xref: /freebsd/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary64.h (revision 54c1a65736ec012b583ade1d53c477e182c574e4)
1 //===-- primary64.h ---------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef SCUDO_PRIMARY64_H_
10 #define SCUDO_PRIMARY64_H_
11 
12 #include "bytemap.h"
13 #include "common.h"
14 #include "list.h"
15 #include "local_cache.h"
16 #include "memtag.h"
17 #include "options.h"
18 #include "release.h"
19 #include "stats.h"
20 #include "string_utils.h"
21 
22 namespace scudo {
23 
24 // SizeClassAllocator64 is an allocator tuned for 64-bit address space.
25 //
26 // It starts by reserving NumClasses * 2^RegionSizeLog bytes, equally divided in
27 // Regions, specific to each size class. Note that the base of that mapping is
28 // random (based to the platform specific map() capabilities). If
29 // PrimaryEnableRandomOffset is set, each Region actually starts at a random
30 // offset from its base.
31 //
32 // Regions are mapped incrementally on demand to fulfill allocation requests,
33 // those mappings being split into equally sized Blocks based on the size class
34 // they belong to. The Blocks created are shuffled to prevent predictable
35 // address patterns (the predictability increases with the size of the Blocks).
36 //
37 // The 1st Region (for size class 0) holds the TransferBatches. This is a
38 // structure used to transfer arrays of available pointers from the class size
39 // freelist to the thread specific freelist, and back.
40 //
41 // The memory used by this allocator is never unmapped, but can be partially
42 // released if the platform allows for it.
43 
44 template <typename Config> class SizeClassAllocator64 {
45 public:
46   typedef typename Config::PrimaryCompactPtrT CompactPtrT;
47   static const uptr CompactPtrScale = Config::PrimaryCompactPtrScale;
48   typedef typename Config::SizeClassMap SizeClassMap;
49   typedef SizeClassAllocator64<Config> ThisT;
50   typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
51   typedef typename CacheT::TransferBatch TransferBatch;
52 
53   static uptr getSizeByClassId(uptr ClassId) {
54     return (ClassId == SizeClassMap::BatchClassId)
55                ? roundUpTo(sizeof(TransferBatch), 1U << CompactPtrScale)
56                : SizeClassMap::getSizeByClassId(ClassId);
57   }
58 
59   static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
60 
61   void init(s32 ReleaseToOsInterval) {
62     DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
63     DCHECK_EQ(PrimaryBase, 0U);
64     // Reserve the space required for the Primary.
65     PrimaryBase = reinterpret_cast<uptr>(
66         map(nullptr, PrimarySize, nullptr, MAP_NOACCESS, &Data));
67 
68     u32 Seed;
69     const u64 Time = getMonotonicTime();
70     if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
71       Seed = static_cast<u32>(Time ^ (PrimaryBase >> 12));
72     const uptr PageSize = getPageSizeCached();
73     for (uptr I = 0; I < NumClasses; I++) {
74       RegionInfo *Region = getRegionInfo(I);
75       // The actual start of a region is offset by a random number of pages
76       // when PrimaryEnableRandomOffset is set.
77       Region->RegionBeg = getRegionBaseByClassId(I) +
78                           (Config::PrimaryEnableRandomOffset
79                                ? ((getRandomModN(&Seed, 16) + 1) * PageSize)
80                                : 0);
81       Region->RandState = getRandomU32(&Seed);
82       Region->ReleaseInfo.LastReleaseAtNs = Time;
83     }
84     setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
85   }
86 
87   void unmapTestOnly() {
88     for (uptr I = 0; I < NumClasses; I++) {
89       RegionInfo *Region = getRegionInfo(I);
90       *Region = {};
91     }
92     unmap(reinterpret_cast<void *>(PrimaryBase), PrimarySize, UNMAP_ALL, &Data);
93     PrimaryBase = 0U;
94   }
95 
96   TransferBatch *popBatch(CacheT *C, uptr ClassId) {
97     DCHECK_LT(ClassId, NumClasses);
98     RegionInfo *Region = getRegionInfo(ClassId);
99     ScopedLock L(Region->Mutex);
100     TransferBatch *B = Region->FreeList.front();
101     if (B) {
102       Region->FreeList.pop_front();
103     } else {
104       B = populateFreeList(C, ClassId, Region);
105       if (UNLIKELY(!B))
106         return nullptr;
107     }
108     DCHECK_GT(B->getCount(), 0);
109     Region->Stats.PoppedBlocks += B->getCount();
110     return B;
111   }
112 
113   void pushBatch(uptr ClassId, TransferBatch *B) {
114     DCHECK_GT(B->getCount(), 0);
115     RegionInfo *Region = getRegionInfo(ClassId);
116     ScopedLock L(Region->Mutex);
117     Region->FreeList.push_front(B);
118     Region->Stats.PushedBlocks += B->getCount();
119     if (ClassId != SizeClassMap::BatchClassId)
120       releaseToOSMaybe(Region, ClassId);
121   }
122 
123   void disable() {
124     // The BatchClassId must be locked last since other classes can use it.
125     for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
126       if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
127         continue;
128       getRegionInfo(static_cast<uptr>(I))->Mutex.lock();
129     }
130     getRegionInfo(SizeClassMap::BatchClassId)->Mutex.lock();
131   }
132 
133   void enable() {
134     getRegionInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
135     for (uptr I = 0; I < NumClasses; I++) {
136       if (I == SizeClassMap::BatchClassId)
137         continue;
138       getRegionInfo(I)->Mutex.unlock();
139     }
140   }
141 
142   template <typename F> void iterateOverBlocks(F Callback) {
143     for (uptr I = 0; I < NumClasses; I++) {
144       if (I == SizeClassMap::BatchClassId)
145         continue;
146       const RegionInfo *Region = getRegionInfo(I);
147       const uptr BlockSize = getSizeByClassId(I);
148       const uptr From = Region->RegionBeg;
149       const uptr To = From + Region->AllocatedUser;
150       for (uptr Block = From; Block < To; Block += BlockSize)
151         Callback(Block);
152     }
153   }
154 
155   void getStats(ScopedString *Str) {
156     // TODO(kostyak): get the RSS per region.
157     uptr TotalMapped = 0;
158     uptr PoppedBlocks = 0;
159     uptr PushedBlocks = 0;
160     for (uptr I = 0; I < NumClasses; I++) {
161       RegionInfo *Region = getRegionInfo(I);
162       if (Region->MappedUser)
163         TotalMapped += Region->MappedUser;
164       PoppedBlocks += Region->Stats.PoppedBlocks;
165       PushedBlocks += Region->Stats.PushedBlocks;
166     }
167     Str->append("Stats: SizeClassAllocator64: %zuM mapped (%zuM rss) in %zu "
168                 "allocations; remains %zu\n",
169                 TotalMapped >> 20, 0, PoppedBlocks,
170                 PoppedBlocks - PushedBlocks);
171 
172     for (uptr I = 0; I < NumClasses; I++)
173       getStats(Str, I, 0);
174   }
175 
176   bool setOption(Option O, sptr Value) {
177     if (O == Option::ReleaseInterval) {
178       const s32 Interval = Max(
179           Min(static_cast<s32>(Value), Config::PrimaryMaxReleaseToOsIntervalMs),
180           Config::PrimaryMinReleaseToOsIntervalMs);
181       atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
182       return true;
183     }
184     // Not supported by the Primary, but not an error either.
185     return true;
186   }
187 
188   uptr releaseToOS() {
189     uptr TotalReleasedBytes = 0;
190     for (uptr I = 0; I < NumClasses; I++) {
191       if (I == SizeClassMap::BatchClassId)
192         continue;
193       RegionInfo *Region = getRegionInfo(I);
194       ScopedLock L(Region->Mutex);
195       TotalReleasedBytes += releaseToOSMaybe(Region, I, /*Force=*/true);
196     }
197     return TotalReleasedBytes;
198   }
199 
200   const char *getRegionInfoArrayAddress() const {
201     return reinterpret_cast<const char *>(RegionInfoArray);
202   }
203 
204   static uptr getRegionInfoArraySize() { return sizeof(RegionInfoArray); }
205 
206   uptr getCompactPtrBaseByClassId(uptr ClassId) {
207     // If we are not compacting pointers, base everything off of 0.
208     if (sizeof(CompactPtrT) == sizeof(uptr) && CompactPtrScale == 0)
209       return 0;
210     return getRegionInfo(ClassId)->RegionBeg;
211   }
212 
213   CompactPtrT compactPtr(uptr ClassId, uptr Ptr) {
214     DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
215     return compactPtrInternal(getCompactPtrBaseByClassId(ClassId), Ptr);
216   }
217 
218   void *decompactPtr(uptr ClassId, CompactPtrT CompactPtr) {
219     DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
220     return reinterpret_cast<void *>(
221         decompactPtrInternal(getCompactPtrBaseByClassId(ClassId), CompactPtr));
222   }
223 
224   static BlockInfo findNearestBlock(const char *RegionInfoData, uptr Ptr) {
225     const RegionInfo *RegionInfoArray =
226         reinterpret_cast<const RegionInfo *>(RegionInfoData);
227     uptr ClassId;
228     uptr MinDistance = -1UL;
229     for (uptr I = 0; I != NumClasses; ++I) {
230       if (I == SizeClassMap::BatchClassId)
231         continue;
232       uptr Begin = RegionInfoArray[I].RegionBeg;
233       uptr End = Begin + RegionInfoArray[I].AllocatedUser;
234       if (Begin > End || End - Begin < SizeClassMap::getSizeByClassId(I))
235         continue;
236       uptr RegionDistance;
237       if (Begin <= Ptr) {
238         if (Ptr < End)
239           RegionDistance = 0;
240         else
241           RegionDistance = Ptr - End;
242       } else {
243         RegionDistance = Begin - Ptr;
244       }
245 
246       if (RegionDistance < MinDistance) {
247         MinDistance = RegionDistance;
248         ClassId = I;
249       }
250     }
251 
252     BlockInfo B = {};
253     if (MinDistance <= 8192) {
254       B.RegionBegin = RegionInfoArray[ClassId].RegionBeg;
255       B.RegionEnd = B.RegionBegin + RegionInfoArray[ClassId].AllocatedUser;
256       B.BlockSize = SizeClassMap::getSizeByClassId(ClassId);
257       B.BlockBegin =
258           B.RegionBegin + uptr(sptr(Ptr - B.RegionBegin) / sptr(B.BlockSize) *
259                                sptr(B.BlockSize));
260       while (B.BlockBegin < B.RegionBegin)
261         B.BlockBegin += B.BlockSize;
262       while (B.RegionEnd < B.BlockBegin + B.BlockSize)
263         B.BlockBegin -= B.BlockSize;
264     }
265     return B;
266   }
267 
268   AtomicOptions Options;
269 
270 private:
271   static const uptr RegionSize = 1UL << Config::PrimaryRegionSizeLog;
272   static const uptr NumClasses = SizeClassMap::NumClasses;
273   static const uptr PrimarySize = RegionSize * NumClasses;
274 
275   static const uptr MapSizeIncrement = Config::PrimaryMapSizeIncrement;
276   // Fill at most this number of batches from the newly map'd memory.
277   static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
278 
279   struct RegionStats {
280     uptr PoppedBlocks;
281     uptr PushedBlocks;
282   };
283 
284   struct ReleaseToOsInfo {
285     uptr PushedBlocksAtLastRelease;
286     uptr RangesReleased;
287     uptr LastReleasedBytes;
288     u64 LastReleaseAtNs;
289   };
290 
291   struct UnpaddedRegionInfo {
292     HybridMutex Mutex;
293     SinglyLinkedList<TransferBatch> FreeList;
294     uptr RegionBeg = 0;
295     RegionStats Stats = {};
296     u32 RandState = 0;
297     uptr MappedUser = 0;    // Bytes mapped for user memory.
298     uptr AllocatedUser = 0; // Bytes allocated for user memory.
299     MapPlatformData Data = {};
300     ReleaseToOsInfo ReleaseInfo = {};
301     bool Exhausted = false;
302   };
303   struct RegionInfo : UnpaddedRegionInfo {
304     char Padding[SCUDO_CACHE_LINE_SIZE -
305                  (sizeof(UnpaddedRegionInfo) % SCUDO_CACHE_LINE_SIZE)] = {};
306   };
307   static_assert(sizeof(RegionInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
308 
309   uptr PrimaryBase = 0;
310   MapPlatformData Data = {};
311   atomic_s32 ReleaseToOsIntervalMs = {};
312   alignas(SCUDO_CACHE_LINE_SIZE) RegionInfo RegionInfoArray[NumClasses];
313 
314   RegionInfo *getRegionInfo(uptr ClassId) {
315     DCHECK_LT(ClassId, NumClasses);
316     return &RegionInfoArray[ClassId];
317   }
318 
319   uptr getRegionBaseByClassId(uptr ClassId) const {
320     return PrimaryBase + (ClassId << Config::PrimaryRegionSizeLog);
321   }
322 
323   static CompactPtrT compactPtrInternal(uptr Base, uptr Ptr) {
324     return static_cast<CompactPtrT>((Ptr - Base) >> CompactPtrScale);
325   }
326 
327   static uptr decompactPtrInternal(uptr Base, CompactPtrT CompactPtr) {
328     return Base + (static_cast<uptr>(CompactPtr) << CompactPtrScale);
329   }
330 
331   NOINLINE TransferBatch *populateFreeList(CacheT *C, uptr ClassId,
332                                            RegionInfo *Region) {
333     const uptr Size = getSizeByClassId(ClassId);
334     const u32 MaxCount = TransferBatch::getMaxCached(Size);
335 
336     const uptr RegionBeg = Region->RegionBeg;
337     const uptr MappedUser = Region->MappedUser;
338     const uptr TotalUserBytes = Region->AllocatedUser + MaxCount * Size;
339     // Map more space for blocks, if necessary.
340     if (TotalUserBytes > MappedUser) {
341       // Do the mmap for the user memory.
342       const uptr MapSize =
343           roundUpTo(TotalUserBytes - MappedUser, MapSizeIncrement);
344       const uptr RegionBase = RegionBeg - getRegionBaseByClassId(ClassId);
345       if (UNLIKELY(RegionBase + MappedUser + MapSize > RegionSize)) {
346         if (!Region->Exhausted) {
347           Region->Exhausted = true;
348           ScopedString Str;
349           getStats(&Str);
350           Str.append(
351               "Scudo OOM: The process has exhausted %zuM for size class %zu.\n",
352               RegionSize >> 20, Size);
353           Str.output();
354         }
355         return nullptr;
356       }
357       if (MappedUser == 0)
358         Region->Data = Data;
359       if (UNLIKELY(!map(
360               reinterpret_cast<void *>(RegionBeg + MappedUser), MapSize,
361               "scudo:primary",
362               MAP_ALLOWNOMEM | MAP_RESIZABLE |
363                   (useMemoryTagging<Config>(Options.load()) ? MAP_MEMTAG : 0),
364               &Region->Data)))
365         return nullptr;
366       Region->MappedUser += MapSize;
367       C->getStats().add(StatMapped, MapSize);
368     }
369 
370     const u32 NumberOfBlocks = Min(
371         MaxNumBatches * MaxCount,
372         static_cast<u32>((Region->MappedUser - Region->AllocatedUser) / Size));
373     DCHECK_GT(NumberOfBlocks, 0);
374 
375     constexpr u32 ShuffleArraySize =
376         MaxNumBatches * TransferBatch::MaxNumCached;
377     CompactPtrT ShuffleArray[ShuffleArraySize];
378     DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
379 
380     const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
381     uptr P = RegionBeg + Region->AllocatedUser;
382     for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
383       ShuffleArray[I] = compactPtrInternal(CompactPtrBase, P);
384     // No need to shuffle the batches size class.
385     if (ClassId != SizeClassMap::BatchClassId)
386       shuffle(ShuffleArray, NumberOfBlocks, &Region->RandState);
387     for (u32 I = 0; I < NumberOfBlocks;) {
388       TransferBatch *B =
389           C->createBatch(ClassId, reinterpret_cast<void *>(decompactPtrInternal(
390                                       CompactPtrBase, ShuffleArray[I])));
391       if (UNLIKELY(!B))
392         return nullptr;
393       const u32 N = Min(MaxCount, NumberOfBlocks - I);
394       B->setFromArray(&ShuffleArray[I], N);
395       Region->FreeList.push_back(B);
396       I += N;
397     }
398     TransferBatch *B = Region->FreeList.front();
399     Region->FreeList.pop_front();
400     DCHECK(B);
401     DCHECK_GT(B->getCount(), 0);
402 
403     const uptr AllocatedUser = Size * NumberOfBlocks;
404     C->getStats().add(StatFree, AllocatedUser);
405     Region->AllocatedUser += AllocatedUser;
406 
407     return B;
408   }
409 
410   void getStats(ScopedString *Str, uptr ClassId, uptr Rss) {
411     RegionInfo *Region = getRegionInfo(ClassId);
412     if (Region->MappedUser == 0)
413       return;
414     const uptr InUse = Region->Stats.PoppedBlocks - Region->Stats.PushedBlocks;
415     const uptr TotalChunks = Region->AllocatedUser / getSizeByClassId(ClassId);
416     Str->append("%s %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
417                 "inuse: %6zu total: %6zu rss: %6zuK releases: %6zu last "
418                 "released: %6zuK region: 0x%zx (0x%zx)\n",
419                 Region->Exhausted ? "F" : " ", ClassId,
420                 getSizeByClassId(ClassId), Region->MappedUser >> 10,
421                 Region->Stats.PoppedBlocks, Region->Stats.PushedBlocks, InUse,
422                 TotalChunks, Rss >> 10, Region->ReleaseInfo.RangesReleased,
423                 Region->ReleaseInfo.LastReleasedBytes >> 10, Region->RegionBeg,
424                 getRegionBaseByClassId(ClassId));
425   }
426 
427   NOINLINE uptr releaseToOSMaybe(RegionInfo *Region, uptr ClassId,
428                                  bool Force = false) {
429     const uptr BlockSize = getSizeByClassId(ClassId);
430     const uptr PageSize = getPageSizeCached();
431 
432     DCHECK_GE(Region->Stats.PoppedBlocks, Region->Stats.PushedBlocks);
433     const uptr BytesInFreeList =
434         Region->AllocatedUser -
435         (Region->Stats.PoppedBlocks - Region->Stats.PushedBlocks) * BlockSize;
436     if (BytesInFreeList < PageSize)
437       return 0; // No chance to release anything.
438     const uptr BytesPushed = (Region->Stats.PushedBlocks -
439                               Region->ReleaseInfo.PushedBlocksAtLastRelease) *
440                              BlockSize;
441     if (BytesPushed < PageSize)
442       return 0; // Nothing new to release.
443 
444     // Releasing smaller blocks is expensive, so we want to make sure that a
445     // significant amount of bytes are free, and that there has been a good
446     // amount of batches pushed to the freelist before attempting to release.
447     if (BlockSize < PageSize / 16U) {
448       if (!Force && BytesPushed < Region->AllocatedUser / 16U)
449         return 0;
450       // We want 8x% to 9x% free bytes (the larger the block, the lower the %).
451       if ((BytesInFreeList * 100U) / Region->AllocatedUser <
452           (100U - 1U - BlockSize / 16U))
453         return 0;
454     }
455 
456     if (!Force) {
457       const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
458       if (IntervalMs < 0)
459         return 0;
460       if (Region->ReleaseInfo.LastReleaseAtNs +
461               static_cast<u64>(IntervalMs) * 1000000 >
462           getMonotonicTime()) {
463         return 0; // Memory was returned recently.
464       }
465     }
466 
467     ReleaseRecorder Recorder(Region->RegionBeg, &Region->Data);
468     const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
469     auto DecompactPtr = [CompactPtrBase](CompactPtrT CompactPtr) {
470       return decompactPtrInternal(CompactPtrBase, CompactPtr);
471     };
472     auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; };
473     releaseFreeMemoryToOS(Region->FreeList, Region->AllocatedUser, 1U,
474                           BlockSize, &Recorder, DecompactPtr, SkipRegion);
475 
476     if (Recorder.getReleasedRangesCount() > 0) {
477       Region->ReleaseInfo.PushedBlocksAtLastRelease =
478           Region->Stats.PushedBlocks;
479       Region->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
480       Region->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
481     }
482     Region->ReleaseInfo.LastReleaseAtNs = getMonotonicTime();
483     return Recorder.getReleasedBytes();
484   }
485 };
486 
487 } // namespace scudo
488 
489 #endif // SCUDO_PRIMARY64_H_
490