1 //===-- primary32.h ---------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef SCUDO_PRIMARY32_H_ 10 #define SCUDO_PRIMARY32_H_ 11 12 #include "allocator_common.h" 13 #include "bytemap.h" 14 #include "common.h" 15 #include "list.h" 16 #include "local_cache.h" 17 #include "options.h" 18 #include "release.h" 19 #include "report.h" 20 #include "stats.h" 21 #include "string_utils.h" 22 #include "thread_annotations.h" 23 24 namespace scudo { 25 26 // SizeClassAllocator32 is an allocator for 32 or 64-bit address space. 27 // 28 // It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes 29 // boundary, and keeps a bytemap of the mappable address space to track the size 30 // class they are associated with. 31 // 32 // Mapped regions are split into equally sized Blocks according to the size 33 // class they belong to, and the associated pointers are shuffled to prevent any 34 // predictable address pattern (the predictability increases with the block 35 // size). 36 // 37 // Regions for size class 0 are special and used to hold TransferBatches, which 38 // allow to transfer arrays of pointers from the global size class freelist to 39 // the thread specific freelist for said class, and back. 40 // 41 // Memory used by this allocator is never unmapped but can be partially 42 // reclaimed if the platform allows for it. 43 44 template <typename Config> class SizeClassAllocator32 { 45 public: 46 typedef typename Config::CompactPtrT CompactPtrT; 47 typedef typename Config::SizeClassMap SizeClassMap; 48 static const uptr GroupSizeLog = Config::getGroupSizeLog(); 49 // The bytemap can only track UINT8_MAX - 1 classes. 50 static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), ""); 51 // Regions should be large enough to hold the largest Block. 52 static_assert((1UL << Config::getRegionSizeLog()) >= SizeClassMap::MaxSize, 53 ""); 54 typedef SizeClassAllocator32<Config> ThisT; 55 typedef SizeClassAllocatorLocalCache<ThisT> CacheT; 56 typedef TransferBatch<ThisT> TransferBatchT; 57 typedef BatchGroup<ThisT> BatchGroupT; 58 59 static_assert(sizeof(BatchGroupT) <= sizeof(TransferBatchT), 60 "BatchGroupT uses the same class size as TransferBatchT"); 61 62 static uptr getSizeByClassId(uptr ClassId) { 63 return (ClassId == SizeClassMap::BatchClassId) 64 ? sizeof(TransferBatchT) 65 : SizeClassMap::getSizeByClassId(ClassId); 66 } 67 68 static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; } 69 70 void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS { 71 if (SCUDO_FUCHSIA) 72 reportError("SizeClassAllocator32 is not supported on Fuchsia"); 73 74 if (SCUDO_TRUSTY) 75 reportError("SizeClassAllocator32 is not supported on Trusty"); 76 77 DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT))); 78 PossibleRegions.init(); 79 u32 Seed; 80 const u64 Time = getMonotonicTimeFast(); 81 if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed))) 82 Seed = static_cast<u32>( 83 Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6)); 84 for (uptr I = 0; I < NumClasses; I++) { 85 SizeClassInfo *Sci = getSizeClassInfo(I); 86 Sci->RandState = getRandomU32(&Seed); 87 // Sci->MaxRegionIndex is already initialized to 0. 88 Sci->MinRegionIndex = NumRegions; 89 Sci->ReleaseInfo.LastReleaseAtNs = Time; 90 } 91 92 // The default value in the primary config has the higher priority. 93 if (Config::getDefaultReleaseToOsIntervalMs() != INT32_MIN) 94 ReleaseToOsInterval = Config::getDefaultReleaseToOsIntervalMs(); 95 setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval)); 96 } 97 98 void unmapTestOnly() { 99 { 100 ScopedLock L(RegionsStashMutex); 101 while (NumberOfStashedRegions > 0) { 102 unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]), 103 RegionSize); 104 } 105 } 106 107 uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0; 108 for (uptr I = 0; I < NumClasses; I++) { 109 SizeClassInfo *Sci = getSizeClassInfo(I); 110 ScopedLock L(Sci->Mutex); 111 if (Sci->MinRegionIndex < MinRegionIndex) 112 MinRegionIndex = Sci->MinRegionIndex; 113 if (Sci->MaxRegionIndex > MaxRegionIndex) 114 MaxRegionIndex = Sci->MaxRegionIndex; 115 *Sci = {}; 116 } 117 118 ScopedLock L(ByteMapMutex); 119 for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) 120 if (PossibleRegions[I]) 121 unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize); 122 PossibleRegions.unmapTestOnly(); 123 } 124 125 // When all blocks are freed, it has to be the same size as `AllocatedUser`. 126 void verifyAllBlocksAreReleasedTestOnly() { 127 // `BatchGroup` and `TransferBatch` also use the blocks from BatchClass. 128 uptr BatchClassUsedInFreeLists = 0; 129 for (uptr I = 0; I < NumClasses; I++) { 130 // We have to count BatchClassUsedInFreeLists in other regions first. 131 if (I == SizeClassMap::BatchClassId) 132 continue; 133 SizeClassInfo *Sci = getSizeClassInfo(I); 134 ScopedLock L1(Sci->Mutex); 135 uptr TotalBlocks = 0; 136 for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { 137 // `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`. 138 BatchClassUsedInFreeLists += BG.Batches.size() + 1; 139 for (const auto &It : BG.Batches) 140 TotalBlocks += It.getCount(); 141 } 142 143 const uptr BlockSize = getSizeByClassId(I); 144 DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize); 145 DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks); 146 } 147 148 SizeClassInfo *Sci = getSizeClassInfo(SizeClassMap::BatchClassId); 149 ScopedLock L1(Sci->Mutex); 150 uptr TotalBlocks = 0; 151 for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { 152 if (LIKELY(!BG.Batches.empty())) { 153 for (const auto &It : BG.Batches) 154 TotalBlocks += It.getCount(); 155 } else { 156 // `BatchGroup` with empty freelist doesn't have `TransferBatch` record 157 // itself. 158 ++TotalBlocks; 159 } 160 } 161 162 const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId); 163 DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists, 164 Sci->AllocatedUser / BlockSize); 165 const uptr BlocksInUse = 166 Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; 167 DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists); 168 } 169 170 CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const { 171 return static_cast<CompactPtrT>(Ptr); 172 } 173 174 void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const { 175 return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr)); 176 } 177 178 uptr compactPtrGroupBase(CompactPtrT CompactPtr) { 179 const uptr Mask = (static_cast<uptr>(1) << GroupSizeLog) - 1; 180 return CompactPtr & ~Mask; 181 } 182 183 uptr decompactGroupBase(uptr CompactPtrGroupBase) { 184 return CompactPtrGroupBase; 185 } 186 187 ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) { 188 const uptr PageSize = getPageSizeCached(); 189 return BlockSize < PageSize / 16U; 190 } 191 192 ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) { 193 const uptr PageSize = getPageSizeCached(); 194 return BlockSize > PageSize; 195 } 196 197 u16 popBlocks(CacheT *C, uptr ClassId, CompactPtrT *ToArray, 198 const u16 MaxBlockCount) { 199 DCHECK_LT(ClassId, NumClasses); 200 SizeClassInfo *Sci = getSizeClassInfo(ClassId); 201 ScopedLock L(Sci->Mutex); 202 203 u16 PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount); 204 if (UNLIKELY(PopCount == 0)) { 205 if (UNLIKELY(!populateFreeList(C, ClassId, Sci))) 206 return 0U; 207 PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount); 208 DCHECK_NE(PopCount, 0U); 209 } 210 211 return PopCount; 212 } 213 214 // Push the array of free blocks to the designated batch group. 215 void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) { 216 DCHECK_LT(ClassId, NumClasses); 217 DCHECK_GT(Size, 0); 218 219 SizeClassInfo *Sci = getSizeClassInfo(ClassId); 220 if (ClassId == SizeClassMap::BatchClassId) { 221 ScopedLock L(Sci->Mutex); 222 pushBatchClassBlocks(Sci, Array, Size); 223 return; 224 } 225 226 // TODO(chiahungduan): Consider not doing grouping if the group size is not 227 // greater than the block size with a certain scale. 228 229 // Sort the blocks so that blocks belonging to the same group can be pushed 230 // together. 231 bool SameGroup = true; 232 for (u32 I = 1; I < Size; ++I) { 233 if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) 234 SameGroup = false; 235 CompactPtrT Cur = Array[I]; 236 u32 J = I; 237 while (J > 0 && 238 compactPtrGroupBase(Cur) < compactPtrGroupBase(Array[J - 1])) { 239 Array[J] = Array[J - 1]; 240 --J; 241 } 242 Array[J] = Cur; 243 } 244 245 ScopedLock L(Sci->Mutex); 246 pushBlocksImpl(C, ClassId, Sci, Array, Size, SameGroup); 247 } 248 249 void disable() NO_THREAD_SAFETY_ANALYSIS { 250 // The BatchClassId must be locked last since other classes can use it. 251 for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) { 252 if (static_cast<uptr>(I) == SizeClassMap::BatchClassId) 253 continue; 254 getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock(); 255 } 256 getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock(); 257 RegionsStashMutex.lock(); 258 ByteMapMutex.lock(); 259 } 260 261 void enable() NO_THREAD_SAFETY_ANALYSIS { 262 ByteMapMutex.unlock(); 263 RegionsStashMutex.unlock(); 264 getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock(); 265 for (uptr I = 0; I < NumClasses; I++) { 266 if (I == SizeClassMap::BatchClassId) 267 continue; 268 getSizeClassInfo(I)->Mutex.unlock(); 269 } 270 } 271 272 template <typename F> void iterateOverBlocks(F Callback) { 273 uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0; 274 for (uptr I = 0; I < NumClasses; I++) { 275 SizeClassInfo *Sci = getSizeClassInfo(I); 276 // TODO: The call of `iterateOverBlocks` requires disabling 277 // SizeClassAllocator32. We may consider locking each region on demand 278 // only. 279 Sci->Mutex.assertHeld(); 280 if (Sci->MinRegionIndex < MinRegionIndex) 281 MinRegionIndex = Sci->MinRegionIndex; 282 if (Sci->MaxRegionIndex > MaxRegionIndex) 283 MaxRegionIndex = Sci->MaxRegionIndex; 284 } 285 286 // SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held. 287 ByteMapMutex.assertHeld(); 288 289 for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) { 290 if (PossibleRegions[I] && 291 (PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) { 292 const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U); 293 const uptr From = I * RegionSize; 294 const uptr To = From + (RegionSize / BlockSize) * BlockSize; 295 for (uptr Block = From; Block < To; Block += BlockSize) 296 Callback(Block); 297 } 298 } 299 } 300 301 void getStats(ScopedString *Str) { 302 // TODO(kostyak): get the RSS per region. 303 uptr TotalMapped = 0; 304 uptr PoppedBlocks = 0; 305 uptr PushedBlocks = 0; 306 for (uptr I = 0; I < NumClasses; I++) { 307 SizeClassInfo *Sci = getSizeClassInfo(I); 308 ScopedLock L(Sci->Mutex); 309 TotalMapped += Sci->AllocatedUser; 310 PoppedBlocks += Sci->FreeListInfo.PoppedBlocks; 311 PushedBlocks += Sci->FreeListInfo.PushedBlocks; 312 } 313 Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; " 314 "remains %zu\n", 315 TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks); 316 for (uptr I = 0; I < NumClasses; I++) { 317 SizeClassInfo *Sci = getSizeClassInfo(I); 318 ScopedLock L(Sci->Mutex); 319 getStats(Str, I, Sci); 320 } 321 } 322 323 void getFragmentationInfo(ScopedString *Str) { 324 Str->append( 325 "Fragmentation Stats: SizeClassAllocator32: page size = %zu bytes\n", 326 getPageSizeCached()); 327 328 for (uptr I = 1; I < NumClasses; I++) { 329 SizeClassInfo *Sci = getSizeClassInfo(I); 330 ScopedLock L(Sci->Mutex); 331 getSizeClassFragmentationInfo(Sci, I, Str); 332 } 333 } 334 335 bool setOption(Option O, sptr Value) { 336 if (O == Option::ReleaseInterval) { 337 const s32 Interval = Max( 338 Min(static_cast<s32>(Value), Config::getMaxReleaseToOsIntervalMs()), 339 Config::getMinReleaseToOsIntervalMs()); 340 atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval); 341 return true; 342 } 343 // Not supported by the Primary, but not an error either. 344 return true; 345 } 346 347 uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) { 348 SizeClassInfo *Sci = getSizeClassInfo(ClassId); 349 // TODO: Once we have separate locks like primary64, we may consider using 350 // tryLock() as well. 351 ScopedLock L(Sci->Mutex); 352 return releaseToOSMaybe(Sci, ClassId, ReleaseType); 353 } 354 355 uptr releaseToOS(ReleaseToOS ReleaseType) { 356 uptr TotalReleasedBytes = 0; 357 for (uptr I = 0; I < NumClasses; I++) { 358 if (I == SizeClassMap::BatchClassId) 359 continue; 360 SizeClassInfo *Sci = getSizeClassInfo(I); 361 ScopedLock L(Sci->Mutex); 362 TotalReleasedBytes += releaseToOSMaybe(Sci, I, ReleaseType); 363 } 364 return TotalReleasedBytes; 365 } 366 367 const char *getRegionInfoArrayAddress() const { return nullptr; } 368 static uptr getRegionInfoArraySize() { return 0; } 369 370 static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData, 371 UNUSED uptr Ptr) { 372 return {}; 373 } 374 375 AtomicOptions Options; 376 377 private: 378 static const uptr NumClasses = SizeClassMap::NumClasses; 379 static const uptr RegionSize = 1UL << Config::getRegionSizeLog(); 380 static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >> 381 Config::getRegionSizeLog(); 382 static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U; 383 typedef FlatByteMap<NumRegions> ByteMap; 384 385 struct ReleaseToOsInfo { 386 uptr BytesInFreeListAtLastCheckpoint; 387 uptr RangesReleased; 388 uptr LastReleasedBytes; 389 u64 LastReleaseAtNs; 390 }; 391 392 struct BlocksInfo { 393 SinglyLinkedList<BatchGroupT> BlockList = {}; 394 uptr PoppedBlocks = 0; 395 uptr PushedBlocks = 0; 396 }; 397 398 struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo { 399 HybridMutex Mutex; 400 BlocksInfo FreeListInfo GUARDED_BY(Mutex); 401 uptr CurrentRegion GUARDED_BY(Mutex); 402 uptr CurrentRegionAllocated GUARDED_BY(Mutex); 403 u32 RandState; 404 uptr AllocatedUser GUARDED_BY(Mutex); 405 // Lowest & highest region index allocated for this size class, to avoid 406 // looping through the whole NumRegions. 407 uptr MinRegionIndex GUARDED_BY(Mutex); 408 uptr MaxRegionIndex GUARDED_BY(Mutex); 409 ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex); 410 }; 411 static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, ""); 412 413 uptr computeRegionId(uptr Mem) { 414 const uptr Id = Mem >> Config::getRegionSizeLog(); 415 CHECK_LT(Id, NumRegions); 416 return Id; 417 } 418 419 uptr allocateRegionSlow() { 420 uptr MapSize = 2 * RegionSize; 421 const uptr MapBase = reinterpret_cast<uptr>( 422 map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM)); 423 if (!MapBase) 424 return 0; 425 const uptr MapEnd = MapBase + MapSize; 426 uptr Region = MapBase; 427 if (isAligned(Region, RegionSize)) { 428 ScopedLock L(RegionsStashMutex); 429 if (NumberOfStashedRegions < MaxStashedRegions) 430 RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize; 431 else 432 MapSize = RegionSize; 433 } else { 434 Region = roundUp(MapBase, RegionSize); 435 unmap(reinterpret_cast<void *>(MapBase), Region - MapBase); 436 MapSize = RegionSize; 437 } 438 const uptr End = Region + MapSize; 439 if (End != MapEnd) 440 unmap(reinterpret_cast<void *>(End), MapEnd - End); 441 442 DCHECK_EQ(Region % RegionSize, 0U); 443 static_assert(Config::getRegionSizeLog() == GroupSizeLog, 444 "Memory group should be the same size as Region"); 445 446 return Region; 447 } 448 449 uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) { 450 DCHECK_LT(ClassId, NumClasses); 451 uptr Region = 0; 452 { 453 ScopedLock L(RegionsStashMutex); 454 if (NumberOfStashedRegions > 0) 455 Region = RegionsStash[--NumberOfStashedRegions]; 456 } 457 if (!Region) 458 Region = allocateRegionSlow(); 459 if (LIKELY(Region)) { 460 // Sci->Mutex is held by the caller, updating the Min/Max is safe. 461 const uptr RegionIndex = computeRegionId(Region); 462 if (RegionIndex < Sci->MinRegionIndex) 463 Sci->MinRegionIndex = RegionIndex; 464 if (RegionIndex > Sci->MaxRegionIndex) 465 Sci->MaxRegionIndex = RegionIndex; 466 ScopedLock L(ByteMapMutex); 467 PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U)); 468 } 469 return Region; 470 } 471 472 SizeClassInfo *getSizeClassInfo(uptr ClassId) { 473 DCHECK_LT(ClassId, NumClasses); 474 return &SizeClassInfoArray[ClassId]; 475 } 476 477 void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size) 478 REQUIRES(Sci->Mutex) { 479 DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId)); 480 481 // Free blocks are recorded by TransferBatch in freelist for all 482 // size-classes. In addition, TransferBatch is allocated from BatchClassId. 483 // In order not to use additional block to record the free blocks in 484 // BatchClassId, they are self-contained. I.e., A TransferBatch records the 485 // block address of itself. See the figure below: 486 // 487 // TransferBatch at 0xABCD 488 // +----------------------------+ 489 // | Free blocks' addr | 490 // | +------+------+------+ | 491 // | |0xABCD|... |... | | 492 // | +------+------+------+ | 493 // +----------------------------+ 494 // 495 // When we allocate all the free blocks in the TransferBatch, the block used 496 // by TransferBatch is also free for use. We don't need to recycle the 497 // TransferBatch. Note that the correctness is maintained by the invariant, 498 // 499 // Each popBlocks() request returns the entire TransferBatch. Returning 500 // part of the blocks in a TransferBatch is invalid. 501 // 502 // This ensures that TransferBatch won't leak the address itself while it's 503 // still holding other valid data. 504 // 505 // Besides, BatchGroup is also allocated from BatchClassId and has its 506 // address recorded in the TransferBatch too. To maintain the correctness, 507 // 508 // The address of BatchGroup is always recorded in the last TransferBatch 509 // in the freelist (also imply that the freelist should only be 510 // updated with push_front). Once the last TransferBatch is popped, 511 // the block used by BatchGroup is also free for use. 512 // 513 // With this approach, the blocks used by BatchGroup and TransferBatch are 514 // reusable and don't need additional space for them. 515 516 Sci->FreeListInfo.PushedBlocks += Size; 517 BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); 518 519 if (BG == nullptr) { 520 // Construct `BatchGroup` on the last element. 521 BG = reinterpret_cast<BatchGroupT *>( 522 decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1])); 523 --Size; 524 BG->Batches.clear(); 525 // BatchClass hasn't enabled memory group. Use `0` to indicate there's no 526 // memory group here. 527 BG->CompactPtrGroupBase = 0; 528 // `BG` is also the block of BatchClassId. Note that this is different 529 // from `CreateGroup` in `pushBlocksImpl` 530 BG->PushedBlocks = 1; 531 BG->BytesInBGAtLastCheckpoint = 0; 532 BG->MaxCachedPerBatch = 533 CacheT::getMaxCached(getSizeByClassId(SizeClassMap::BatchClassId)); 534 535 Sci->FreeListInfo.BlockList.push_front(BG); 536 } 537 538 if (UNLIKELY(Size == 0)) 539 return; 540 541 // This happens under 2 cases. 542 // 1. just allocated a new `BatchGroup`. 543 // 2. Only 1 block is pushed when the freelist is empty. 544 if (BG->Batches.empty()) { 545 // Construct the `TransferBatch` on the last element. 546 TransferBatchT *TB = reinterpret_cast<TransferBatchT *>( 547 decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1])); 548 TB->clear(); 549 // As mentioned above, addresses of `TransferBatch` and `BatchGroup` are 550 // recorded in the TransferBatch. 551 TB->add(Array[Size - 1]); 552 TB->add( 553 compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG))); 554 --Size; 555 DCHECK_EQ(BG->PushedBlocks, 1U); 556 // `TB` is also the block of BatchClassId. 557 BG->PushedBlocks += 1; 558 BG->Batches.push_front(TB); 559 } 560 561 TransferBatchT *CurBatch = BG->Batches.front(); 562 DCHECK_NE(CurBatch, nullptr); 563 564 for (u32 I = 0; I < Size;) { 565 u16 UnusedSlots = 566 static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount()); 567 if (UnusedSlots == 0) { 568 CurBatch = reinterpret_cast<TransferBatchT *>( 569 decompactPtr(SizeClassMap::BatchClassId, Array[I])); 570 CurBatch->clear(); 571 // Self-contained 572 CurBatch->add(Array[I]); 573 ++I; 574 // TODO(chiahungduan): Avoid the use of push_back() in `Batches` of 575 // BatchClassId. 576 BG->Batches.push_front(CurBatch); 577 UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1); 578 } 579 // `UnusedSlots` is u16 so the result will be also fit in u16. 580 const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I)); 581 CurBatch->appendFromArray(&Array[I], AppendSize); 582 I += AppendSize; 583 } 584 585 BG->PushedBlocks += Size; 586 } 587 // Push the blocks to their batch group. The layout will be like, 588 // 589 // FreeListInfo.BlockList - > BG -> BG -> BG 590 // | | | 591 // v v v 592 // TB TB TB 593 // | 594 // v 595 // TB 596 // 597 // Each BlockGroup(BG) will associate with unique group id and the free blocks 598 // are managed by a list of TransferBatch(TB). To reduce the time of inserting 599 // blocks, BGs are sorted and the input `Array` are supposed to be sorted so 600 // that we can get better performance of maintaining sorted property. 601 // Use `SameGroup=true` to indicate that all blocks in the array are from the 602 // same group then we will skip checking the group id of each block. 603 // 604 // The region mutex needs to be held while calling this method. 605 void pushBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci, 606 CompactPtrT *Array, u32 Size, bool SameGroup = false) 607 REQUIRES(Sci->Mutex) { 608 DCHECK_NE(ClassId, SizeClassMap::BatchClassId); 609 DCHECK_GT(Size, 0U); 610 611 auto CreateGroup = [&](uptr CompactPtrGroupBase) { 612 BatchGroupT *BG = 613 reinterpret_cast<BatchGroupT *>(C->getBatchClassBlock()); 614 BG->Batches.clear(); 615 TransferBatchT *TB = 616 reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock()); 617 TB->clear(); 618 619 BG->CompactPtrGroupBase = CompactPtrGroupBase; 620 BG->Batches.push_front(TB); 621 BG->PushedBlocks = 0; 622 BG->BytesInBGAtLastCheckpoint = 0; 623 BG->MaxCachedPerBatch = TransferBatchT::MaxNumCached; 624 625 return BG; 626 }; 627 628 auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) { 629 SinglyLinkedList<TransferBatchT> &Batches = BG->Batches; 630 TransferBatchT *CurBatch = Batches.front(); 631 DCHECK_NE(CurBatch, nullptr); 632 633 for (u32 I = 0; I < Size;) { 634 DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount()); 635 u16 UnusedSlots = 636 static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount()); 637 if (UnusedSlots == 0) { 638 CurBatch = 639 reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock()); 640 CurBatch->clear(); 641 Batches.push_front(CurBatch); 642 UnusedSlots = BG->MaxCachedPerBatch; 643 } 644 // `UnusedSlots` is u16 so the result will be also fit in u16. 645 u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I)); 646 CurBatch->appendFromArray(&Array[I], AppendSize); 647 I += AppendSize; 648 } 649 650 BG->PushedBlocks += Size; 651 }; 652 653 Sci->FreeListInfo.PushedBlocks += Size; 654 BatchGroupT *Cur = Sci->FreeListInfo.BlockList.front(); 655 656 // In the following, `Cur` always points to the BatchGroup for blocks that 657 // will be pushed next. `Prev` is the element right before `Cur`. 658 BatchGroupT *Prev = nullptr; 659 660 while (Cur != nullptr && 661 compactPtrGroupBase(Array[0]) > Cur->CompactPtrGroupBase) { 662 Prev = Cur; 663 Cur = Cur->Next; 664 } 665 666 if (Cur == nullptr || 667 compactPtrGroupBase(Array[0]) != Cur->CompactPtrGroupBase) { 668 Cur = CreateGroup(compactPtrGroupBase(Array[0])); 669 if (Prev == nullptr) 670 Sci->FreeListInfo.BlockList.push_front(Cur); 671 else 672 Sci->FreeListInfo.BlockList.insert(Prev, Cur); 673 } 674 675 // All the blocks are from the same group, just push without checking group 676 // id. 677 if (SameGroup) { 678 for (u32 I = 0; I < Size; ++I) 679 DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase); 680 681 InsertBlocks(Cur, Array, Size); 682 return; 683 } 684 685 // The blocks are sorted by group id. Determine the segment of group and 686 // push them to their group together. 687 u32 Count = 1; 688 for (u32 I = 1; I < Size; ++I) { 689 if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) { 690 DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase); 691 InsertBlocks(Cur, Array + I - Count, Count); 692 693 while (Cur != nullptr && 694 compactPtrGroupBase(Array[I]) > Cur->CompactPtrGroupBase) { 695 Prev = Cur; 696 Cur = Cur->Next; 697 } 698 699 if (Cur == nullptr || 700 compactPtrGroupBase(Array[I]) != Cur->CompactPtrGroupBase) { 701 Cur = CreateGroup(compactPtrGroupBase(Array[I])); 702 DCHECK_NE(Prev, nullptr); 703 Sci->FreeListInfo.BlockList.insert(Prev, Cur); 704 } 705 706 Count = 1; 707 } else { 708 ++Count; 709 } 710 } 711 712 InsertBlocks(Cur, Array + Size - Count, Count); 713 } 714 715 u16 popBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci, 716 CompactPtrT *ToArray, const u16 MaxBlockCount) 717 REQUIRES(Sci->Mutex) { 718 if (Sci->FreeListInfo.BlockList.empty()) 719 return 0U; 720 721 SinglyLinkedList<TransferBatchT> &Batches = 722 Sci->FreeListInfo.BlockList.front()->Batches; 723 724 if (Batches.empty()) { 725 DCHECK_EQ(ClassId, SizeClassMap::BatchClassId); 726 BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); 727 Sci->FreeListInfo.BlockList.pop_front(); 728 729 // Block used by `BatchGroup` is from BatchClassId. Turn the block into 730 // `TransferBatch` with single block. 731 TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(BG); 732 ToArray[0] = 733 compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB)); 734 Sci->FreeListInfo.PoppedBlocks += 1; 735 return 1U; 736 } 737 738 // So far, instead of always filling the blocks to `MaxBlockCount`, we only 739 // examine single `TransferBatch` to minimize the time spent on the primary 740 // allocator. Besides, the sizes of `TransferBatch` and 741 // `CacheT::getMaxCached()` may also impact the time spent on accessing the 742 // primary allocator. 743 // TODO(chiahungduan): Evaluate if we want to always prepare `MaxBlockCount` 744 // blocks and/or adjust the size of `TransferBatch` according to 745 // `CacheT::getMaxCached()`. 746 TransferBatchT *B = Batches.front(); 747 DCHECK_NE(B, nullptr); 748 DCHECK_GT(B->getCount(), 0U); 749 750 // BachClassId should always take all blocks in the TransferBatch. Read the 751 // comment in `pushBatchClassBlocks()` for more details. 752 const u16 PopCount = ClassId == SizeClassMap::BatchClassId 753 ? B->getCount() 754 : Min(MaxBlockCount, B->getCount()); 755 B->moveNToArray(ToArray, PopCount); 756 757 // TODO(chiahungduan): The deallocation of unused BatchClassId blocks can be 758 // done without holding `Mutex`. 759 if (B->empty()) { 760 Batches.pop_front(); 761 // `TransferBatch` of BatchClassId is self-contained, no need to 762 // deallocate. Read the comment in `pushBatchClassBlocks()` for more 763 // details. 764 if (ClassId != SizeClassMap::BatchClassId) 765 C->deallocate(SizeClassMap::BatchClassId, B); 766 767 if (Batches.empty()) { 768 BatchGroupT *BG = Sci->FreeListInfo.BlockList.front(); 769 Sci->FreeListInfo.BlockList.pop_front(); 770 771 // We don't keep BatchGroup with zero blocks to avoid empty-checking 772 // while allocating. Note that block used for constructing BatchGroup is 773 // recorded as free blocks in the last element of BatchGroup::Batches. 774 // Which means, once we pop the last TransferBatch, the block is 775 // implicitly deallocated. 776 if (ClassId != SizeClassMap::BatchClassId) 777 C->deallocate(SizeClassMap::BatchClassId, BG); 778 } 779 } 780 781 Sci->FreeListInfo.PoppedBlocks += PopCount; 782 return PopCount; 783 } 784 785 NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci) 786 REQUIRES(Sci->Mutex) { 787 uptr Region; 788 uptr Offset; 789 // If the size-class currently has a region associated to it, use it. The 790 // newly created blocks will be located after the currently allocated memory 791 // for that region (up to RegionSize). Otherwise, create a new region, where 792 // the new blocks will be carved from the beginning. 793 if (Sci->CurrentRegion) { 794 Region = Sci->CurrentRegion; 795 DCHECK_GT(Sci->CurrentRegionAllocated, 0U); 796 Offset = Sci->CurrentRegionAllocated; 797 } else { 798 DCHECK_EQ(Sci->CurrentRegionAllocated, 0U); 799 Region = allocateRegion(Sci, ClassId); 800 if (UNLIKELY(!Region)) 801 return false; 802 C->getStats().add(StatMapped, RegionSize); 803 Sci->CurrentRegion = Region; 804 Offset = 0; 805 } 806 807 const uptr Size = getSizeByClassId(ClassId); 808 const u16 MaxCount = CacheT::getMaxCached(Size); 809 DCHECK_GT(MaxCount, 0U); 810 // The maximum number of blocks we should carve in the region is dictated 811 // by the maximum number of batches we want to fill, and the amount of 812 // memory left in the current region (we use the lowest of the two). This 813 // will not be 0 as we ensure that a region can at least hold one block (via 814 // static_assert and at the end of this function). 815 const u32 NumberOfBlocks = 816 Min(MaxNumBatches * MaxCount, 817 static_cast<u32>((RegionSize - Offset) / Size)); 818 DCHECK_GT(NumberOfBlocks, 0U); 819 820 constexpr u32 ShuffleArraySize = 821 MaxNumBatches * TransferBatchT::MaxNumCached; 822 // Fill the transfer batches and put them in the size-class freelist. We 823 // need to randomize the blocks for security purposes, so we first fill a 824 // local array that we then shuffle before populating the batches. 825 CompactPtrT ShuffleArray[ShuffleArraySize]; 826 DCHECK_LE(NumberOfBlocks, ShuffleArraySize); 827 828 uptr P = Region + Offset; 829 for (u32 I = 0; I < NumberOfBlocks; I++, P += Size) 830 ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P); 831 832 if (ClassId != SizeClassMap::BatchClassId) { 833 u32 N = 1; 834 uptr CurGroup = compactPtrGroupBase(ShuffleArray[0]); 835 for (u32 I = 1; I < NumberOfBlocks; I++) { 836 if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) { 837 shuffle(ShuffleArray + I - N, N, &Sci->RandState); 838 pushBlocksImpl(C, ClassId, Sci, ShuffleArray + I - N, N, 839 /*SameGroup=*/true); 840 N = 1; 841 CurGroup = compactPtrGroupBase(ShuffleArray[I]); 842 } else { 843 ++N; 844 } 845 } 846 847 shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState); 848 pushBlocksImpl(C, ClassId, Sci, &ShuffleArray[NumberOfBlocks - N], N, 849 /*SameGroup=*/true); 850 } else { 851 pushBatchClassBlocks(Sci, ShuffleArray, NumberOfBlocks); 852 } 853 854 // Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record 855 // the requests from `PushBlocks` and `PopBatch` which are external 856 // interfaces. `populateFreeList` is the internal interface so we should set 857 // the values back to avoid incorrectly setting the stats. 858 Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks; 859 860 const uptr AllocatedUser = Size * NumberOfBlocks; 861 C->getStats().add(StatFree, AllocatedUser); 862 DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize); 863 // If there is not enough room in the region currently associated to fit 864 // more blocks, we deassociate the region by resetting CurrentRegion and 865 // CurrentRegionAllocated. Otherwise, update the allocated amount. 866 if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) { 867 Sci->CurrentRegion = 0; 868 Sci->CurrentRegionAllocated = 0; 869 } else { 870 Sci->CurrentRegionAllocated += AllocatedUser; 871 } 872 Sci->AllocatedUser += AllocatedUser; 873 874 return true; 875 } 876 877 void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci) 878 REQUIRES(Sci->Mutex) { 879 if (Sci->AllocatedUser == 0) 880 return; 881 const uptr BlockSize = getSizeByClassId(ClassId); 882 const uptr InUse = 883 Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; 884 const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize; 885 uptr PushedBytesDelta = 0; 886 if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) { 887 PushedBytesDelta = 888 BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint; 889 } 890 const uptr AvailableChunks = Sci->AllocatedUser / BlockSize; 891 Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu " 892 "inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK " 893 "latest pushed bytes: %6zuK\n", 894 ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10, 895 Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks, 896 InUse, AvailableChunks, Sci->ReleaseInfo.RangesReleased, 897 Sci->ReleaseInfo.LastReleasedBytes >> 10, 898 PushedBytesDelta >> 10); 899 } 900 901 void getSizeClassFragmentationInfo(SizeClassInfo *Sci, uptr ClassId, 902 ScopedString *Str) REQUIRES(Sci->Mutex) { 903 const uptr BlockSize = getSizeByClassId(ClassId); 904 const uptr First = Sci->MinRegionIndex; 905 const uptr Last = Sci->MaxRegionIndex; 906 const uptr Base = First * RegionSize; 907 const uptr NumberOfRegions = Last - First + 1U; 908 auto SkipRegion = [this, First, ClassId](uptr RegionIndex) { 909 ScopedLock L(ByteMapMutex); 910 return (PossibleRegions[First + RegionIndex] - 1U) != ClassId; 911 }; 912 913 FragmentationRecorder Recorder; 914 if (!Sci->FreeListInfo.BlockList.empty()) { 915 PageReleaseContext Context = 916 markFreeBlocks(Sci, ClassId, BlockSize, Base, NumberOfRegions, 917 ReleaseToOS::ForceAll); 918 releaseFreeMemoryToOS(Context, Recorder, SkipRegion); 919 } 920 921 const uptr PageSize = getPageSizeCached(); 922 const uptr TotalBlocks = Sci->AllocatedUser / BlockSize; 923 const uptr InUseBlocks = 924 Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks; 925 uptr AllocatedPagesCount = 0; 926 if (TotalBlocks != 0U) { 927 for (uptr I = 0; I < NumberOfRegions; ++I) { 928 if (SkipRegion(I)) 929 continue; 930 AllocatedPagesCount += RegionSize / PageSize; 931 } 932 933 DCHECK_NE(AllocatedPagesCount, 0U); 934 } 935 936 DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount()); 937 const uptr InUsePages = 938 AllocatedPagesCount - Recorder.getReleasedPagesCount(); 939 const uptr InUseBytes = InUsePages * PageSize; 940 941 uptr Integral; 942 uptr Fractional; 943 computePercentage(BlockSize * InUseBlocks, InUsePages * PageSize, &Integral, 944 &Fractional); 945 Str->append(" %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total " 946 "pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n", 947 ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages, 948 AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional); 949 } 950 951 NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId, 952 ReleaseToOS ReleaseType = ReleaseToOS::Normal) 953 REQUIRES(Sci->Mutex) { 954 const uptr BlockSize = getSizeByClassId(ClassId); 955 956 DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks); 957 const uptr BytesInFreeList = 958 Sci->AllocatedUser - 959 (Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) * 960 BlockSize; 961 962 if (UNLIKELY(BytesInFreeList == 0)) 963 return 0; 964 965 // ====================================================================== // 966 // 1. Check if we have enough free blocks and if it's worth doing a page 967 // release. 968 // ====================================================================== // 969 if (ReleaseType != ReleaseToOS::ForceAll && 970 !hasChanceToReleasePages(Sci, BlockSize, BytesInFreeList, 971 ReleaseType)) { 972 return 0; 973 } 974 975 const uptr First = Sci->MinRegionIndex; 976 const uptr Last = Sci->MaxRegionIndex; 977 DCHECK_NE(Last, 0U); 978 DCHECK_LE(First, Last); 979 uptr TotalReleasedBytes = 0; 980 const uptr Base = First * RegionSize; 981 const uptr NumberOfRegions = Last - First + 1U; 982 983 // ==================================================================== // 984 // 2. Mark the free blocks and we can tell which pages are in-use by 985 // querying `PageReleaseContext`. 986 // ==================================================================== // 987 PageReleaseContext Context = markFreeBlocks(Sci, ClassId, BlockSize, Base, 988 NumberOfRegions, ReleaseType); 989 if (!Context.hasBlockMarked()) 990 return 0; 991 992 // ==================================================================== // 993 // 3. Release the unused physical pages back to the OS. 994 // ==================================================================== // 995 ReleaseRecorder Recorder(Base); 996 auto SkipRegion = [this, First, ClassId](uptr RegionIndex) { 997 ScopedLock L(ByteMapMutex); 998 return (PossibleRegions[First + RegionIndex] - 1U) != ClassId; 999 }; 1000 releaseFreeMemoryToOS(Context, Recorder, SkipRegion); 1001 1002 if (Recorder.getReleasedRangesCount() > 0) { 1003 Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList; 1004 Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount(); 1005 Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes(); 1006 TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes; 1007 } 1008 Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast(); 1009 1010 return TotalReleasedBytes; 1011 } 1012 1013 bool hasChanceToReleasePages(SizeClassInfo *Sci, uptr BlockSize, 1014 uptr BytesInFreeList, ReleaseToOS ReleaseType) 1015 REQUIRES(Sci->Mutex) { 1016 DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks); 1017 const uptr PageSize = getPageSizeCached(); 1018 1019 if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) 1020 Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList; 1021 1022 // Always update `BytesInFreeListAtLastCheckpoint` with the smallest value 1023 // so that we won't underestimate the releasable pages. For example, the 1024 // following is the region usage, 1025 // 1026 // BytesInFreeListAtLastCheckpoint AllocatedUser 1027 // v v 1028 // |---------------------------------------> 1029 // ^ ^ 1030 // BytesInFreeList ReleaseThreshold 1031 // 1032 // In general, if we have collected enough bytes and the amount of free 1033 // bytes meets the ReleaseThreshold, we will try to do page release. If we 1034 // don't update `BytesInFreeListAtLastCheckpoint` when the current 1035 // `BytesInFreeList` is smaller, we may take longer time to wait for enough 1036 // freed blocks because we miss the bytes between 1037 // (BytesInFreeListAtLastCheckpoint - BytesInFreeList). 1038 const uptr PushedBytesDelta = 1039 BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint; 1040 if (PushedBytesDelta < PageSize) 1041 return false; 1042 1043 // Releasing smaller blocks is expensive, so we want to make sure that a 1044 // significant amount of bytes are free, and that there has been a good 1045 // amount of batches pushed to the freelist before attempting to release. 1046 if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal) 1047 if (PushedBytesDelta < Sci->AllocatedUser / 16U) 1048 return false; 1049 1050 if (ReleaseType == ReleaseToOS::Normal) { 1051 const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs); 1052 if (IntervalMs < 0) 1053 return false; 1054 1055 // The constant 8 here is selected from profiling some apps and the number 1056 // of unreleased pages in the large size classes is around 16 pages or 1057 // more. Choose half of it as a heuristic and which also avoids page 1058 // release every time for every pushBlocks() attempt by large blocks. 1059 const bool ByPassReleaseInterval = 1060 isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize; 1061 if (!ByPassReleaseInterval) { 1062 if (Sci->ReleaseInfo.LastReleaseAtNs + 1063 static_cast<u64>(IntervalMs) * 1000000 > 1064 getMonotonicTimeFast()) { 1065 // Memory was returned recently. 1066 return false; 1067 } 1068 } 1069 } // if (ReleaseType == ReleaseToOS::Normal) 1070 1071 return true; 1072 } 1073 1074 PageReleaseContext markFreeBlocks(SizeClassInfo *Sci, const uptr ClassId, 1075 const uptr BlockSize, const uptr Base, 1076 const uptr NumberOfRegions, 1077 ReleaseToOS ReleaseType) 1078 REQUIRES(Sci->Mutex) { 1079 const uptr PageSize = getPageSizeCached(); 1080 const uptr GroupSize = (1UL << GroupSizeLog); 1081 const uptr CurGroupBase = 1082 compactPtrGroupBase(compactPtr(ClassId, Sci->CurrentRegion)); 1083 1084 PageReleaseContext Context(BlockSize, NumberOfRegions, 1085 /*ReleaseSize=*/RegionSize); 1086 1087 auto DecompactPtr = [](CompactPtrT CompactPtr) { 1088 return reinterpret_cast<uptr>(CompactPtr); 1089 }; 1090 for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) { 1091 const uptr GroupBase = decompactGroupBase(BG.CompactPtrGroupBase); 1092 // The `GroupSize` may not be divided by `BlockSize`, which means there is 1093 // an unused space at the end of Region. Exclude that space to avoid 1094 // unused page map entry. 1095 uptr AllocatedGroupSize = GroupBase == CurGroupBase 1096 ? Sci->CurrentRegionAllocated 1097 : roundDownSlow(GroupSize, BlockSize); 1098 if (AllocatedGroupSize == 0) 1099 continue; 1100 1101 // TransferBatches are pushed in front of BG.Batches. The first one may 1102 // not have all caches used. 1103 const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch + 1104 BG.Batches.front()->getCount(); 1105 const uptr BytesInBG = NumBlocks * BlockSize; 1106 1107 if (ReleaseType != ReleaseToOS::ForceAll) { 1108 if (BytesInBG <= BG.BytesInBGAtLastCheckpoint) { 1109 BG.BytesInBGAtLastCheckpoint = BytesInBG; 1110 continue; 1111 } 1112 1113 const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint; 1114 if (PushedBytesDelta < PageSize) 1115 continue; 1116 1117 // Given the randomness property, we try to release the pages only if 1118 // the bytes used by free blocks exceed certain proportion of allocated 1119 // spaces. 1120 if (isSmallBlock(BlockSize) && (BytesInBG * 100U) / AllocatedGroupSize < 1121 (100U - 1U - BlockSize / 16U)) { 1122 continue; 1123 } 1124 } 1125 1126 // TODO: Consider updating this after page release if `ReleaseRecorder` 1127 // can tell the released bytes in each group. 1128 BG.BytesInBGAtLastCheckpoint = BytesInBG; 1129 1130 const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize; 1131 const uptr RegionIndex = (GroupBase - Base) / RegionSize; 1132 1133 if (NumBlocks == MaxContainedBlocks) { 1134 for (const auto &It : BG.Batches) 1135 for (u16 I = 0; I < It.getCount(); ++I) 1136 DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase); 1137 1138 const uptr To = GroupBase + AllocatedGroupSize; 1139 Context.markRangeAsAllCounted(GroupBase, To, GroupBase, RegionIndex, 1140 AllocatedGroupSize); 1141 } else { 1142 DCHECK_LT(NumBlocks, MaxContainedBlocks); 1143 1144 // Note that we don't always visit blocks in each BatchGroup so that we 1145 // may miss the chance of releasing certain pages that cross 1146 // BatchGroups. 1147 Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase, 1148 RegionIndex, AllocatedGroupSize, 1149 /*MayContainLastBlockInRegion=*/true); 1150 } 1151 1152 // We may not be able to do the page release In a rare case that we may 1153 // fail on PageMap allocation. 1154 if (UNLIKELY(!Context.hasBlockMarked())) 1155 break; 1156 } 1157 1158 return Context; 1159 } 1160 1161 SizeClassInfo SizeClassInfoArray[NumClasses] = {}; 1162 1163 HybridMutex ByteMapMutex; 1164 // Track the regions in use, 0 is unused, otherwise store ClassId + 1. 1165 ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {}; 1166 atomic_s32 ReleaseToOsIntervalMs = {}; 1167 // Unless several threads request regions simultaneously from different size 1168 // classes, the stash rarely contains more than 1 entry. 1169 static constexpr uptr MaxStashedRegions = 4; 1170 HybridMutex RegionsStashMutex; 1171 uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0; 1172 uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {}; 1173 }; 1174 1175 } // namespace scudo 1176 1177 #endif // SCUDO_PRIMARY32_H_ 1178