xref: /freebsd/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary32.h (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- primary32.h ---------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef SCUDO_PRIMARY32_H_
10 #define SCUDO_PRIMARY32_H_
11 
12 #include "allocator_common.h"
13 #include "bytemap.h"
14 #include "common.h"
15 #include "list.h"
16 #include "local_cache.h"
17 #include "options.h"
18 #include "release.h"
19 #include "report.h"
20 #include "stats.h"
21 #include "string_utils.h"
22 #include "thread_annotations.h"
23 
24 namespace scudo {
25 
26 // SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
27 //
28 // It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
29 // boundary, and keeps a bytemap of the mappable address space to track the size
30 // class they are associated with.
31 //
32 // Mapped regions are split into equally sized Blocks according to the size
33 // class they belong to, and the associated pointers are shuffled to prevent any
34 // predictable address pattern (the predictability increases with the block
35 // size).
36 //
37 // Regions for size class 0 are special and used to hold TransferBatches, which
38 // allow to transfer arrays of pointers from the global size class freelist to
39 // the thread specific freelist for said class, and back.
40 //
41 // Memory used by this allocator is never unmapped but can be partially
42 // reclaimed if the platform allows for it.
43 
44 template <typename Config> class SizeClassAllocator32 {
45 public:
46   typedef typename Config::CompactPtrT CompactPtrT;
47   typedef typename Config::SizeClassMap SizeClassMap;
48   static const uptr GroupSizeLog = Config::getGroupSizeLog();
49   // The bytemap can only track UINT8_MAX - 1 classes.
50   static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
51   // Regions should be large enough to hold the largest Block.
52   static_assert((1UL << Config::getRegionSizeLog()) >= SizeClassMap::MaxSize,
53                 "");
54   typedef SizeClassAllocator32<Config> ThisT;
55   typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
56   typedef TransferBatch<ThisT> TransferBatchT;
57   typedef BatchGroup<ThisT> BatchGroupT;
58 
59   static_assert(sizeof(BatchGroupT) <= sizeof(TransferBatchT),
60                 "BatchGroupT uses the same class size as TransferBatchT");
61 
62   static uptr getSizeByClassId(uptr ClassId) {
63     return (ClassId == SizeClassMap::BatchClassId)
64                ? sizeof(TransferBatchT)
65                : SizeClassMap::getSizeByClassId(ClassId);
66   }
67 
68   static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
69 
70   void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
71     if (SCUDO_FUCHSIA)
72       reportError("SizeClassAllocator32 is not supported on Fuchsia");
73 
74     if (SCUDO_TRUSTY)
75       reportError("SizeClassAllocator32 is not supported on Trusty");
76 
77     DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
78     PossibleRegions.init();
79     u32 Seed;
80     const u64 Time = getMonotonicTimeFast();
81     if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
82       Seed = static_cast<u32>(
83           Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
84     for (uptr I = 0; I < NumClasses; I++) {
85       SizeClassInfo *Sci = getSizeClassInfo(I);
86       Sci->RandState = getRandomU32(&Seed);
87       // Sci->MaxRegionIndex is already initialized to 0.
88       Sci->MinRegionIndex = NumRegions;
89       Sci->ReleaseInfo.LastReleaseAtNs = Time;
90     }
91 
92     // The default value in the primary config has the higher priority.
93     if (Config::getDefaultReleaseToOsIntervalMs() != INT32_MIN)
94       ReleaseToOsInterval = Config::getDefaultReleaseToOsIntervalMs();
95     setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
96   }
97 
98   void unmapTestOnly() {
99     {
100       ScopedLock L(RegionsStashMutex);
101       while (NumberOfStashedRegions > 0) {
102         unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
103               RegionSize);
104       }
105     }
106 
107     uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
108     for (uptr I = 0; I < NumClasses; I++) {
109       SizeClassInfo *Sci = getSizeClassInfo(I);
110       ScopedLock L(Sci->Mutex);
111       if (Sci->MinRegionIndex < MinRegionIndex)
112         MinRegionIndex = Sci->MinRegionIndex;
113       if (Sci->MaxRegionIndex > MaxRegionIndex)
114         MaxRegionIndex = Sci->MaxRegionIndex;
115       *Sci = {};
116     }
117 
118     ScopedLock L(ByteMapMutex);
119     for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
120       if (PossibleRegions[I])
121         unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
122     PossibleRegions.unmapTestOnly();
123   }
124 
125   // When all blocks are freed, it has to be the same size as `AllocatedUser`.
126   void verifyAllBlocksAreReleasedTestOnly() {
127     // `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
128     uptr BatchClassUsedInFreeLists = 0;
129     for (uptr I = 0; I < NumClasses; I++) {
130       // We have to count BatchClassUsedInFreeLists in other regions first.
131       if (I == SizeClassMap::BatchClassId)
132         continue;
133       SizeClassInfo *Sci = getSizeClassInfo(I);
134       ScopedLock L1(Sci->Mutex);
135       uptr TotalBlocks = 0;
136       for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
137         // `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
138         BatchClassUsedInFreeLists += BG.Batches.size() + 1;
139         for (const auto &It : BG.Batches)
140           TotalBlocks += It.getCount();
141       }
142 
143       const uptr BlockSize = getSizeByClassId(I);
144       DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize);
145       DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks);
146     }
147 
148     SizeClassInfo *Sci = getSizeClassInfo(SizeClassMap::BatchClassId);
149     ScopedLock L1(Sci->Mutex);
150     uptr TotalBlocks = 0;
151     for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
152       if (LIKELY(!BG.Batches.empty())) {
153         for (const auto &It : BG.Batches)
154           TotalBlocks += It.getCount();
155       } else {
156         // `BatchGroup` with empty freelist doesn't have `TransferBatch` record
157         // itself.
158         ++TotalBlocks;
159       }
160     }
161 
162     const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
163     DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
164               Sci->AllocatedUser / BlockSize);
165     const uptr BlocksInUse =
166         Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
167     DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
168   }
169 
170   CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const {
171     return static_cast<CompactPtrT>(Ptr);
172   }
173 
174   void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const {
175     return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr));
176   }
177 
178   uptr compactPtrGroupBase(CompactPtrT CompactPtr) {
179     const uptr Mask = (static_cast<uptr>(1) << GroupSizeLog) - 1;
180     return CompactPtr & ~Mask;
181   }
182 
183   uptr decompactGroupBase(uptr CompactPtrGroupBase) {
184     return CompactPtrGroupBase;
185   }
186 
187   ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
188     const uptr PageSize = getPageSizeCached();
189     return BlockSize < PageSize / 16U;
190   }
191 
192   ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
193     const uptr PageSize = getPageSizeCached();
194     return BlockSize > PageSize;
195   }
196 
197   u16 popBlocks(CacheT *C, uptr ClassId, CompactPtrT *ToArray,
198                 const u16 MaxBlockCount) {
199     DCHECK_LT(ClassId, NumClasses);
200     SizeClassInfo *Sci = getSizeClassInfo(ClassId);
201     ScopedLock L(Sci->Mutex);
202 
203     u16 PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount);
204     if (UNLIKELY(PopCount == 0)) {
205       if (UNLIKELY(!populateFreeList(C, ClassId, Sci)))
206         return 0U;
207       PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount);
208       DCHECK_NE(PopCount, 0U);
209     }
210 
211     return PopCount;
212   }
213 
214   // Push the array of free blocks to the designated batch group.
215   void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
216     DCHECK_LT(ClassId, NumClasses);
217     DCHECK_GT(Size, 0);
218 
219     SizeClassInfo *Sci = getSizeClassInfo(ClassId);
220     if (ClassId == SizeClassMap::BatchClassId) {
221       ScopedLock L(Sci->Mutex);
222       pushBatchClassBlocks(Sci, Array, Size);
223       return;
224     }
225 
226     // TODO(chiahungduan): Consider not doing grouping if the group size is not
227     // greater than the block size with a certain scale.
228 
229     // Sort the blocks so that blocks belonging to the same group can be pushed
230     // together.
231     bool SameGroup = true;
232     for (u32 I = 1; I < Size; ++I) {
233       if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I]))
234         SameGroup = false;
235       CompactPtrT Cur = Array[I];
236       u32 J = I;
237       while (J > 0 &&
238              compactPtrGroupBase(Cur) < compactPtrGroupBase(Array[J - 1])) {
239         Array[J] = Array[J - 1];
240         --J;
241       }
242       Array[J] = Cur;
243     }
244 
245     ScopedLock L(Sci->Mutex);
246     pushBlocksImpl(C, ClassId, Sci, Array, Size, SameGroup);
247   }
248 
249   void disable() NO_THREAD_SAFETY_ANALYSIS {
250     // The BatchClassId must be locked last since other classes can use it.
251     for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
252       if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
253         continue;
254       getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
255     }
256     getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
257     RegionsStashMutex.lock();
258     ByteMapMutex.lock();
259   }
260 
261   void enable() NO_THREAD_SAFETY_ANALYSIS {
262     ByteMapMutex.unlock();
263     RegionsStashMutex.unlock();
264     getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
265     for (uptr I = 0; I < NumClasses; I++) {
266       if (I == SizeClassMap::BatchClassId)
267         continue;
268       getSizeClassInfo(I)->Mutex.unlock();
269     }
270   }
271 
272   template <typename F> void iterateOverBlocks(F Callback) {
273     uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
274     for (uptr I = 0; I < NumClasses; I++) {
275       SizeClassInfo *Sci = getSizeClassInfo(I);
276       // TODO: The call of `iterateOverBlocks` requires disabling
277       // SizeClassAllocator32. We may consider locking each region on demand
278       // only.
279       Sci->Mutex.assertHeld();
280       if (Sci->MinRegionIndex < MinRegionIndex)
281         MinRegionIndex = Sci->MinRegionIndex;
282       if (Sci->MaxRegionIndex > MaxRegionIndex)
283         MaxRegionIndex = Sci->MaxRegionIndex;
284     }
285 
286     // SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held.
287     ByteMapMutex.assertHeld();
288 
289     for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) {
290       if (PossibleRegions[I] &&
291           (PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
292         const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
293         const uptr From = I * RegionSize;
294         const uptr To = From + (RegionSize / BlockSize) * BlockSize;
295         for (uptr Block = From; Block < To; Block += BlockSize)
296           Callback(Block);
297       }
298     }
299   }
300 
301   void getStats(ScopedString *Str) {
302     // TODO(kostyak): get the RSS per region.
303     uptr TotalMapped = 0;
304     uptr PoppedBlocks = 0;
305     uptr PushedBlocks = 0;
306     for (uptr I = 0; I < NumClasses; I++) {
307       SizeClassInfo *Sci = getSizeClassInfo(I);
308       ScopedLock L(Sci->Mutex);
309       TotalMapped += Sci->AllocatedUser;
310       PoppedBlocks += Sci->FreeListInfo.PoppedBlocks;
311       PushedBlocks += Sci->FreeListInfo.PushedBlocks;
312     }
313     Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
314                 "remains %zu\n",
315                 TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
316     for (uptr I = 0; I < NumClasses; I++) {
317       SizeClassInfo *Sci = getSizeClassInfo(I);
318       ScopedLock L(Sci->Mutex);
319       getStats(Str, I, Sci);
320     }
321   }
322 
323   void getFragmentationInfo(ScopedString *Str) {
324     Str->append(
325         "Fragmentation Stats: SizeClassAllocator32: page size = %zu bytes\n",
326         getPageSizeCached());
327 
328     for (uptr I = 1; I < NumClasses; I++) {
329       SizeClassInfo *Sci = getSizeClassInfo(I);
330       ScopedLock L(Sci->Mutex);
331       getSizeClassFragmentationInfo(Sci, I, Str);
332     }
333   }
334 
335   bool setOption(Option O, sptr Value) {
336     if (O == Option::ReleaseInterval) {
337       const s32 Interval = Max(
338           Min(static_cast<s32>(Value), Config::getMaxReleaseToOsIntervalMs()),
339           Config::getMinReleaseToOsIntervalMs());
340       atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
341       return true;
342     }
343     // Not supported by the Primary, but not an error either.
344     return true;
345   }
346 
347   uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
348     SizeClassInfo *Sci = getSizeClassInfo(ClassId);
349     // TODO: Once we have separate locks like primary64, we may consider using
350     // tryLock() as well.
351     ScopedLock L(Sci->Mutex);
352     return releaseToOSMaybe(Sci, ClassId, ReleaseType);
353   }
354 
355   uptr releaseToOS(ReleaseToOS ReleaseType) {
356     uptr TotalReleasedBytes = 0;
357     for (uptr I = 0; I < NumClasses; I++) {
358       if (I == SizeClassMap::BatchClassId)
359         continue;
360       SizeClassInfo *Sci = getSizeClassInfo(I);
361       ScopedLock L(Sci->Mutex);
362       TotalReleasedBytes += releaseToOSMaybe(Sci, I, ReleaseType);
363     }
364     return TotalReleasedBytes;
365   }
366 
367   const char *getRegionInfoArrayAddress() const { return nullptr; }
368   static uptr getRegionInfoArraySize() { return 0; }
369 
370   static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData,
371                                     UNUSED uptr Ptr) {
372     return {};
373   }
374 
375   AtomicOptions Options;
376 
377 private:
378   static const uptr NumClasses = SizeClassMap::NumClasses;
379   static const uptr RegionSize = 1UL << Config::getRegionSizeLog();
380   static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >>
381                                  Config::getRegionSizeLog();
382   static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
383   typedef FlatByteMap<NumRegions> ByteMap;
384 
385   struct ReleaseToOsInfo {
386     uptr BytesInFreeListAtLastCheckpoint;
387     uptr RangesReleased;
388     uptr LastReleasedBytes;
389     u64 LastReleaseAtNs;
390   };
391 
392   struct BlocksInfo {
393     SinglyLinkedList<BatchGroupT> BlockList = {};
394     uptr PoppedBlocks = 0;
395     uptr PushedBlocks = 0;
396   };
397 
398   struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
399     HybridMutex Mutex;
400     BlocksInfo FreeListInfo GUARDED_BY(Mutex);
401     uptr CurrentRegion GUARDED_BY(Mutex);
402     uptr CurrentRegionAllocated GUARDED_BY(Mutex);
403     u32 RandState;
404     uptr AllocatedUser GUARDED_BY(Mutex);
405     // Lowest & highest region index allocated for this size class, to avoid
406     // looping through the whole NumRegions.
407     uptr MinRegionIndex GUARDED_BY(Mutex);
408     uptr MaxRegionIndex GUARDED_BY(Mutex);
409     ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex);
410   };
411   static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
412 
413   uptr computeRegionId(uptr Mem) {
414     const uptr Id = Mem >> Config::getRegionSizeLog();
415     CHECK_LT(Id, NumRegions);
416     return Id;
417   }
418 
419   uptr allocateRegionSlow() {
420     uptr MapSize = 2 * RegionSize;
421     const uptr MapBase = reinterpret_cast<uptr>(
422         map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
423     if (!MapBase)
424       return 0;
425     const uptr MapEnd = MapBase + MapSize;
426     uptr Region = MapBase;
427     if (isAligned(Region, RegionSize)) {
428       ScopedLock L(RegionsStashMutex);
429       if (NumberOfStashedRegions < MaxStashedRegions)
430         RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
431       else
432         MapSize = RegionSize;
433     } else {
434       Region = roundUp(MapBase, RegionSize);
435       unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
436       MapSize = RegionSize;
437     }
438     const uptr End = Region + MapSize;
439     if (End != MapEnd)
440       unmap(reinterpret_cast<void *>(End), MapEnd - End);
441 
442     DCHECK_EQ(Region % RegionSize, 0U);
443     static_assert(Config::getRegionSizeLog() == GroupSizeLog,
444                   "Memory group should be the same size as Region");
445 
446     return Region;
447   }
448 
449   uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) {
450     DCHECK_LT(ClassId, NumClasses);
451     uptr Region = 0;
452     {
453       ScopedLock L(RegionsStashMutex);
454       if (NumberOfStashedRegions > 0)
455         Region = RegionsStash[--NumberOfStashedRegions];
456     }
457     if (!Region)
458       Region = allocateRegionSlow();
459     if (LIKELY(Region)) {
460       // Sci->Mutex is held by the caller, updating the Min/Max is safe.
461       const uptr RegionIndex = computeRegionId(Region);
462       if (RegionIndex < Sci->MinRegionIndex)
463         Sci->MinRegionIndex = RegionIndex;
464       if (RegionIndex > Sci->MaxRegionIndex)
465         Sci->MaxRegionIndex = RegionIndex;
466       ScopedLock L(ByteMapMutex);
467       PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
468     }
469     return Region;
470   }
471 
472   SizeClassInfo *getSizeClassInfo(uptr ClassId) {
473     DCHECK_LT(ClassId, NumClasses);
474     return &SizeClassInfoArray[ClassId];
475   }
476 
477   void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size)
478       REQUIRES(Sci->Mutex) {
479     DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId));
480 
481     // Free blocks are recorded by TransferBatch in freelist for all
482     // size-classes. In addition, TransferBatch is allocated from BatchClassId.
483     // In order not to use additional block to record the free blocks in
484     // BatchClassId, they are self-contained. I.e., A TransferBatch records the
485     // block address of itself. See the figure below:
486     //
487     // TransferBatch at 0xABCD
488     // +----------------------------+
489     // | Free blocks' addr          |
490     // | +------+------+------+     |
491     // | |0xABCD|...   |...   |     |
492     // | +------+------+------+     |
493     // +----------------------------+
494     //
495     // When we allocate all the free blocks in the TransferBatch, the block used
496     // by TransferBatch is also free for use. We don't need to recycle the
497     // TransferBatch. Note that the correctness is maintained by the invariant,
498     //
499     //   Each popBlocks() request returns the entire TransferBatch. Returning
500     //   part of the blocks in a TransferBatch is invalid.
501     //
502     // This ensures that TransferBatch won't leak the address itself while it's
503     // still holding other valid data.
504     //
505     // Besides, BatchGroup is also allocated from BatchClassId and has its
506     // address recorded in the TransferBatch too. To maintain the correctness,
507     //
508     //   The address of BatchGroup is always recorded in the last TransferBatch
509     //   in the freelist (also imply that the freelist should only be
510     //   updated with push_front). Once the last TransferBatch is popped,
511     //   the block used by BatchGroup is also free for use.
512     //
513     // With this approach, the blocks used by BatchGroup and TransferBatch are
514     // reusable and don't need additional space for them.
515 
516     Sci->FreeListInfo.PushedBlocks += Size;
517     BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
518 
519     if (BG == nullptr) {
520       // Construct `BatchGroup` on the last element.
521       BG = reinterpret_cast<BatchGroupT *>(
522           decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
523       --Size;
524       BG->Batches.clear();
525       // BatchClass hasn't enabled memory group. Use `0` to indicate there's no
526       // memory group here.
527       BG->CompactPtrGroupBase = 0;
528       // `BG` is also the block of BatchClassId. Note that this is different
529       // from `CreateGroup` in `pushBlocksImpl`
530       BG->PushedBlocks = 1;
531       BG->BytesInBGAtLastCheckpoint = 0;
532       BG->MaxCachedPerBatch =
533           CacheT::getMaxCached(getSizeByClassId(SizeClassMap::BatchClassId));
534 
535       Sci->FreeListInfo.BlockList.push_front(BG);
536     }
537 
538     if (UNLIKELY(Size == 0))
539       return;
540 
541     // This happens under 2 cases.
542     //   1. just allocated a new `BatchGroup`.
543     //   2. Only 1 block is pushed when the freelist is empty.
544     if (BG->Batches.empty()) {
545       // Construct the `TransferBatch` on the last element.
546       TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(
547           decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
548       TB->clear();
549       // As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
550       // recorded in the TransferBatch.
551       TB->add(Array[Size - 1]);
552       TB->add(
553           compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
554       --Size;
555       DCHECK_EQ(BG->PushedBlocks, 1U);
556       // `TB` is also the block of BatchClassId.
557       BG->PushedBlocks += 1;
558       BG->Batches.push_front(TB);
559     }
560 
561     TransferBatchT *CurBatch = BG->Batches.front();
562     DCHECK_NE(CurBatch, nullptr);
563 
564     for (u32 I = 0; I < Size;) {
565       u16 UnusedSlots =
566           static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
567       if (UnusedSlots == 0) {
568         CurBatch = reinterpret_cast<TransferBatchT *>(
569             decompactPtr(SizeClassMap::BatchClassId, Array[I]));
570         CurBatch->clear();
571         // Self-contained
572         CurBatch->add(Array[I]);
573         ++I;
574         // TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
575         // BatchClassId.
576         BG->Batches.push_front(CurBatch);
577         UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
578       }
579       // `UnusedSlots` is u16 so the result will be also fit in u16.
580       const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
581       CurBatch->appendFromArray(&Array[I], AppendSize);
582       I += AppendSize;
583     }
584 
585     BG->PushedBlocks += Size;
586   }
587   // Push the blocks to their batch group. The layout will be like,
588   //
589   // FreeListInfo.BlockList - > BG -> BG -> BG
590   //                            |     |     |
591   //                            v     v     v
592   //                            TB    TB    TB
593   //                            |
594   //                            v
595   //                            TB
596   //
597   // Each BlockGroup(BG) will associate with unique group id and the free blocks
598   // are managed by a list of TransferBatch(TB). To reduce the time of inserting
599   // blocks, BGs are sorted and the input `Array` are supposed to be sorted so
600   // that we can get better performance of maintaining sorted property.
601   // Use `SameGroup=true` to indicate that all blocks in the array are from the
602   // same group then we will skip checking the group id of each block.
603   //
604   // The region mutex needs to be held while calling this method.
605   void pushBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
606                       CompactPtrT *Array, u32 Size, bool SameGroup = false)
607       REQUIRES(Sci->Mutex) {
608     DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
609     DCHECK_GT(Size, 0U);
610 
611     auto CreateGroup = [&](uptr CompactPtrGroupBase) {
612       BatchGroupT *BG =
613           reinterpret_cast<BatchGroupT *>(C->getBatchClassBlock());
614       BG->Batches.clear();
615       TransferBatchT *TB =
616           reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
617       TB->clear();
618 
619       BG->CompactPtrGroupBase = CompactPtrGroupBase;
620       BG->Batches.push_front(TB);
621       BG->PushedBlocks = 0;
622       BG->BytesInBGAtLastCheckpoint = 0;
623       BG->MaxCachedPerBatch = TransferBatchT::MaxNumCached;
624 
625       return BG;
626     };
627 
628     auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) {
629       SinglyLinkedList<TransferBatchT> &Batches = BG->Batches;
630       TransferBatchT *CurBatch = Batches.front();
631       DCHECK_NE(CurBatch, nullptr);
632 
633       for (u32 I = 0; I < Size;) {
634         DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
635         u16 UnusedSlots =
636             static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
637         if (UnusedSlots == 0) {
638           CurBatch =
639               reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
640           CurBatch->clear();
641           Batches.push_front(CurBatch);
642           UnusedSlots = BG->MaxCachedPerBatch;
643         }
644         // `UnusedSlots` is u16 so the result will be also fit in u16.
645         u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
646         CurBatch->appendFromArray(&Array[I], AppendSize);
647         I += AppendSize;
648       }
649 
650       BG->PushedBlocks += Size;
651     };
652 
653     Sci->FreeListInfo.PushedBlocks += Size;
654     BatchGroupT *Cur = Sci->FreeListInfo.BlockList.front();
655 
656     // In the following, `Cur` always points to the BatchGroup for blocks that
657     // will be pushed next. `Prev` is the element right before `Cur`.
658     BatchGroupT *Prev = nullptr;
659 
660     while (Cur != nullptr &&
661            compactPtrGroupBase(Array[0]) > Cur->CompactPtrGroupBase) {
662       Prev = Cur;
663       Cur = Cur->Next;
664     }
665 
666     if (Cur == nullptr ||
667         compactPtrGroupBase(Array[0]) != Cur->CompactPtrGroupBase) {
668       Cur = CreateGroup(compactPtrGroupBase(Array[0]));
669       if (Prev == nullptr)
670         Sci->FreeListInfo.BlockList.push_front(Cur);
671       else
672         Sci->FreeListInfo.BlockList.insert(Prev, Cur);
673     }
674 
675     // All the blocks are from the same group, just push without checking group
676     // id.
677     if (SameGroup) {
678       for (u32 I = 0; I < Size; ++I)
679         DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase);
680 
681       InsertBlocks(Cur, Array, Size);
682       return;
683     }
684 
685     // The blocks are sorted by group id. Determine the segment of group and
686     // push them to their group together.
687     u32 Count = 1;
688     for (u32 I = 1; I < Size; ++I) {
689       if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) {
690         DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase);
691         InsertBlocks(Cur, Array + I - Count, Count);
692 
693         while (Cur != nullptr &&
694                compactPtrGroupBase(Array[I]) > Cur->CompactPtrGroupBase) {
695           Prev = Cur;
696           Cur = Cur->Next;
697         }
698 
699         if (Cur == nullptr ||
700             compactPtrGroupBase(Array[I]) != Cur->CompactPtrGroupBase) {
701           Cur = CreateGroup(compactPtrGroupBase(Array[I]));
702           DCHECK_NE(Prev, nullptr);
703           Sci->FreeListInfo.BlockList.insert(Prev, Cur);
704         }
705 
706         Count = 1;
707       } else {
708         ++Count;
709       }
710     }
711 
712     InsertBlocks(Cur, Array + Size - Count, Count);
713   }
714 
715   u16 popBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
716                     CompactPtrT *ToArray, const u16 MaxBlockCount)
717       REQUIRES(Sci->Mutex) {
718     if (Sci->FreeListInfo.BlockList.empty())
719       return 0U;
720 
721     SinglyLinkedList<TransferBatchT> &Batches =
722         Sci->FreeListInfo.BlockList.front()->Batches;
723 
724     if (Batches.empty()) {
725       DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
726       BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
727       Sci->FreeListInfo.BlockList.pop_front();
728 
729       // Block used by `BatchGroup` is from BatchClassId. Turn the block into
730       // `TransferBatch` with single block.
731       TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(BG);
732       ToArray[0] =
733           compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB));
734       Sci->FreeListInfo.PoppedBlocks += 1;
735       return 1U;
736     }
737 
738     // So far, instead of always filling the blocks to `MaxBlockCount`, we only
739     // examine single `TransferBatch` to minimize the time spent on the primary
740     // allocator. Besides, the sizes of `TransferBatch` and
741     // `CacheT::getMaxCached()` may also impact the time spent on accessing the
742     // primary allocator.
743     // TODO(chiahungduan): Evaluate if we want to always prepare `MaxBlockCount`
744     // blocks and/or adjust the size of `TransferBatch` according to
745     // `CacheT::getMaxCached()`.
746     TransferBatchT *B = Batches.front();
747     DCHECK_NE(B, nullptr);
748     DCHECK_GT(B->getCount(), 0U);
749 
750     // BachClassId should always take all blocks in the TransferBatch. Read the
751     // comment in `pushBatchClassBlocks()` for more details.
752     const u16 PopCount = ClassId == SizeClassMap::BatchClassId
753                              ? B->getCount()
754                              : Min(MaxBlockCount, B->getCount());
755     B->moveNToArray(ToArray, PopCount);
756 
757     // TODO(chiahungduan): The deallocation of unused BatchClassId blocks can be
758     // done without holding `Mutex`.
759     if (B->empty()) {
760       Batches.pop_front();
761       // `TransferBatch` of BatchClassId is self-contained, no need to
762       // deallocate. Read the comment in `pushBatchClassBlocks()` for more
763       // details.
764       if (ClassId != SizeClassMap::BatchClassId)
765         C->deallocate(SizeClassMap::BatchClassId, B);
766 
767       if (Batches.empty()) {
768         BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
769         Sci->FreeListInfo.BlockList.pop_front();
770 
771         // We don't keep BatchGroup with zero blocks to avoid empty-checking
772         // while allocating. Note that block used for constructing BatchGroup is
773         // recorded as free blocks in the last element of BatchGroup::Batches.
774         // Which means, once we pop the last TransferBatch, the block is
775         // implicitly deallocated.
776         if (ClassId != SizeClassMap::BatchClassId)
777           C->deallocate(SizeClassMap::BatchClassId, BG);
778       }
779     }
780 
781     Sci->FreeListInfo.PoppedBlocks += PopCount;
782     return PopCount;
783   }
784 
785   NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci)
786       REQUIRES(Sci->Mutex) {
787     uptr Region;
788     uptr Offset;
789     // If the size-class currently has a region associated to it, use it. The
790     // newly created blocks will be located after the currently allocated memory
791     // for that region (up to RegionSize). Otherwise, create a new region, where
792     // the new blocks will be carved from the beginning.
793     if (Sci->CurrentRegion) {
794       Region = Sci->CurrentRegion;
795       DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
796       Offset = Sci->CurrentRegionAllocated;
797     } else {
798       DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
799       Region = allocateRegion(Sci, ClassId);
800       if (UNLIKELY(!Region))
801         return false;
802       C->getStats().add(StatMapped, RegionSize);
803       Sci->CurrentRegion = Region;
804       Offset = 0;
805     }
806 
807     const uptr Size = getSizeByClassId(ClassId);
808     const u16 MaxCount = CacheT::getMaxCached(Size);
809     DCHECK_GT(MaxCount, 0U);
810     // The maximum number of blocks we should carve in the region is dictated
811     // by the maximum number of batches we want to fill, and the amount of
812     // memory left in the current region (we use the lowest of the two). This
813     // will not be 0 as we ensure that a region can at least hold one block (via
814     // static_assert and at the end of this function).
815     const u32 NumberOfBlocks =
816         Min(MaxNumBatches * MaxCount,
817             static_cast<u32>((RegionSize - Offset) / Size));
818     DCHECK_GT(NumberOfBlocks, 0U);
819 
820     constexpr u32 ShuffleArraySize =
821         MaxNumBatches * TransferBatchT::MaxNumCached;
822     // Fill the transfer batches and put them in the size-class freelist. We
823     // need to randomize the blocks for security purposes, so we first fill a
824     // local array that we then shuffle before populating the batches.
825     CompactPtrT ShuffleArray[ShuffleArraySize];
826     DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
827 
828     uptr P = Region + Offset;
829     for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
830       ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P);
831 
832     if (ClassId != SizeClassMap::BatchClassId) {
833       u32 N = 1;
834       uptr CurGroup = compactPtrGroupBase(ShuffleArray[0]);
835       for (u32 I = 1; I < NumberOfBlocks; I++) {
836         if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) {
837           shuffle(ShuffleArray + I - N, N, &Sci->RandState);
838           pushBlocksImpl(C, ClassId, Sci, ShuffleArray + I - N, N,
839                          /*SameGroup=*/true);
840           N = 1;
841           CurGroup = compactPtrGroupBase(ShuffleArray[I]);
842         } else {
843           ++N;
844         }
845       }
846 
847       shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState);
848       pushBlocksImpl(C, ClassId, Sci, &ShuffleArray[NumberOfBlocks - N], N,
849                      /*SameGroup=*/true);
850     } else {
851       pushBatchClassBlocks(Sci, ShuffleArray, NumberOfBlocks);
852     }
853 
854     // Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
855     // the requests from `PushBlocks` and `PopBatch` which are external
856     // interfaces. `populateFreeList` is the internal interface so we should set
857     // the values back to avoid incorrectly setting the stats.
858     Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks;
859 
860     const uptr AllocatedUser = Size * NumberOfBlocks;
861     C->getStats().add(StatFree, AllocatedUser);
862     DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
863     // If there is not enough room in the region currently associated to fit
864     // more blocks, we deassociate the region by resetting CurrentRegion and
865     // CurrentRegionAllocated. Otherwise, update the allocated amount.
866     if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
867       Sci->CurrentRegion = 0;
868       Sci->CurrentRegionAllocated = 0;
869     } else {
870       Sci->CurrentRegionAllocated += AllocatedUser;
871     }
872     Sci->AllocatedUser += AllocatedUser;
873 
874     return true;
875   }
876 
877   void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci)
878       REQUIRES(Sci->Mutex) {
879     if (Sci->AllocatedUser == 0)
880       return;
881     const uptr BlockSize = getSizeByClassId(ClassId);
882     const uptr InUse =
883         Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
884     const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize;
885     uptr PushedBytesDelta = 0;
886     if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
887       PushedBytesDelta =
888           BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
889     }
890     const uptr AvailableChunks = Sci->AllocatedUser / BlockSize;
891     Str->append("  %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
892                 "inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK "
893                 "latest pushed bytes: %6zuK\n",
894                 ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
895                 Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks,
896                 InUse, AvailableChunks, Sci->ReleaseInfo.RangesReleased,
897                 Sci->ReleaseInfo.LastReleasedBytes >> 10,
898                 PushedBytesDelta >> 10);
899   }
900 
901   void getSizeClassFragmentationInfo(SizeClassInfo *Sci, uptr ClassId,
902                                      ScopedString *Str) REQUIRES(Sci->Mutex) {
903     const uptr BlockSize = getSizeByClassId(ClassId);
904     const uptr First = Sci->MinRegionIndex;
905     const uptr Last = Sci->MaxRegionIndex;
906     const uptr Base = First * RegionSize;
907     const uptr NumberOfRegions = Last - First + 1U;
908     auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
909       ScopedLock L(ByteMapMutex);
910       return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
911     };
912 
913     FragmentationRecorder Recorder;
914     if (!Sci->FreeListInfo.BlockList.empty()) {
915       PageReleaseContext Context =
916           markFreeBlocks(Sci, ClassId, BlockSize, Base, NumberOfRegions,
917                          ReleaseToOS::ForceAll);
918       releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
919     }
920 
921     const uptr PageSize = getPageSizeCached();
922     const uptr TotalBlocks = Sci->AllocatedUser / BlockSize;
923     const uptr InUseBlocks =
924         Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
925     uptr AllocatedPagesCount = 0;
926     if (TotalBlocks != 0U) {
927       for (uptr I = 0; I < NumberOfRegions; ++I) {
928         if (SkipRegion(I))
929           continue;
930         AllocatedPagesCount += RegionSize / PageSize;
931       }
932 
933       DCHECK_NE(AllocatedPagesCount, 0U);
934     }
935 
936     DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount());
937     const uptr InUsePages =
938         AllocatedPagesCount - Recorder.getReleasedPagesCount();
939     const uptr InUseBytes = InUsePages * PageSize;
940 
941     uptr Integral;
942     uptr Fractional;
943     computePercentage(BlockSize * InUseBlocks, InUsePages * PageSize, &Integral,
944                       &Fractional);
945     Str->append("  %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total "
946                 "pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n",
947                 ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages,
948                 AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional);
949   }
950 
951   NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
952                                  ReleaseToOS ReleaseType = ReleaseToOS::Normal)
953       REQUIRES(Sci->Mutex) {
954     const uptr BlockSize = getSizeByClassId(ClassId);
955 
956     DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
957     const uptr BytesInFreeList =
958         Sci->AllocatedUser -
959         (Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) *
960             BlockSize;
961 
962     if (UNLIKELY(BytesInFreeList == 0))
963       return 0;
964 
965     // ====================================================================== //
966     // 1. Check if we have enough free blocks and if it's worth doing a page
967     // release.
968     // ====================================================================== //
969     if (ReleaseType != ReleaseToOS::ForceAll &&
970         !hasChanceToReleasePages(Sci, BlockSize, BytesInFreeList,
971                                  ReleaseType)) {
972       return 0;
973     }
974 
975     const uptr First = Sci->MinRegionIndex;
976     const uptr Last = Sci->MaxRegionIndex;
977     DCHECK_NE(Last, 0U);
978     DCHECK_LE(First, Last);
979     uptr TotalReleasedBytes = 0;
980     const uptr Base = First * RegionSize;
981     const uptr NumberOfRegions = Last - First + 1U;
982 
983     // ==================================================================== //
984     // 2. Mark the free blocks and we can tell which pages are in-use by
985     //    querying `PageReleaseContext`.
986     // ==================================================================== //
987     PageReleaseContext Context = markFreeBlocks(Sci, ClassId, BlockSize, Base,
988                                                 NumberOfRegions, ReleaseType);
989     if (!Context.hasBlockMarked())
990       return 0;
991 
992     // ==================================================================== //
993     // 3. Release the unused physical pages back to the OS.
994     // ==================================================================== //
995     ReleaseRecorder Recorder(Base);
996     auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
997       ScopedLock L(ByteMapMutex);
998       return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
999     };
1000     releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
1001 
1002     if (Recorder.getReleasedRangesCount() > 0) {
1003       Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
1004       Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
1005       Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
1006       TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
1007     }
1008     Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
1009 
1010     return TotalReleasedBytes;
1011   }
1012 
1013   bool hasChanceToReleasePages(SizeClassInfo *Sci, uptr BlockSize,
1014                                uptr BytesInFreeList, ReleaseToOS ReleaseType)
1015       REQUIRES(Sci->Mutex) {
1016     DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
1017     const uptr PageSize = getPageSizeCached();
1018 
1019     if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint)
1020       Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
1021 
1022     // Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
1023     // so that we won't underestimate the releasable pages. For example, the
1024     // following is the region usage,
1025     //
1026     //  BytesInFreeListAtLastCheckpoint   AllocatedUser
1027     //                v                         v
1028     //  |--------------------------------------->
1029     //         ^                   ^
1030     //  BytesInFreeList     ReleaseThreshold
1031     //
1032     // In general, if we have collected enough bytes and the amount of free
1033     // bytes meets the ReleaseThreshold, we will try to do page release. If we
1034     // don't update `BytesInFreeListAtLastCheckpoint` when the current
1035     // `BytesInFreeList` is smaller, we may take longer time to wait for enough
1036     // freed blocks because we miss the bytes between
1037     // (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
1038     const uptr PushedBytesDelta =
1039         BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
1040     if (PushedBytesDelta < PageSize)
1041       return false;
1042 
1043     // Releasing smaller blocks is expensive, so we want to make sure that a
1044     // significant amount of bytes are free, and that there has been a good
1045     // amount of batches pushed to the freelist before attempting to release.
1046     if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal)
1047       if (PushedBytesDelta < Sci->AllocatedUser / 16U)
1048         return false;
1049 
1050     if (ReleaseType == ReleaseToOS::Normal) {
1051       const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
1052       if (IntervalMs < 0)
1053         return false;
1054 
1055       // The constant 8 here is selected from profiling some apps and the number
1056       // of unreleased pages in the large size classes is around 16 pages or
1057       // more. Choose half of it as a heuristic and which also avoids page
1058       // release every time for every pushBlocks() attempt by large blocks.
1059       const bool ByPassReleaseInterval =
1060           isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize;
1061       if (!ByPassReleaseInterval) {
1062         if (Sci->ReleaseInfo.LastReleaseAtNs +
1063                 static_cast<u64>(IntervalMs) * 1000000 >
1064             getMonotonicTimeFast()) {
1065           // Memory was returned recently.
1066           return false;
1067         }
1068       }
1069     } // if (ReleaseType == ReleaseToOS::Normal)
1070 
1071     return true;
1072   }
1073 
1074   PageReleaseContext markFreeBlocks(SizeClassInfo *Sci, const uptr ClassId,
1075                                     const uptr BlockSize, const uptr Base,
1076                                     const uptr NumberOfRegions,
1077                                     ReleaseToOS ReleaseType)
1078       REQUIRES(Sci->Mutex) {
1079     const uptr PageSize = getPageSizeCached();
1080     const uptr GroupSize = (1UL << GroupSizeLog);
1081     const uptr CurGroupBase =
1082         compactPtrGroupBase(compactPtr(ClassId, Sci->CurrentRegion));
1083 
1084     PageReleaseContext Context(BlockSize, NumberOfRegions,
1085                                /*ReleaseSize=*/RegionSize);
1086 
1087     auto DecompactPtr = [](CompactPtrT CompactPtr) {
1088       return reinterpret_cast<uptr>(CompactPtr);
1089     };
1090     for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
1091       const uptr GroupBase = decompactGroupBase(BG.CompactPtrGroupBase);
1092       // The `GroupSize` may not be divided by `BlockSize`, which means there is
1093       // an unused space at the end of Region. Exclude that space to avoid
1094       // unused page map entry.
1095       uptr AllocatedGroupSize = GroupBase == CurGroupBase
1096                                     ? Sci->CurrentRegionAllocated
1097                                     : roundDownSlow(GroupSize, BlockSize);
1098       if (AllocatedGroupSize == 0)
1099         continue;
1100 
1101       // TransferBatches are pushed in front of BG.Batches. The first one may
1102       // not have all caches used.
1103       const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
1104                              BG.Batches.front()->getCount();
1105       const uptr BytesInBG = NumBlocks * BlockSize;
1106 
1107       if (ReleaseType != ReleaseToOS::ForceAll) {
1108         if (BytesInBG <= BG.BytesInBGAtLastCheckpoint) {
1109           BG.BytesInBGAtLastCheckpoint = BytesInBG;
1110           continue;
1111         }
1112 
1113         const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint;
1114         if (PushedBytesDelta < PageSize)
1115           continue;
1116 
1117         // Given the randomness property, we try to release the pages only if
1118         // the bytes used by free blocks exceed certain proportion of allocated
1119         // spaces.
1120         if (isSmallBlock(BlockSize) && (BytesInBG * 100U) / AllocatedGroupSize <
1121                                            (100U - 1U - BlockSize / 16U)) {
1122           continue;
1123         }
1124       }
1125 
1126       // TODO: Consider updating this after page release if `ReleaseRecorder`
1127       // can tell the released bytes in each group.
1128       BG.BytesInBGAtLastCheckpoint = BytesInBG;
1129 
1130       const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
1131       const uptr RegionIndex = (GroupBase - Base) / RegionSize;
1132 
1133       if (NumBlocks == MaxContainedBlocks) {
1134         for (const auto &It : BG.Batches)
1135           for (u16 I = 0; I < It.getCount(); ++I)
1136             DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase);
1137 
1138         const uptr To = GroupBase + AllocatedGroupSize;
1139         Context.markRangeAsAllCounted(GroupBase, To, GroupBase, RegionIndex,
1140                                       AllocatedGroupSize);
1141       } else {
1142         DCHECK_LT(NumBlocks, MaxContainedBlocks);
1143 
1144         // Note that we don't always visit blocks in each BatchGroup so that we
1145         // may miss the chance of releasing certain pages that cross
1146         // BatchGroups.
1147         Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase,
1148                                        RegionIndex, AllocatedGroupSize,
1149                                        /*MayContainLastBlockInRegion=*/true);
1150       }
1151 
1152       // We may not be able to do the page release In a rare case that we may
1153       // fail on PageMap allocation.
1154       if (UNLIKELY(!Context.hasBlockMarked()))
1155         break;
1156     }
1157 
1158     return Context;
1159   }
1160 
1161   SizeClassInfo SizeClassInfoArray[NumClasses] = {};
1162 
1163   HybridMutex ByteMapMutex;
1164   // Track the regions in use, 0 is unused, otherwise store ClassId + 1.
1165   ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {};
1166   atomic_s32 ReleaseToOsIntervalMs = {};
1167   // Unless several threads request regions simultaneously from different size
1168   // classes, the stash rarely contains more than 1 entry.
1169   static constexpr uptr MaxStashedRegions = 4;
1170   HybridMutex RegionsStashMutex;
1171   uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0;
1172   uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {};
1173 };
1174 
1175 } // namespace scudo
1176 
1177 #endif // SCUDO_PRIMARY32_H_
1178