizer_stacktrace.h"
23 #include "sanitizer_common/sanitizer_mutex.h"
24 #include "tsan_flags.h"
25 #include "tsan_interface.h"
26 #include "tsan_rtl.h"
27 
28 using namespace __tsan;
29 
30 #if !SANITIZER_GO && __TSAN_HAS_INT128
31 // Protects emulation of 128-bit atomic operations.
32 static StaticSpinMutex mutex128;
33 #endif
34 
35 static bool IsLoadOrder(morder mo) {
36   return mo == mo_relaxed || mo == mo_consume
37       || mo == mo_acquire || mo == mo_seq_cst;
38 }
39 
40 static bool IsStoreOrder(morder mo) {
41   return mo == mo_relaxed || mo == mo_release || mo == mo_seq_cst;
42 }
43 
44 static bool IsReleaseOrder(morder mo) {
45   return mo == mo_release || mo == mo_acq_rel || mo == mo_seq_cst;
46 }
47 
48 static bool IsAcquireOrder(morder mo) {
49   return mo == mo_consume || mo == mo_acquire
50       || mo == mo_acq_rel || mo == mo_seq_cst;
51 }
52 
53 static bool IsAcqRelOrder(morder mo) {
54   return mo == mo_acq_rel || mo == mo_seq_cst;
55 }
56 
57 template<typename T> T func_xchg(volatile T *v, T op) {
58   T res = __sync_lock_test_and_set(v, op);
59   // __sync_lock_test_and_set does not contain full barrier.
60   __sync_synchronize();
61   return res;
62 }
63 
64 template<typename T> T func_add(volatile T *v, T op) {
65   return __sync_fetch_and_add(v, op);
66 }
67 
68 template<typename T> T func_sub(volatile T *v, T op) {
69   return __sync_fetch_and_sub(v, op);
70 }
71 
72 template<typename T> T func_and(volatile T *v, T op) {
73   return __sync_fetch_and_and(v, op);
74 }
75 
76 template<typename T> T func_or(volatile T *v, T op) {
77   return __sync_fetch_and_or(v, op);
78 }
79 
80 template<typename T> T func_xor(volatile T *v, T op) {
81   return __sync_fetch_and_xor(v, op);
82 }
83 
84 template<typename T> T func_nand(volatile T *v, T op) {
85   // clang does not support __sync_fetch_and_nand.
86   T cmp = *v;
87   for (;;) {
88     T newv = ~(cmp & op);
89     T cur = __sync_val_compare_and_swap(v, cmp, newv);
90     if (cmp == cur)
91       return cmp;
92     cmp = cur;
93   }
94 }
95 
96 template<typename T> T func_cas(volatile T *v, T cmp, T xch) {
97   return __sync_val_compare_and_swap(v, cmp, xch);
98 }
99 
100 // clang does not support 128-bit atomic ops.
101 // Atomic ops are executed under tsan internal mutex,
102 // here we assume that the atomic variables are not accessed
103 // from non-instrumented code.
104 #if !defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16) && !SANITIZER_GO \
105     && __TSAN_HAS_INT128
106 a128 func_xchg(volatile a128 *v, a128 op) {
107   SpinMutexLock lock(&mutex128);
108   a128 cmp = *v;
109   *v = op;
110   return cmp;
111 }
112 
113 a128 func_add(volatile a128 *v, a128 op) {
114   SpinMutexLock lock(&mutex128);
115   a128 cmp = *v;
116   *v = cmp + op;
117   return cmp;
118 }
119 
120 a128 func_sub(volatile a128 *v, a128 op) {
121   SpinMutexLock lock(&mutex128);
122   a128 cmp = *v;
123   *v = cmp - op;
124   return cmp;
125 }
126 
127 a128 func_and(volatile a128 *v, a128 op) {
128   SpinMutexLock lock(&mutex128);
129   a128 cmp = *v;
130   *v = cmp & op;
131   return cmp;
132 }
133 
134 a128 func_or(volatile a128 *v, a128 op) {
135   SpinMutexLock lock(&mutex128);
136   a128 cmp = *v;
137   *v = cmp | op;
138   return cmp;
139 }
140 
141 a128 func_xor(volatile a128 *v, a128 op) {
142   SpinMutexLock lock(&mutex128);
143   a128 cmp = *v;
144   *v = cmp ^ op;
145   return cmp;
146 }
147 
148 a128 func_nand(volatile a128 *v, a128 op) {
149   SpinMutexLock lock(&mutex128);
150   a128 cmp = *v;
151   *v = ~(cmp & op);
152   return cmp;
153 }
154 
155 a128 func_cas(volatile a128 *v, a128 cmp, a128 xch) {
156   SpinMutexLock lock(&mutex128);
157   a128 cur = *v;
158   if (cur == cmp)
159     *v = xch;
160   return cur;
161 }
162 #endif
163 
164 template<typename T>
165 static int SizeLog() {
166   if (sizeof(T) <= 1)
167     return kSizeLog1;
168   else if (sizeof(T) <= 2)
169     return kSizeLog2;
170   else if (sizeof(T) <= 4)
171     return kSizeLog4;
172   else
173     return kSizeLog8;
174   // For 16-byte atomics we also use 8-byte memory access,
175   // this leads to false negatives only in very obscure cases.
176 }
177 
178 #if !SANITIZER_GO
179 static atomic_uint8_t *to_atomic(const volatile a8 *a) {
180   return reinterpret_cast<atomic_uint8_t *>(const_cast<a8 *>(a));
181 }
182 
183 static atomic_uint16_t *to_atomic(const volatile a16 *a) {
184   return reinterpret_cast<atomic_uint16_t *>(const_cast<a16 *>(a));
185 }
186 #endif
187 
188 static atomic_uint32_t *to_atomic(const volatile a32 *a) {
189   return reinterpret_cast<atomic_uint32_t *>(const_cast<a32 *>(a));
190 }
191 
192 static atomic_uint64_t *to_atomic(const volatile a64 *a) {
193   return reinterpret_cast<atomic_uint64_t *>(const_cast<a64 *>(a));
194 }
195 
196 static memory_order to_mo(morder mo) {
197   switch (mo) {
198   case mo_relaxed: return memory_order_relaxed;
199   case mo_consume: return memory_order_consume;
200   case mo_acquire: return memory_order_acquire;
201   case mo_release: return memory_order_release;
202   case mo_acq_rel: return memory_order_acq_rel;
203   case mo_seq_cst: return memory_order_seq_cst;
204   }
205   CHECK(0);
206   return memory_order_seq_cst;
207 }
208 
209 template<typename T>
210 static T NoTsanAtomicLoad(const volatile T *a, morder mo) {
211   return atomic_load(to_atomic(a), to_mo(mo));
212 }
213 
214 #if __TSAN_HAS_INT128 && !SANITIZER_GO
215 static a128 NoTsanAtomicLoad(const volatile a128 *a, morder mo) {
216   SpinMutexLock lock(&mutex128);
217   return *a;
218 }
219 #endif
220 
221 template<typename T>
222 static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a, morder mo) {
223   CHECK(IsLoadOrder(mo));
224   // This fast-path is critical for performance.
225   // Assume the access is atomic.
226   if (!IsAcquireOrder(mo)) {
227     MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
228     return NoTsanAtomicLoad(a, mo);
229   }
230   // Don't create sync object if it does not exist yet. For example, an atomic
231   // pointer is initialized to nullptr and then periodically acquire-loaded.
232   T v = NoTsanAtomicLoad(a, mo);
233   SyncVar *s = ctx->metamap.GetIfExistsAndLock((uptr)a, false);
234   if (s) {
235     AcquireImpl(thr, pc, &s->clock);
236     // Re-read under sync mutex because we need a consistent snapshot
237     // of the value and the clock we acquire.
238     v = NoTsanAtomicLoad(a, mo);
239     s->mtx.ReadUnlock();
240   }
241   MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
242   return v;
243 }
244 
245 template<typename T>
246 static void NoTsanAtomicStore(volatile T *a, T v, morder mo) {
247   atomic_store(to_atomic(a), v, to_mo(mo));
248 }
249 
250 #if __TSAN_HAS_INT128 && !SANITIZER_GO
251 static void NoTsanAtomicStore(volatile a128 *a, a128 v, morder mo) {
252   SpinMutexLock lock(&mutex128);
253   *a = v;
254 }
255 #endif
256 
257 template<typename T>
258 static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v,
259     morder mo) {
260   CHECK(IsStoreOrder(mo));
261   MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
262   // This fast-path is critical for performance.
263   // Assume the access is atomic.
264   // Strictly saying even relaxed store cuts off release sequence,
265   // so must reset the clock.
266   if (!IsReleaseOrder(mo)) {
267     NoTsanAtomicStore(a, v, mo);
268     return;
269   }
270   __sync_synchronize();
271   SyncVar *s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
272   thr->fast_state.IncrementEpoch();
273   // Can't increment epoch w/o writing to the trace as well.
274   TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
275   ReleaseStoreImpl(thr, pc, &s->clock);
276   NoTsanAtomicStore(a, v, mo);
277   s->mtx.Unlock();
278 }
279 
280 template<typename T, T (*F)(volatile T *v, T op)>
281 static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
282   MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
283   SyncVar *s = 0;
284   if (mo != mo_relaxed) {
285     s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
286     thr->fast_state.IncrementEpoch();
287     // Can't increment epoch w/o writing to the trace as well.
288     TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
289     if (IsAcqRelOrder(mo))
290       AcquireReleaseImpl(thr, pc, &s->clock);
291     else if (IsReleaseOrder(mo))
292       ReleaseImpl(thr, pc, &s->clock);
293     else if (IsAcquireOrder(mo))
294       AcquireImpl(thr, pc, &s->clock);
295   }
296   v = F(a, v);
297   if (s)
298     s->mtx.Unlock();
299   return v;
300 }
301 
302 template<typename T>
303 static T NoTsanAtomicExchange(volatile T *a, T v, morder mo) {
304   return func_xchg(a, v);
305 }
306 
307 template<typename T>
308 static T NoTsanAtomicFetchAdd(volatile T *a, T v, morder mo) {
309   return func_add(a, v);
310 }
311 
312 template<typename T>
313 static T NoTsanAtomicFetchSub(volatile T *a, T v, morder mo) {
314   return func_sub(a, v);
315 }
316 
317 template<typename T>
318 static T NoTsanAtomicFetchAnd(volatile T *a, T v, morder mo) {
319   return func_and(a, v);
320 }
321 
322 template<typename T>
323 static T NoTsanAtomicFetchOr(volatile T *a, T v, morder mo) {
324   return func_or(a, v);
325 }
326 
327 template<typename T>
328 static T NoTsanAtomicFetchXor(volatile T *a, T v, morder mo) {
329   return func_xor(a, v);
330 }
331 
332 template<typename T>
333 static T NoTsanAtomicFetchNand(volatile T *a, T v, morder mo) {
334   return func_nand(a, v);
335 }
336 
337 template<typename T>
338 static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v,
339     morder mo) {
340   return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo);
341 }
342 
343 template<typename T>
344 static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v,
345     morder mo) {
346   return AtomicRMW<T, func_add>(thr, pc, a, v, mo);
347 }
348 
349 template<typename T>
350 static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v,
351     morder mo) {
352   return AtomicRMW<T, func_sub>(thr, pc, a, v, mo);
353 }
354 
355 template<typename T>
356 static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v,
357     morder mo) {
358   return AtomicRMW<T, func_and>(thr, pc, a, v, mo);
359 }
360 
361 template<typename T>
362 static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v,
363     morder mo) {
364   return AtomicRMW<T, func_or>(thr, pc, a, v, mo);
365 }
366 
367 template<typename T>
368 static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v,
369     morder mo) {
370   return AtomicRMW<T, func_xor>(thr, pc, a, v, mo);
371 }
372 
373 template<typename T>
374 static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v,
375     morder mo) {
376   return AtomicRMW<T, func_nand>(thr, pc, a, v, mo);
377 }
378 
379 template<typename T>
380 static bool NoTsanAtomicCAS(volatile T *a, T *c, T v, morder mo, morder fmo) {
381   return atomic_compare_exchange_strong(to_atomic(a), c, v, to_mo(mo));
382 }
383 
384 #if __TSAN_HAS_INT128
385 static bool NoTsanAtomicCAS(volatile a128 *a, a128 *c, a128 v,
386     morder mo, morder fmo) {
387   a128 old = *c;
388   a128 cur = func_cas(a, old, v);
389   if (cur == old)
390     return true;
391   *c = cur;
392   return false;
393 }
394 #endif
395 
396 template<typename T>
397 static T NoTsanAtomicCAS(volatile T *a, T c, T v, morder mo, morder fmo) {
398   NoTsanAtomicCAS(a, &c, v, mo, fmo);
399   return c;
400 }
401 
402 template<typename T>
403 static bool AtomicCAS(ThreadState *thr, uptr pc,
404     volatile T *a, T *c, T v, morder mo, morder fmo) {
405   (void)fmo;  // Unused because llvm does not pass it yet.
406   MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
407   SyncVar *s = 0;
408   bool write_lock = mo != mo_acquire && mo != mo_consume;
409   if (mo != mo_relaxed) {
410     s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, write_lock);
411     thr->fast_state.IncrementEpoch();
412     // Can't increment epoch w/o writing to the trace as well.
413     TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
414     if (IsAcqRelOrder(mo))
415       AcquireReleaseImpl(thr, pc, &s->clock);
416     else if (IsReleaseOrder(mo))
417       ReleaseImpl(thr, pc, &s->clock);
418     else if (IsAcquireOrder(mo))
419       AcquireImpl(thr, pc, &s->clock);
420   }
421   T cc = *c;
422   T pr = func_cas(a, cc, v);
423   if (s) {
424     if (write_lock)
425       s->mtx.Unlock();
426     else
427       s->mtx.ReadUnlock();
428   }
429   if (pr == cc)
430     return true;
431   *c = pr;
432   return false;
433 }
434 
435 template<typename T>
436 static T AtomicCAS(ThreadState *thr, uptr pc,
437     volatile T *a, T c, T v, morder mo, morder fmo) {
438   AtomicCAS(thr, pc, a, &c, v, mo, fmo);
439   return c;
440 }
441 
442 #if !SANITIZER_GO
443 static void NoTsanAtomicFence(morder mo) {
444   __sync_synchronize();
445 }
446 
447 static void AtomicFence(ThreadState *thr, uptr pc, morder mo) {
448   // FIXME(dvyukov): not implemented.
449   __sync_synchronize();
450 }
451 #endif
452 
453 // Interface functions follow.
454 #if !SANITIZER_GO
455 
456 // C/C++
457 
458 static morder convert_morder(morder mo) {
459   if (flags()->force_seq_cst_atomics)
460     return (morder)mo_seq_cst;
461 
462   // Filter out additional memory order flags:
463   // MEMMODEL_SYNC        = 1 << 15
464   // __ATOMIC_HLE_ACQUIRE = 1 << 16
465   // __ATOMIC_HLE_RELEASE = 1 << 17
466   //
467   // HLE is an optimization, and we pretend that elision always fails.
468   // MEMMODEL_SYNC is used when lowering __sync_ atomics,
469   // since we use __sync_ atomics for actual atomic operations,
470   // we can safely ignore it as well. It also subtly affects semantics,
471   // but we don't model the difference.
472   return (morder)(mo & 0x7fff);
473 }
474 
475 #define SCOPED_ATOMIC(func, ...) \
476     ThreadState *const thr = cur_thread(); \
477     if (UNLIKELY(thr->ignore_sync || thr->ignore_interceptors)) { \
478       ProcessPendingSignals(thr); \
479       return NoTsanAtomic##func(__VA_ARGS__); \
480     } \
481     const uptr callpc = (uptr)__builtin_return_address(0); \
482     uptr pc = StackTrace::GetCurrentPc(); \
483     mo = convert_morder(mo); \
484     AtomicStatInc(thr, sizeof(*a), mo, StatAtomic##func); \
485     ScopedAtomic sa(thr, callpc, a, mo, __func__); \
486     return Atomic##func(thr, pc, __VA_ARGS__); \
487 /**/
488 
489 class ScopedAtomic {
490  public:
491   ScopedAtomic(ThreadState *thr, uptr pc, const volatile void *a,
492                morder mo, const char *func)
493       : thr_(thr) {
494     FuncEntry(thr_, pc);
495     DPrintf("#%d: %s(%p, %d)\n", thr_->tid, func, a, mo);
496   }
497   ~ScopedAtomic() {
498     ProcessPendingSignals(thr_);
499     FuncExit(thr_);
500   }
501  private:
502   ThreadState *thr_;
503 };
504 
505 static void AtomicStatInc(ThreadState *thr, uptr size, morder mo, StatType t) {
506   StatInc(thr, StatAtomic);
507   StatInc(thr, t);
508   StatInc(thr, size == 1 ? StatAtomic1
509              : size == 2 ? StatAtomic2
510              : size == 4 ? StatAtomic4
511              : size == 8 ? StatAtomic8
512              :             StatAtomic16);
513   StatInc(thr, mo == mo_relaxed ? StatAtomicRelaxed
514              : mo == mo_consume ? StatAtomicConsume
515              : mo == mo_acquire ? StatAtomicAcquire
516              : mo == mo_release ? StatAtomicRelease
517              : mo == mo_acq_rel ? StatAtomicAcq_Rel
518              :                    StatAtomicSeq_Cst);
519 }
520 
521 extern "C" {
522 SANITIZER_INTERFACE_ATTRIBUTE
523 a8 __tsan_atomic8_load(const volatile a8 *a, morder mo) {
524   SCOPED_ATOMIC(Load, a, mo);
525 }
526 
527 SANITIZER_INTERFACE_ATTRIBUTE
528 a16 __tsan_atomic16_load(const volatile a16 *a, morder mo) {
529   SCOPED_ATOMIC(Load, a, mo);
530 }
531 
532 SANITIZER_INTERFACE_ATTRIBUTE
533 a32 __tsan_atomic32_load(const volatile a32 *a, morder mo) {
534   SCOPED_ATOMIC(Load, a, mo);
535 }
536 
537 SANITIZER_INTERFACE_ATTRIBUTE
538 a64 __tsan_atomic64_load(const volatile a64 *a, morder mo) {
539   SCOPED_ATOMIC(Load, a, mo);
540 }
541 
542 #if __TSAN_HAS_INT128
543 SANITIZER_INTERFACE_ATTRIBUTE
544 a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) {
545   SCOPED_ATOMIC(Load, a, mo);
546 }
547 #endif
548 
549 SANITIZER_INTERFACE_ATTRIBUTE
550 void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) {
551   SCOPED_ATOMIC(Store, a, v, mo);
552 }
553 
554 SANITIZER_INTERFACE_ATTRIBUTE
555 void __tsan_atomic16_store(volatile a16 *a, a16 v, morder mo) {
556   SCOPED_ATOMIC(Store, a, v, mo);
557 }
558 
559 SANITIZER_INTERFACE_ATTRIBUTE
560 void __tsan_atomic32_store(volatile a32 *a, a32 v, morder mo) {
561   SCOPED_ATOMIC(Store, a, v, mo);
562 }
563 
564 SANITIZER_INTERFACE_ATTRIBUTE
565 void __tsan_atomic64_store(volatile a64 *a, a64 v, morder mo) {
566   SCOPED_ATOMIC(Store, a, v, mo);
567 }
568 
569 #if __TSAN_HAS_INT128
570 SANITIZER_INTERFACE_ATTRIBUTE
571 void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) {
572   SCOPED_ATOMIC(Store, a, v, mo);
573 }
574 #endif
575 
576 SANITIZER_INTERFACE_ATTRIBUTE
577 a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) {
578   SCOPED_ATOMIC(Exchange, a, v, mo);
579 }
580 
581 SANITIZER_INTERFACE_ATTRIBUTE
582 a16 __tsan_atomic16_exchange(volatile a16 *a, a16 v, morder mo) {
583   SCOPED_ATOMIC(Exchange, a, v, mo);
584 }
585 
586 SANITIZER_INTERFACE_ATTRIBUTE
587 a32 __tsan_atomic32_exchange(volatile a32 *a, a32 v, morder mo) {
588   SCOPED_ATOMIC(Exchange, a, v, mo);
589 }
590 
591 SANITIZER_INTERFACE_ATTRIBUTE
592 a64 __tsan_atomic64_exchange(volatile a64 *a, a64 v, morder mo) {
593   SCOPED_ATOMIC(Exchange, a, v, mo);
594 }
595 
596 #if __TSAN_HAS_INT128
597 SANITIZER_INTERFACE_ATTRIBUTE
598 a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) {
599   SCOPED_ATOMIC(Exchange, a, v, mo);
600 }
601 #endif
602 
603 SANITIZER_INTERFACE_ATTRIBUTE
604 a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) {
605   SCOPED_ATOMIC(FetchAdd, a, v, mo);
606 }
607 
608 SANITIZER_INTERFACE_ATTRIBUTE
609 a16 __tsan_atomic16_fetch_add(volatile a16 *a, a16 v, morder mo) {
610   SCOPED_ATOMIC(FetchAdd, a, v, mo);
611 }
612 
613 SANITIZER_INTERFACE_ATTRIBUTE
614 a32 __tsan_atomic32_fetch_add(volatile a32 *a, a32 v, morder mo) {
615   SCOPED_ATOMIC(FetchAdd, a, v, mo);
616 }
617 
618 SANITIZER_INTERFACE_ATTRIBUTE
619 a64 __tsan_atomic64_fetch_add(volatile a64 *a, a64 v, morder mo) {
620   SCOPED_ATOMIC(FetchAdd, a, v, mo);
621 }
622 
623 #if __TSAN_HAS_INT128
624 SANITIZER_INTERFACE_ATTRIBUTE
625 a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) {
626   SCOPED_ATOMIC(FetchAdd, a, v, mo);
627 }
628 #endif
629 
630 SANITIZER_INTERFACE_ATTRIBUTE
631 a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) {
632   SCOPED_ATOMIC(FetchSub, a, v, mo);
633 }
634 
635 SANITIZER_INTERFACE_ATTRIBUTE
636 a16 __tsan_atomic16_fetch_sub(volatile a16 *a, a16 v, morder mo) {
637   SCOPED_ATOMIC(FetchSub, a, v, mo);
638 }
639 
640 SANITIZER_INTERFACE_ATTRIBUTE
641 a32 __tsan_atomic32_fetch_sub(volatile a32 *a, a32 v, morder mo) {
642   SCOPED_ATOMIC(FetchSub, a, v, mo);
643 }
644 
645 SANITIZER_INTERFACE_ATTRIBUTE
646 a64 __tsan_atomic64_fetch_sub(volatile a64 *a, a64 v, morder mo) {
647   SCOPED_ATOMIC(FetchSub, a, v, mo);
648 }
649 
650 #if __TSAN_HAS_INT128
651 SANITIZER_INTERFACE_ATTRIBUTE
652 a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) {
653   SCOPED_ATOMIC(FetchSub, a, v, mo);
654 }
655 #endif
656 
657 SANITIZER_INTERFACE_ATTRIBUTE
658 a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) {
659   SCOPED_ATOMIC(FetchAnd, a, v, mo);
660 }
661 
662 SANITIZER_INTERFACE_ATTRIBUTE
663 a16 __tsan_atomic16_fetch_and(volatile a16 *a, a16 v, morder mo) {
664   SCOPED_ATOMIC(FetchAnd, a, v, mo);
665 }
666 
667 SANITIZER_INTERFACE_ATTRIBUTE
668 a32 __tsan_atomic32_fetch_and(volatile a32 *a, a32 v, morder mo) {
669   SCOPED_ATOMIC(FetchAnd, a, v, mo);
670 }
671 
672 SANITIZER_INTERFACE_ATTRIBUTE
673 a64 __tsan_atomic64_fetch_and(volatile a64 *a, a64 v, morder mo) {
674   SCOPED_ATOMIC(FetchAnd, a, v, mo);
675 }
676 
677 #if __TSAN_HAS_INT128
678 SANITIZER_INTERFACE_ATTRIBUTE
679 a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) {
680   SCOPED_ATOMIC(FetchAnd, a, v, mo);
681 }
682 #endif
683 
684 SANITIZER_INTERFACE_ATTRIBUTE
685 a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) {
686   SCOPED_ATOMIC(FetchOr, a, v, mo);
687 }
688 
689 SANITIZER_INTERFACE_ATTRIBUTE
690 a16 __tsan_atomic16_fetch_or(volatile a16 *a, a16 v, morder mo) {
691   SCOPED_ATOMIC(FetchOr, a, v, mo);
692 }
693 
694 SANITIZER_INTERFACE_ATTRIBUTE
695 a32 __tsan_atomic32_fetch_or(volatile a32 *a, a32 v, morder mo) {
696   SCOPED_ATOMIC(FetchOr, a, v, mo);
697 }
698 
699 SANITIZER_INTERFACE_ATTRIBUTE
700 a64 __tsan_atomic64_fetch_or(volatile a64 *a, a64 v, morder mo) {
701   SCOPED_ATOMIC(FetchOr, a, v, mo);
702 }
703 
704 #if __TSAN_HAS_INT128
705 SANITIZER_INTERFACE_ATTRIBUTE
706 a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) {
707   SCOPED_ATOMIC(FetchOr, a, v, mo);
708 }
709 #endif
710 
711 SANITIZER_INTERFACE_ATTRIBUTE
712 a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) {
713   SCOPED_ATOMIC(FetchXor, a, v, mo);
714 }
715 
716 SANITIZER_INTERFACE_ATTRIBUTE
717 a16 __tsan_atomic16_fetch_xor(volatile a16 *a, a16 v, morder mo) {
718   SCOPED_ATOMIC(FetchXor, a, v, mo);
719 }
720 
721 SANITIZER_INTERFACE_ATTRIBUTE
722 a32 __tsan_atomic32_fetch_xor(volatile a32 *a, a32 v, morder mo) {
723   SCOPED_ATOMIC(FetchXor, a, v, mo);
724 }
725 
726 SANITIZER_INTERFACE_ATTRIBUTE
727 a64 __tsan_atomic64_fetch_xor(volatile a64 *a, a64 v, morder mo) {
728   SCOPED_ATOMIC(FetchXor, a, v, mo);
729 }
730 
731 #if __TSAN_HAS_INT128
732 SANITIZER_INTERFACE_ATTRIBUTE
733 a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) {
734   SCOPED_ATOMIC(FetchXor, a, v, mo);
735 }
736 #endif
737 
738 SANITIZER_INTERFACE_ATTRIBUTE
739 a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) {
740   SCOPED_ATOMIC(FetchNand, a, v, mo);
741 }
742 
743 SANITIZER_INTERFACE_ATTRIBUTE
744 a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) {
745   SCOPED_ATOMIC(FetchNand, a, v, mo);
746 }
747 
748 SANITIZER_INTERFACE_ATTRIBUTE
749 a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) {
750   SCOPED_ATOMIC(FetchNand, a, v, mo);
751 }
752 
753 SANITIZER_INTERFACE_ATTRIBUTE
754 a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) {
755   SCOPED_ATOMIC(FetchNand, a, v, mo);
756 }
757 
758 #if __TSAN_HAS_INT128
759 SANITIZER_INTERFACE_ATTRIBUTE
760 a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) {
761   SCOPED_ATOMIC(FetchNand, a, v, mo);
762 }
763 #endif
764 
765 SANITIZER_INTERFACE_ATTRIBUTE
766 int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v,
767     morder mo, morder fmo) {
768   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
769 }
770 
771 SANITIZER_INTERFACE_ATTRIBUTE
772 int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v,
773     morder mo, morder fmo) {
774   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
775 }
776 
777 SANITIZER_INTERFACE_ATTRIBUTE
778 int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v,
779     morder mo, morder fmo) {
780   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
781 }
782 
783 SANITIZER_INTERFACE_ATTRIBUTE
784 int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v,
785     morder mo, morder fmo) {
786   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
787 }
788 
789 #if __TSAN_HAS_INT128
790 SANITIZER_INTERFACE_ATTRIBUTE
791 int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v,
792     morder mo, morder fmo) {
793   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
794 }
795 #endif
796 
797 SANITIZER_INTERFACE_ATTRIBUTE
798 int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v,
799     morder mo, morder fmo) {
800   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
801 }
802 
803 SANITIZER_INTERFACE_ATTRIBUTE
804 int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v,
805     morder mo, morder fmo) {
806   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
807 }
808 
809 SANITIZER_INTERFACE_ATTRIBUTE
810 int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v,
811     morder mo, morder fmo) {
812   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
813 }
814 
815 SANITIZER_INTERFACE_ATTRIBUTE
816 int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v,
817     morder mo, morder fmo) {
818   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
819 }
820 
821 #if __TSAN_HAS_INT128
822 SANITIZER_INTERFACE_ATTRIBUTE
823 int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v,
824     morder mo, morder fmo) {
825   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
826 }
827 #endif
828 
829 SANITIZER_INTERFACE_ATTRIBUTE
830 a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v,
831     morder mo, morder fmo) {
832   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
833 }
834 
835 SANITIZER_INTERFACE_ATTRIBUTE
836 a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v,
837     morder mo, morder fmo) {
838   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
839 }
840 
841 SANITIZER_INTERFACE_ATTRIBUTE
842 a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v,
843     morder mo, morder fmo) {
844   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
845 }
846 
847 SANITIZER_INTERFACE_ATTRIBUTE
848 a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v,
849     morder mo, morder fmo) {
850   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
851 }
852 
853 #if __TSAN_HAS_INT128
854 SANITIZER_INTERFACE_ATTRIBUTE
855 a128 __tsan_atomic128_compare_exchange_val(volatile a128 *a, a128 c, a128 v,
856     morder mo, morder fmo) {
857   SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
858 }
859 #endif
860 
861 SANITIZER_INTERFACE_ATTRIBUTE
862 void __tsan_atomic_thread_fence(morder mo) {
863   char* a = 0;
864   SCOPED_ATOMIC(Fence, mo);
865 }
866 
867 SANITIZER_INTERFACE_ATTRIBUTE
868 void __tsan_atomic_signal_fence(morder mo) {
869 }
870 }  // extern "C"
871 
872 #else  // #if !SANITIZER_GO
873 
874 // Go
875 
876 #define ATOMIC(func, ...) \
877     if (thr->ignore_sync) { \
878       NoTsanAtomic##func(__VA_ARGS__); \
879     } else { \
880       FuncEntry(thr, cpc); \
881       Atomic##func(thr, pc, __VA_ARGS__); \
882       FuncExit(thr); \
883     } \
884 /**/
885 
886 #define ATOMIC_RET(func, ret, ...) \
887     if (thr->ignore_sync) { \
888       (ret) = NoTsanAtomic##func(__VA_ARGS__); \
889     } else { \
890       FuncEntry(thr, cpc); \
891       (ret) = Atomic##func(thr, pc, __VA_ARGS__); \
892       FuncExit(thr); \
893     } \
894 /**/
895 
896 extern "C" {
897 SANITIZER_INTERFACE_ATTRIBUTE
898 void __tsan_go_atomic32_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
899   ATOMIC_RET(Load, *(a32*)(a+8), *(a32**)a, mo_acquire);
900 }
901 
902 SANITIZER_INTERFACE_ATTRIBUTE
903 void __tsan_go_atomic64_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
904   ATOMIC_RET(Load, *(a64*)(a+8), *(a64**)a, mo_acquire);
905 }
906 
907 SANITIZER_INTERFACE_ATTRIBUTE
908 void __tsan_go_atomic32_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
909   ATOMIC(Store, *(a32**)a, *(a32*)(a+8), mo_release);
910 }
911 
912 SANITIZER_INTERFACE_ATTRIBUTE
913 void __tsan_go_atomic64_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
914   ATOMIC(Store, *(a64**)a, *(a64*)(a+8), mo_release);
915 }
916 
917 SANITIZER_INTERFACE_ATTRIBUTE
918 void __tsan_go_atomic32_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
919   ATOMIC_RET(FetchAdd, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
920 }
921 
922 SANITIZER_INTERFACE_ATTRIBUTE
923 void __tsan_go_atomic64_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
924   ATOMIC_RET(FetchAdd, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
925 }
926 
927 SANITIZER_INTERFACE_ATTRIBUTE
928 void __tsan_go_atomic32_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
929   ATOMIC_RET(Exchange, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
930 }
931 
932 SANITIZER_INTERFACE_ATTRIBUTE
933 void __tsan_go_atomic64_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
934   ATOMIC_RET(Exchange, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
935 }
936 
937 SANITIZER_INTERFACE_ATTRIBUTE
938 void __tsan_go_atomic32_compare_exchange(
939     ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
940   a32 cur = 0;
941   a32 cmp = *(a32*)(a+8);
942   ATOMIC_RET(CAS, cur, *(a32**)a, cmp, *(a32*)(a+12), mo_acq_rel, mo_acquire);
943   *(bool*)(a+16) = (cur == cmp);
944 }
945 
946 SANITIZER_INTERFACE_ATTRIBUTE
947 void __tsan_go_atomic64_compare_exchange(
948     ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
949   a64 cur = 0;
950   a64 cmp = *(a64*)(a+8);
951   ATOMIC_RET(CAS, cur, *(a64**)a, cmp, *(a64*)(a+16), mo_acq_rel, mo_acquire);
952   *(bool*)(a+24) = (cur == cmp);
953 }
954 }  // extern "C"
955 #endif  // #if !SANITIZER_GO
956