xref: /freebsd/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_dense_alloc.h (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- tsan_dense_alloc.h --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // A DenseSlabAlloc is a freelist-based allocator of fixed-size objects.
12 // DenseSlabAllocCache is a thread-local cache for DenseSlabAlloc.
13 // The only difference with traditional slab allocators is that DenseSlabAlloc
14 // allocates/free indices of objects and provide a functionality to map
15 // the index onto the real pointer. The index is u32, that is, 2 times smaller
16 // than uptr (hense the Dense prefix).
17 //===----------------------------------------------------------------------===//
18 #ifndef TSAN_DENSE_ALLOC_H
19 #define TSAN_DENSE_ALLOC_H
20 
21 #include "sanitizer_common/sanitizer_common.h"
22 #include "tsan_defs.h"
23 
24 namespace __tsan {
25 
26 class DenseSlabAllocCache {
27   static const uptr kSize = 128;
28   typedef u32 IndexT;
29   uptr pos;
30   IndexT cache[kSize];
31   template <typename, uptr, uptr, u64>
32   friend class DenseSlabAlloc;
33 };
34 
35 template <typename T, uptr kL1Size, uptr kL2Size, u64 kReserved = 0>
36 class DenseSlabAlloc {
37  public:
38   typedef DenseSlabAllocCache Cache;
39   typedef typename Cache::IndexT IndexT;
40 
41   static_assert((kL1Size & (kL1Size - 1)) == 0,
42                 "kL1Size must be a power-of-two");
43   static_assert((kL2Size & (kL2Size - 1)) == 0,
44                 "kL2Size must be a power-of-two");
45   static_assert((kL1Size * kL2Size) <= (1ull << (sizeof(IndexT) * 8)),
46                 "kL1Size/kL2Size are too large");
47   static_assert(((kL1Size * kL2Size - 1) & kReserved) == 0,
48                 "reserved bits don't fit");
49   static_assert(sizeof(T) > sizeof(IndexT),
50                 "it doesn't make sense to use dense alloc");
51 
52   DenseSlabAlloc(LinkerInitialized, const char *name) : name_(name) {}
53 
54   explicit DenseSlabAlloc(const char *name)
55       : DenseSlabAlloc(LINKER_INITIALIZED, name) {
56     // It can be very large.
57     // Don't page it in for linker initialized objects.
58     internal_memset(map_, 0, sizeof(map_));
59   }
60 
61   ~DenseSlabAlloc() {
62     for (uptr i = 0; i < kL1Size; i++) {
63       if (map_[i] != 0)
64         UnmapOrDie(map_[i], kL2Size * sizeof(T));
65     }
66   }
67 
68   IndexT Alloc(Cache *c) {
69     if (c->pos == 0)
70       Refill(c);
71     return c->cache[--c->pos];
72   }
73 
74   void Free(Cache *c, IndexT idx) {
75     DCHECK_NE(idx, 0);
76     if (c->pos == Cache::kSize)
77       Drain(c);
78     c->cache[c->pos++] = idx;
79   }
80 
81   T *Map(IndexT idx) {
82     DCHECK_NE(idx, 0);
83     DCHECK_LE(idx, kL1Size * kL2Size);
84     return &map_[idx / kL2Size][idx % kL2Size];
85   }
86 
87   void FlushCache(Cache *c) {
88     if (!c->pos)
89       return;
90     SpinMutexLock lock(&mtx_);
91     while (c->pos) {
92       IndexT idx = c->cache[--c->pos];
93       *(IndexT*)Map(idx) = freelist_;
94       freelist_ = idx;
95     }
96   }
97 
98   void InitCache(Cache *c) {
99     c->pos = 0;
100     internal_memset(c->cache, 0, sizeof(c->cache));
101   }
102 
103   uptr AllocatedMemory() const {
104     return atomic_load_relaxed(&fillpos_) * kL2Size * sizeof(T);
105   }
106 
107  private:
108   T *map_[kL1Size];
109   SpinMutex mtx_;
110   IndexT freelist_ = {0};
111   atomic_uintptr_t fillpos_ = {0};
112   const char *const name_;
113 
114   void Refill(Cache *c) {
115     SpinMutexLock lock(&mtx_);
116     if (freelist_ == 0) {
117       uptr fillpos = atomic_load_relaxed(&fillpos_);
118       if (fillpos == kL1Size) {
119         Printf("ThreadSanitizer: %s overflow (%zu*%zu). Dying.\n",
120             name_, kL1Size, kL2Size);
121         Die();
122       }
123       VPrintf(2, "ThreadSanitizer: growing %s: %zu out of %zu*%zu\n", name_,
124               fillpos, kL1Size, kL2Size);
125       T *batch = (T*)MmapOrDie(kL2Size * sizeof(T), name_);
126       // Reserve 0 as invalid index.
127       IndexT start = fillpos == 0 ? 1 : 0;
128       for (IndexT i = start; i < kL2Size; i++) {
129         new(batch + i) T;
130         *(IndexT *)(batch + i) = i + 1 + fillpos * kL2Size;
131       }
132       *(IndexT*)(batch + kL2Size - 1) = 0;
133       freelist_ = fillpos * kL2Size + start;
134       map_[fillpos] = batch;
135       atomic_store_relaxed(&fillpos_, fillpos + 1);
136     }
137     for (uptr i = 0; i < Cache::kSize / 2 && freelist_ != 0; i++) {
138       IndexT idx = freelist_;
139       c->cache[c->pos++] = idx;
140       freelist_ = *(IndexT*)Map(idx);
141     }
142   }
143 
144   void Drain(Cache *c) {
145     SpinMutexLock lock(&mtx_);
146     for (uptr i = 0; i < Cache::kSize / 2; i++) {
147       IndexT idx = c->cache[--c->pos];
148       *(IndexT*)Map(idx) = freelist_;
149       freelist_ = idx;
150     }
151   }
152 };
153 
154 }  // namespace __tsan
155 
156 #endif  // TSAN_DENSE_ALLOC_H
157