xref: /freebsd/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary32.h (revision 95eb4b873b6a8b527c5bd78d7191975dfca38998)
1 //===-- primary32.h ---------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef SCUDO_PRIMARY32_H_
10 #define SCUDO_PRIMARY32_H_
11 
12 #include "allocator_common.h"
13 #include "bytemap.h"
14 #include "common.h"
15 #include "list.h"
16 #include "local_cache.h"
17 #include "options.h"
18 #include "release.h"
19 #include "report.h"
20 #include "stats.h"
21 #include "string_utils.h"
22 #include "thread_annotations.h"
23 
24 namespace scudo {
25 
26 // SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
27 //
28 // It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
29 // boundary, and keeps a bytemap of the mappable address space to track the size
30 // class they are associated with.
31 //
32 // Mapped regions are split into equally sized Blocks according to the size
33 // class they belong to, and the associated pointers are shuffled to prevent any
34 // predictable address pattern (the predictability increases with the block
35 // size).
36 //
37 // Regions for size class 0 are special and used to hold TransferBatches, which
38 // allow to transfer arrays of pointers from the global size class freelist to
39 // the thread specific freelist for said class, and back.
40 //
41 // Memory used by this allocator is never unmapped but can be partially
42 // reclaimed if the platform allows for it.
43 
44 template <typename Config> class SizeClassAllocator32 {
45 public:
46   typedef typename Config::Primary::CompactPtrT CompactPtrT;
47   typedef typename Config::Primary::SizeClassMap SizeClassMap;
48   static const uptr GroupSizeLog = Config::Primary::GroupSizeLog;
49   // The bytemap can only track UINT8_MAX - 1 classes.
50   static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
51   // Regions should be large enough to hold the largest Block.
52   static_assert((1UL << Config::Primary::RegionSizeLog) >=
53                     SizeClassMap::MaxSize,
54                 "");
55   typedef SizeClassAllocator32<Config> ThisT;
56   typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
57   typedef TransferBatch<ThisT> TransferBatchT;
58   typedef BatchGroup<ThisT> BatchGroupT;
59 
60   static_assert(sizeof(BatchGroupT) <= sizeof(TransferBatchT),
61                 "BatchGroupT uses the same class size as TransferBatchT");
62 
63   static uptr getSizeByClassId(uptr ClassId) {
64     return (ClassId == SizeClassMap::BatchClassId)
65                ? sizeof(TransferBatchT)
66                : SizeClassMap::getSizeByClassId(ClassId);
67   }
68 
69   static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
70 
71   void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
72     if (SCUDO_FUCHSIA)
73       reportError("SizeClassAllocator32 is not supported on Fuchsia");
74 
75     if (SCUDO_TRUSTY)
76       reportError("SizeClassAllocator32 is not supported on Trusty");
77 
78     DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
79     PossibleRegions.init();
80     u32 Seed;
81     const u64 Time = getMonotonicTimeFast();
82     if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
83       Seed = static_cast<u32>(
84           Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
85     for (uptr I = 0; I < NumClasses; I++) {
86       SizeClassInfo *Sci = getSizeClassInfo(I);
87       Sci->RandState = getRandomU32(&Seed);
88       // Sci->MaxRegionIndex is already initialized to 0.
89       Sci->MinRegionIndex = NumRegions;
90       Sci->ReleaseInfo.LastReleaseAtNs = Time;
91     }
92     setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
93   }
94 
95   void unmapTestOnly() {
96     {
97       ScopedLock L(RegionsStashMutex);
98       while (NumberOfStashedRegions > 0) {
99         unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
100               RegionSize);
101       }
102     }
103 
104     uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
105     for (uptr I = 0; I < NumClasses; I++) {
106       SizeClassInfo *Sci = getSizeClassInfo(I);
107       ScopedLock L(Sci->Mutex);
108       if (Sci->MinRegionIndex < MinRegionIndex)
109         MinRegionIndex = Sci->MinRegionIndex;
110       if (Sci->MaxRegionIndex > MaxRegionIndex)
111         MaxRegionIndex = Sci->MaxRegionIndex;
112       *Sci = {};
113     }
114 
115     ScopedLock L(ByteMapMutex);
116     for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
117       if (PossibleRegions[I])
118         unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
119     PossibleRegions.unmapTestOnly();
120   }
121 
122   // When all blocks are freed, it has to be the same size as `AllocatedUser`.
123   void verifyAllBlocksAreReleasedTestOnly() {
124     // `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
125     uptr BatchClassUsedInFreeLists = 0;
126     for (uptr I = 0; I < NumClasses; I++) {
127       // We have to count BatchClassUsedInFreeLists in other regions first.
128       if (I == SizeClassMap::BatchClassId)
129         continue;
130       SizeClassInfo *Sci = getSizeClassInfo(I);
131       ScopedLock L1(Sci->Mutex);
132       uptr TotalBlocks = 0;
133       for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
134         // `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
135         BatchClassUsedInFreeLists += BG.Batches.size() + 1;
136         for (const auto &It : BG.Batches)
137           TotalBlocks += It.getCount();
138       }
139 
140       const uptr BlockSize = getSizeByClassId(I);
141       DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize);
142       DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks);
143     }
144 
145     SizeClassInfo *Sci = getSizeClassInfo(SizeClassMap::BatchClassId);
146     ScopedLock L1(Sci->Mutex);
147     uptr TotalBlocks = 0;
148     for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
149       if (LIKELY(!BG.Batches.empty())) {
150         for (const auto &It : BG.Batches)
151           TotalBlocks += It.getCount();
152       } else {
153         // `BatchGroup` with empty freelist doesn't have `TransferBatch` record
154         // itself.
155         ++TotalBlocks;
156       }
157     }
158 
159     const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
160     DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
161               Sci->AllocatedUser / BlockSize);
162     const uptr BlocksInUse =
163         Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
164     DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
165   }
166 
167   CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const {
168     return static_cast<CompactPtrT>(Ptr);
169   }
170 
171   void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const {
172     return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr));
173   }
174 
175   uptr compactPtrGroupBase(CompactPtrT CompactPtr) {
176     const uptr Mask = (static_cast<uptr>(1) << GroupSizeLog) - 1;
177     return CompactPtr & ~Mask;
178   }
179 
180   uptr decompactGroupBase(uptr CompactPtrGroupBase) {
181     return CompactPtrGroupBase;
182   }
183 
184   ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
185     const uptr PageSize = getPageSizeCached();
186     return BlockSize < PageSize / 16U;
187   }
188 
189   ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
190     const uptr PageSize = getPageSizeCached();
191     return BlockSize > PageSize;
192   }
193 
194   // Note that the `MaxBlockCount` will be used when we support arbitrary blocks
195   // count. Now it's the same as the number of blocks stored in the
196   // `TransferBatch`.
197   u16 popBlocks(CacheT *C, uptr ClassId, CompactPtrT *ToArray,
198                 UNUSED const u16 MaxBlockCount) {
199     TransferBatchT *B = popBatch(C, ClassId);
200     if (!B)
201       return 0;
202 
203     const u16 Count = B->getCount();
204     DCHECK_GT(Count, 0U);
205     B->moveToArray(ToArray);
206 
207     if (ClassId != SizeClassMap::BatchClassId)
208       C->deallocate(SizeClassMap::BatchClassId, B);
209 
210     return Count;
211   }
212 
213   TransferBatchT *popBatch(CacheT *C, uptr ClassId) {
214     DCHECK_LT(ClassId, NumClasses);
215     SizeClassInfo *Sci = getSizeClassInfo(ClassId);
216     ScopedLock L(Sci->Mutex);
217     TransferBatchT *B = popBatchImpl(C, ClassId, Sci);
218     if (UNLIKELY(!B)) {
219       if (UNLIKELY(!populateFreeList(C, ClassId, Sci)))
220         return nullptr;
221       B = popBatchImpl(C, ClassId, Sci);
222       // if `populateFreeList` succeeded, we are supposed to get free blocks.
223       DCHECK_NE(B, nullptr);
224     }
225     return B;
226   }
227 
228   // Push the array of free blocks to the designated batch group.
229   void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
230     DCHECK_LT(ClassId, NumClasses);
231     DCHECK_GT(Size, 0);
232 
233     SizeClassInfo *Sci = getSizeClassInfo(ClassId);
234     if (ClassId == SizeClassMap::BatchClassId) {
235       ScopedLock L(Sci->Mutex);
236       pushBatchClassBlocks(Sci, Array, Size);
237       return;
238     }
239 
240     // TODO(chiahungduan): Consider not doing grouping if the group size is not
241     // greater than the block size with a certain scale.
242 
243     // Sort the blocks so that blocks belonging to the same group can be pushed
244     // together.
245     bool SameGroup = true;
246     for (u32 I = 1; I < Size; ++I) {
247       if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I]))
248         SameGroup = false;
249       CompactPtrT Cur = Array[I];
250       u32 J = I;
251       while (J > 0 &&
252              compactPtrGroupBase(Cur) < compactPtrGroupBase(Array[J - 1])) {
253         Array[J] = Array[J - 1];
254         --J;
255       }
256       Array[J] = Cur;
257     }
258 
259     ScopedLock L(Sci->Mutex);
260     pushBlocksImpl(C, ClassId, Sci, Array, Size, SameGroup);
261   }
262 
263   void disable() NO_THREAD_SAFETY_ANALYSIS {
264     // The BatchClassId must be locked last since other classes can use it.
265     for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
266       if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
267         continue;
268       getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
269     }
270     getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
271     RegionsStashMutex.lock();
272     ByteMapMutex.lock();
273   }
274 
275   void enable() NO_THREAD_SAFETY_ANALYSIS {
276     ByteMapMutex.unlock();
277     RegionsStashMutex.unlock();
278     getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
279     for (uptr I = 0; I < NumClasses; I++) {
280       if (I == SizeClassMap::BatchClassId)
281         continue;
282       getSizeClassInfo(I)->Mutex.unlock();
283     }
284   }
285 
286   template <typename F> void iterateOverBlocks(F Callback) {
287     uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
288     for (uptr I = 0; I < NumClasses; I++) {
289       SizeClassInfo *Sci = getSizeClassInfo(I);
290       // TODO: The call of `iterateOverBlocks` requires disabling
291       // SizeClassAllocator32. We may consider locking each region on demand
292       // only.
293       Sci->Mutex.assertHeld();
294       if (Sci->MinRegionIndex < MinRegionIndex)
295         MinRegionIndex = Sci->MinRegionIndex;
296       if (Sci->MaxRegionIndex > MaxRegionIndex)
297         MaxRegionIndex = Sci->MaxRegionIndex;
298     }
299 
300     // SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held.
301     ByteMapMutex.assertHeld();
302 
303     for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) {
304       if (PossibleRegions[I] &&
305           (PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
306         const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
307         const uptr From = I * RegionSize;
308         const uptr To = From + (RegionSize / BlockSize) * BlockSize;
309         for (uptr Block = From; Block < To; Block += BlockSize)
310           Callback(Block);
311       }
312     }
313   }
314 
315   void getStats(ScopedString *Str) {
316     // TODO(kostyak): get the RSS per region.
317     uptr TotalMapped = 0;
318     uptr PoppedBlocks = 0;
319     uptr PushedBlocks = 0;
320     for (uptr I = 0; I < NumClasses; I++) {
321       SizeClassInfo *Sci = getSizeClassInfo(I);
322       ScopedLock L(Sci->Mutex);
323       TotalMapped += Sci->AllocatedUser;
324       PoppedBlocks += Sci->FreeListInfo.PoppedBlocks;
325       PushedBlocks += Sci->FreeListInfo.PushedBlocks;
326     }
327     Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
328                 "remains %zu\n",
329                 TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
330     for (uptr I = 0; I < NumClasses; I++) {
331       SizeClassInfo *Sci = getSizeClassInfo(I);
332       ScopedLock L(Sci->Mutex);
333       getStats(Str, I, Sci);
334     }
335   }
336 
337   void getFragmentationInfo(ScopedString *Str) {
338     Str->append(
339         "Fragmentation Stats: SizeClassAllocator32: page size = %zu bytes\n",
340         getPageSizeCached());
341 
342     for (uptr I = 1; I < NumClasses; I++) {
343       SizeClassInfo *Sci = getSizeClassInfo(I);
344       ScopedLock L(Sci->Mutex);
345       getSizeClassFragmentationInfo(Sci, I, Str);
346     }
347   }
348 
349   bool setOption(Option O, sptr Value) {
350     if (O == Option::ReleaseInterval) {
351       const s32 Interval = Max(Min(static_cast<s32>(Value),
352                                    Config::Primary::MaxReleaseToOsIntervalMs),
353                                Config::Primary::MinReleaseToOsIntervalMs);
354       atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
355       return true;
356     }
357     // Not supported by the Primary, but not an error either.
358     return true;
359   }
360 
361   uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
362     SizeClassInfo *Sci = getSizeClassInfo(ClassId);
363     // TODO: Once we have separate locks like primary64, we may consider using
364     // tryLock() as well.
365     ScopedLock L(Sci->Mutex);
366     return releaseToOSMaybe(Sci, ClassId, ReleaseType);
367   }
368 
369   uptr releaseToOS(ReleaseToOS ReleaseType) {
370     uptr TotalReleasedBytes = 0;
371     for (uptr I = 0; I < NumClasses; I++) {
372       if (I == SizeClassMap::BatchClassId)
373         continue;
374       SizeClassInfo *Sci = getSizeClassInfo(I);
375       ScopedLock L(Sci->Mutex);
376       TotalReleasedBytes += releaseToOSMaybe(Sci, I, ReleaseType);
377     }
378     return TotalReleasedBytes;
379   }
380 
381   const char *getRegionInfoArrayAddress() const { return nullptr; }
382   static uptr getRegionInfoArraySize() { return 0; }
383 
384   static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData,
385                                     UNUSED uptr Ptr) {
386     return {};
387   }
388 
389   AtomicOptions Options;
390 
391 private:
392   static const uptr NumClasses = SizeClassMap::NumClasses;
393   static const uptr RegionSize = 1UL << Config::Primary::RegionSizeLog;
394   static const uptr NumRegions =
395       SCUDO_MMAP_RANGE_SIZE >> Config::Primary::RegionSizeLog;
396   static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
397   typedef FlatByteMap<NumRegions> ByteMap;
398 
399   struct ReleaseToOsInfo {
400     uptr BytesInFreeListAtLastCheckpoint;
401     uptr RangesReleased;
402     uptr LastReleasedBytes;
403     u64 LastReleaseAtNs;
404   };
405 
406   struct BlocksInfo {
407     SinglyLinkedList<BatchGroupT> BlockList = {};
408     uptr PoppedBlocks = 0;
409     uptr PushedBlocks = 0;
410   };
411 
412   struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
413     HybridMutex Mutex;
414     BlocksInfo FreeListInfo GUARDED_BY(Mutex);
415     uptr CurrentRegion GUARDED_BY(Mutex);
416     uptr CurrentRegionAllocated GUARDED_BY(Mutex);
417     u32 RandState;
418     uptr AllocatedUser GUARDED_BY(Mutex);
419     // Lowest & highest region index allocated for this size class, to avoid
420     // looping through the whole NumRegions.
421     uptr MinRegionIndex GUARDED_BY(Mutex);
422     uptr MaxRegionIndex GUARDED_BY(Mutex);
423     ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex);
424   };
425   static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
426 
427   uptr computeRegionId(uptr Mem) {
428     const uptr Id = Mem >> Config::Primary::RegionSizeLog;
429     CHECK_LT(Id, NumRegions);
430     return Id;
431   }
432 
433   uptr allocateRegionSlow() {
434     uptr MapSize = 2 * RegionSize;
435     const uptr MapBase = reinterpret_cast<uptr>(
436         map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
437     if (!MapBase)
438       return 0;
439     const uptr MapEnd = MapBase + MapSize;
440     uptr Region = MapBase;
441     if (isAligned(Region, RegionSize)) {
442       ScopedLock L(RegionsStashMutex);
443       if (NumberOfStashedRegions < MaxStashedRegions)
444         RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
445       else
446         MapSize = RegionSize;
447     } else {
448       Region = roundUp(MapBase, RegionSize);
449       unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
450       MapSize = RegionSize;
451     }
452     const uptr End = Region + MapSize;
453     if (End != MapEnd)
454       unmap(reinterpret_cast<void *>(End), MapEnd - End);
455 
456     DCHECK_EQ(Region % RegionSize, 0U);
457     static_assert(Config::Primary::RegionSizeLog == GroupSizeLog,
458                   "Memory group should be the same size as Region");
459 
460     return Region;
461   }
462 
463   uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) {
464     DCHECK_LT(ClassId, NumClasses);
465     uptr Region = 0;
466     {
467       ScopedLock L(RegionsStashMutex);
468       if (NumberOfStashedRegions > 0)
469         Region = RegionsStash[--NumberOfStashedRegions];
470     }
471     if (!Region)
472       Region = allocateRegionSlow();
473     if (LIKELY(Region)) {
474       // Sci->Mutex is held by the caller, updating the Min/Max is safe.
475       const uptr RegionIndex = computeRegionId(Region);
476       if (RegionIndex < Sci->MinRegionIndex)
477         Sci->MinRegionIndex = RegionIndex;
478       if (RegionIndex > Sci->MaxRegionIndex)
479         Sci->MaxRegionIndex = RegionIndex;
480       ScopedLock L(ByteMapMutex);
481       PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
482     }
483     return Region;
484   }
485 
486   SizeClassInfo *getSizeClassInfo(uptr ClassId) {
487     DCHECK_LT(ClassId, NumClasses);
488     return &SizeClassInfoArray[ClassId];
489   }
490 
491   void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size)
492       REQUIRES(Sci->Mutex) {
493     DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId));
494 
495     // Free blocks are recorded by TransferBatch in freelist for all
496     // size-classes. In addition, TransferBatch is allocated from BatchClassId.
497     // In order not to use additional block to record the free blocks in
498     // BatchClassId, they are self-contained. I.e., A TransferBatch records the
499     // block address of itself. See the figure below:
500     //
501     // TransferBatch at 0xABCD
502     // +----------------------------+
503     // | Free blocks' addr          |
504     // | +------+------+------+     |
505     // | |0xABCD|...   |...   |     |
506     // | +------+------+------+     |
507     // +----------------------------+
508     //
509     // When we allocate all the free blocks in the TransferBatch, the block used
510     // by TransferBatch is also free for use. We don't need to recycle the
511     // TransferBatch. Note that the correctness is maintained by the invariant,
512     //
513     //   The unit of each popBatch() request is entire TransferBatch. Return
514     //   part of the blocks in a TransferBatch is invalid.
515     //
516     // This ensures that TransferBatch won't leak the address itself while it's
517     // still holding other valid data.
518     //
519     // Besides, BatchGroup is also allocated from BatchClassId and has its
520     // address recorded in the TransferBatch too. To maintain the correctness,
521     //
522     //   The address of BatchGroup is always recorded in the last TransferBatch
523     //   in the freelist (also imply that the freelist should only be
524     //   updated with push_front). Once the last TransferBatch is popped,
525     //   the block used by BatchGroup is also free for use.
526     //
527     // With this approach, the blocks used by BatchGroup and TransferBatch are
528     // reusable and don't need additional space for them.
529 
530     Sci->FreeListInfo.PushedBlocks += Size;
531     BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
532 
533     if (BG == nullptr) {
534       // Construct `BatchGroup` on the last element.
535       BG = reinterpret_cast<BatchGroupT *>(
536           decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
537       --Size;
538       BG->Batches.clear();
539       // BatchClass hasn't enabled memory group. Use `0` to indicate there's no
540       // memory group here.
541       BG->CompactPtrGroupBase = 0;
542       // `BG` is also the block of BatchClassId. Note that this is different
543       // from `CreateGroup` in `pushBlocksImpl`
544       BG->PushedBlocks = 1;
545       BG->BytesInBGAtLastCheckpoint = 0;
546       BG->MaxCachedPerBatch =
547           CacheT::getMaxCached(getSizeByClassId(SizeClassMap::BatchClassId));
548 
549       Sci->FreeListInfo.BlockList.push_front(BG);
550     }
551 
552     if (UNLIKELY(Size == 0))
553       return;
554 
555     // This happens under 2 cases.
556     //   1. just allocated a new `BatchGroup`.
557     //   2. Only 1 block is pushed when the freelist is empty.
558     if (BG->Batches.empty()) {
559       // Construct the `TransferBatch` on the last element.
560       TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(
561           decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
562       TB->clear();
563       // As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
564       // recorded in the TransferBatch.
565       TB->add(Array[Size - 1]);
566       TB->add(
567           compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
568       --Size;
569       DCHECK_EQ(BG->PushedBlocks, 1U);
570       // `TB` is also the block of BatchClassId.
571       BG->PushedBlocks += 1;
572       BG->Batches.push_front(TB);
573     }
574 
575     TransferBatchT *CurBatch = BG->Batches.front();
576     DCHECK_NE(CurBatch, nullptr);
577 
578     for (u32 I = 0; I < Size;) {
579       u16 UnusedSlots =
580           static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
581       if (UnusedSlots == 0) {
582         CurBatch = reinterpret_cast<TransferBatchT *>(
583             decompactPtr(SizeClassMap::BatchClassId, Array[I]));
584         CurBatch->clear();
585         // Self-contained
586         CurBatch->add(Array[I]);
587         ++I;
588         // TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
589         // BatchClassId.
590         BG->Batches.push_front(CurBatch);
591         UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
592       }
593       // `UnusedSlots` is u16 so the result will be also fit in u16.
594       const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
595       CurBatch->appendFromArray(&Array[I], AppendSize);
596       I += AppendSize;
597     }
598 
599     BG->PushedBlocks += Size;
600   }
601   // Push the blocks to their batch group. The layout will be like,
602   //
603   // FreeListInfo.BlockList - > BG -> BG -> BG
604   //                            |     |     |
605   //                            v     v     v
606   //                            TB    TB    TB
607   //                            |
608   //                            v
609   //                            TB
610   //
611   // Each BlockGroup(BG) will associate with unique group id and the free blocks
612   // are managed by a list of TransferBatch(TB). To reduce the time of inserting
613   // blocks, BGs are sorted and the input `Array` are supposed to be sorted so
614   // that we can get better performance of maintaining sorted property.
615   // Use `SameGroup=true` to indicate that all blocks in the array are from the
616   // same group then we will skip checking the group id of each block.
617   //
618   // The region mutex needs to be held while calling this method.
619   void pushBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
620                       CompactPtrT *Array, u32 Size, bool SameGroup = false)
621       REQUIRES(Sci->Mutex) {
622     DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
623     DCHECK_GT(Size, 0U);
624 
625     auto CreateGroup = [&](uptr CompactPtrGroupBase) {
626       BatchGroupT *BG =
627           reinterpret_cast<BatchGroupT *>(C->getBatchClassBlock());
628       BG->Batches.clear();
629       TransferBatchT *TB =
630           reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
631       TB->clear();
632 
633       BG->CompactPtrGroupBase = CompactPtrGroupBase;
634       BG->Batches.push_front(TB);
635       BG->PushedBlocks = 0;
636       BG->BytesInBGAtLastCheckpoint = 0;
637       BG->MaxCachedPerBatch = CacheT::getMaxCached(getSizeByClassId(ClassId));
638 
639       return BG;
640     };
641 
642     auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) {
643       SinglyLinkedList<TransferBatchT> &Batches = BG->Batches;
644       TransferBatchT *CurBatch = Batches.front();
645       DCHECK_NE(CurBatch, nullptr);
646 
647       for (u32 I = 0; I < Size;) {
648         DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
649         u16 UnusedSlots =
650             static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
651         if (UnusedSlots == 0) {
652           CurBatch =
653               reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
654           CurBatch->clear();
655           Batches.push_front(CurBatch);
656           UnusedSlots = BG->MaxCachedPerBatch;
657         }
658         // `UnusedSlots` is u16 so the result will be also fit in u16.
659         u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
660         CurBatch->appendFromArray(&Array[I], AppendSize);
661         I += AppendSize;
662       }
663 
664       BG->PushedBlocks += Size;
665     };
666 
667     Sci->FreeListInfo.PushedBlocks += Size;
668     BatchGroupT *Cur = Sci->FreeListInfo.BlockList.front();
669 
670     // In the following, `Cur` always points to the BatchGroup for blocks that
671     // will be pushed next. `Prev` is the element right before `Cur`.
672     BatchGroupT *Prev = nullptr;
673 
674     while (Cur != nullptr &&
675            compactPtrGroupBase(Array[0]) > Cur->CompactPtrGroupBase) {
676       Prev = Cur;
677       Cur = Cur->Next;
678     }
679 
680     if (Cur == nullptr ||
681         compactPtrGroupBase(Array[0]) != Cur->CompactPtrGroupBase) {
682       Cur = CreateGroup(compactPtrGroupBase(Array[0]));
683       if (Prev == nullptr)
684         Sci->FreeListInfo.BlockList.push_front(Cur);
685       else
686         Sci->FreeListInfo.BlockList.insert(Prev, Cur);
687     }
688 
689     // All the blocks are from the same group, just push without checking group
690     // id.
691     if (SameGroup) {
692       for (u32 I = 0; I < Size; ++I)
693         DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase);
694 
695       InsertBlocks(Cur, Array, Size);
696       return;
697     }
698 
699     // The blocks are sorted by group id. Determine the segment of group and
700     // push them to their group together.
701     u32 Count = 1;
702     for (u32 I = 1; I < Size; ++I) {
703       if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) {
704         DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase);
705         InsertBlocks(Cur, Array + I - Count, Count);
706 
707         while (Cur != nullptr &&
708                compactPtrGroupBase(Array[I]) > Cur->CompactPtrGroupBase) {
709           Prev = Cur;
710           Cur = Cur->Next;
711         }
712 
713         if (Cur == nullptr ||
714             compactPtrGroupBase(Array[I]) != Cur->CompactPtrGroupBase) {
715           Cur = CreateGroup(compactPtrGroupBase(Array[I]));
716           DCHECK_NE(Prev, nullptr);
717           Sci->FreeListInfo.BlockList.insert(Prev, Cur);
718         }
719 
720         Count = 1;
721       } else {
722         ++Count;
723       }
724     }
725 
726     InsertBlocks(Cur, Array + Size - Count, Count);
727   }
728 
729   // Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest
730   // group id will be considered first.
731   //
732   // The region mutex needs to be held while calling this method.
733   TransferBatchT *popBatchImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci)
734       REQUIRES(Sci->Mutex) {
735     if (Sci->FreeListInfo.BlockList.empty())
736       return nullptr;
737 
738     SinglyLinkedList<TransferBatchT> &Batches =
739         Sci->FreeListInfo.BlockList.front()->Batches;
740 
741     if (Batches.empty()) {
742       DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
743       BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
744       Sci->FreeListInfo.BlockList.pop_front();
745 
746       // Block used by `BatchGroup` is from BatchClassId. Turn the block into
747       // `TransferBatch` with single block.
748       TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(BG);
749       TB->clear();
750       TB->add(
751           compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB)));
752       Sci->FreeListInfo.PoppedBlocks += 1;
753       return TB;
754     }
755 
756     TransferBatchT *B = Batches.front();
757     Batches.pop_front();
758     DCHECK_NE(B, nullptr);
759     DCHECK_GT(B->getCount(), 0U);
760 
761     if (Batches.empty()) {
762       BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
763       Sci->FreeListInfo.BlockList.pop_front();
764 
765       // We don't keep BatchGroup with zero blocks to avoid empty-checking while
766       // allocating. Note that block used by constructing BatchGroup is recorded
767       // as free blocks in the last element of BatchGroup::Batches. Which means,
768       // once we pop the last TransferBatch, the block is implicitly
769       // deallocated.
770       if (ClassId != SizeClassMap::BatchClassId)
771         C->deallocate(SizeClassMap::BatchClassId, BG);
772     }
773 
774     Sci->FreeListInfo.PoppedBlocks += B->getCount();
775     return B;
776   }
777 
778   NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci)
779       REQUIRES(Sci->Mutex) {
780     uptr Region;
781     uptr Offset;
782     // If the size-class currently has a region associated to it, use it. The
783     // newly created blocks will be located after the currently allocated memory
784     // for that region (up to RegionSize). Otherwise, create a new region, where
785     // the new blocks will be carved from the beginning.
786     if (Sci->CurrentRegion) {
787       Region = Sci->CurrentRegion;
788       DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
789       Offset = Sci->CurrentRegionAllocated;
790     } else {
791       DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
792       Region = allocateRegion(Sci, ClassId);
793       if (UNLIKELY(!Region))
794         return false;
795       C->getStats().add(StatMapped, RegionSize);
796       Sci->CurrentRegion = Region;
797       Offset = 0;
798     }
799 
800     const uptr Size = getSizeByClassId(ClassId);
801     const u16 MaxCount = CacheT::getMaxCached(Size);
802     DCHECK_GT(MaxCount, 0U);
803     // The maximum number of blocks we should carve in the region is dictated
804     // by the maximum number of batches we want to fill, and the amount of
805     // memory left in the current region (we use the lowest of the two). This
806     // will not be 0 as we ensure that a region can at least hold one block (via
807     // static_assert and at the end of this function).
808     const u32 NumberOfBlocks =
809         Min(MaxNumBatches * MaxCount,
810             static_cast<u32>((RegionSize - Offset) / Size));
811     DCHECK_GT(NumberOfBlocks, 0U);
812 
813     constexpr u32 ShuffleArraySize =
814         MaxNumBatches * TransferBatchT::MaxNumCached;
815     // Fill the transfer batches and put them in the size-class freelist. We
816     // need to randomize the blocks for security purposes, so we first fill a
817     // local array that we then shuffle before populating the batches.
818     CompactPtrT ShuffleArray[ShuffleArraySize];
819     DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
820 
821     uptr P = Region + Offset;
822     for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
823       ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P);
824 
825     if (ClassId != SizeClassMap::BatchClassId) {
826       u32 N = 1;
827       uptr CurGroup = compactPtrGroupBase(ShuffleArray[0]);
828       for (u32 I = 1; I < NumberOfBlocks; I++) {
829         if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) {
830           shuffle(ShuffleArray + I - N, N, &Sci->RandState);
831           pushBlocksImpl(C, ClassId, Sci, ShuffleArray + I - N, N,
832                          /*SameGroup=*/true);
833           N = 1;
834           CurGroup = compactPtrGroupBase(ShuffleArray[I]);
835         } else {
836           ++N;
837         }
838       }
839 
840       shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState);
841       pushBlocksImpl(C, ClassId, Sci, &ShuffleArray[NumberOfBlocks - N], N,
842                      /*SameGroup=*/true);
843     } else {
844       pushBatchClassBlocks(Sci, ShuffleArray, NumberOfBlocks);
845     }
846 
847     // Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
848     // the requests from `PushBlocks` and `PopBatch` which are external
849     // interfaces. `populateFreeList` is the internal interface so we should set
850     // the values back to avoid incorrectly setting the stats.
851     Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks;
852 
853     const uptr AllocatedUser = Size * NumberOfBlocks;
854     C->getStats().add(StatFree, AllocatedUser);
855     DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
856     // If there is not enough room in the region currently associated to fit
857     // more blocks, we deassociate the region by resetting CurrentRegion and
858     // CurrentRegionAllocated. Otherwise, update the allocated amount.
859     if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
860       Sci->CurrentRegion = 0;
861       Sci->CurrentRegionAllocated = 0;
862     } else {
863       Sci->CurrentRegionAllocated += AllocatedUser;
864     }
865     Sci->AllocatedUser += AllocatedUser;
866 
867     return true;
868   }
869 
870   void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci)
871       REQUIRES(Sci->Mutex) {
872     if (Sci->AllocatedUser == 0)
873       return;
874     const uptr BlockSize = getSizeByClassId(ClassId);
875     const uptr InUse =
876         Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
877     const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize;
878     uptr PushedBytesDelta = 0;
879     if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
880       PushedBytesDelta =
881           BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
882     }
883     const uptr AvailableChunks = Sci->AllocatedUser / BlockSize;
884     Str->append("  %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
885                 "inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK "
886                 "latest pushed bytes: %6zuK\n",
887                 ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
888                 Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks,
889                 InUse, AvailableChunks, Sci->ReleaseInfo.RangesReleased,
890                 Sci->ReleaseInfo.LastReleasedBytes >> 10,
891                 PushedBytesDelta >> 10);
892   }
893 
894   void getSizeClassFragmentationInfo(SizeClassInfo *Sci, uptr ClassId,
895                                      ScopedString *Str) REQUIRES(Sci->Mutex) {
896     const uptr BlockSize = getSizeByClassId(ClassId);
897     const uptr First = Sci->MinRegionIndex;
898     const uptr Last = Sci->MaxRegionIndex;
899     const uptr Base = First * RegionSize;
900     const uptr NumberOfRegions = Last - First + 1U;
901     auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
902       ScopedLock L(ByteMapMutex);
903       return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
904     };
905 
906     FragmentationRecorder Recorder;
907     if (!Sci->FreeListInfo.BlockList.empty()) {
908       PageReleaseContext Context =
909           markFreeBlocks(Sci, ClassId, BlockSize, Base, NumberOfRegions,
910                          ReleaseToOS::ForceAll);
911       releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
912     }
913 
914     const uptr PageSize = getPageSizeCached();
915     const uptr TotalBlocks = Sci->AllocatedUser / BlockSize;
916     const uptr InUseBlocks =
917         Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
918     uptr AllocatedPagesCount = 0;
919     if (TotalBlocks != 0U) {
920       for (uptr I = 0; I < NumberOfRegions; ++I) {
921         if (SkipRegion(I))
922           continue;
923         AllocatedPagesCount += RegionSize / PageSize;
924       }
925 
926       DCHECK_NE(AllocatedPagesCount, 0U);
927     }
928 
929     DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount());
930     const uptr InUsePages =
931         AllocatedPagesCount - Recorder.getReleasedPagesCount();
932     const uptr InUseBytes = InUsePages * PageSize;
933 
934     uptr Integral;
935     uptr Fractional;
936     computePercentage(BlockSize * InUseBlocks, InUsePages * PageSize, &Integral,
937                       &Fractional);
938     Str->append("  %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total "
939                 "pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n",
940                 ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages,
941                 AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional);
942   }
943 
944   NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
945                                  ReleaseToOS ReleaseType = ReleaseToOS::Normal)
946       REQUIRES(Sci->Mutex) {
947     const uptr BlockSize = getSizeByClassId(ClassId);
948 
949     DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
950     const uptr BytesInFreeList =
951         Sci->AllocatedUser -
952         (Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) *
953             BlockSize;
954 
955     if (UNLIKELY(BytesInFreeList == 0))
956       return 0;
957 
958     // ====================================================================== //
959     // 1. Check if we have enough free blocks and if it's worth doing a page
960     // release.
961     // ====================================================================== //
962     if (ReleaseType != ReleaseToOS::ForceAll &&
963         !hasChanceToReleasePages(Sci, BlockSize, BytesInFreeList,
964                                  ReleaseType)) {
965       return 0;
966     }
967 
968     const uptr First = Sci->MinRegionIndex;
969     const uptr Last = Sci->MaxRegionIndex;
970     DCHECK_NE(Last, 0U);
971     DCHECK_LE(First, Last);
972     uptr TotalReleasedBytes = 0;
973     const uptr Base = First * RegionSize;
974     const uptr NumberOfRegions = Last - First + 1U;
975 
976     // ==================================================================== //
977     // 2. Mark the free blocks and we can tell which pages are in-use by
978     //    querying `PageReleaseContext`.
979     // ==================================================================== //
980     PageReleaseContext Context = markFreeBlocks(Sci, ClassId, BlockSize, Base,
981                                                 NumberOfRegions, ReleaseType);
982     if (!Context.hasBlockMarked())
983       return 0;
984 
985     // ==================================================================== //
986     // 3. Release the unused physical pages back to the OS.
987     // ==================================================================== //
988     ReleaseRecorder Recorder(Base);
989     auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
990       ScopedLock L(ByteMapMutex);
991       return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
992     };
993     releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
994 
995     if (Recorder.getReleasedRangesCount() > 0) {
996       Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
997       Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
998       Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
999       TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
1000     }
1001     Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
1002 
1003     return TotalReleasedBytes;
1004   }
1005 
1006   bool hasChanceToReleasePages(SizeClassInfo *Sci, uptr BlockSize,
1007                                uptr BytesInFreeList, ReleaseToOS ReleaseType)
1008       REQUIRES(Sci->Mutex) {
1009     DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
1010     const uptr PageSize = getPageSizeCached();
1011 
1012     if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint)
1013       Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
1014 
1015     // Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
1016     // so that we won't underestimate the releasable pages. For example, the
1017     // following is the region usage,
1018     //
1019     //  BytesInFreeListAtLastCheckpoint   AllocatedUser
1020     //                v                         v
1021     //  |--------------------------------------->
1022     //         ^                   ^
1023     //  BytesInFreeList     ReleaseThreshold
1024     //
1025     // In general, if we have collected enough bytes and the amount of free
1026     // bytes meets the ReleaseThreshold, we will try to do page release. If we
1027     // don't update `BytesInFreeListAtLastCheckpoint` when the current
1028     // `BytesInFreeList` is smaller, we may take longer time to wait for enough
1029     // freed blocks because we miss the bytes between
1030     // (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
1031     const uptr PushedBytesDelta =
1032         BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
1033     if (PushedBytesDelta < PageSize)
1034       return false;
1035 
1036     // Releasing smaller blocks is expensive, so we want to make sure that a
1037     // significant amount of bytes are free, and that there has been a good
1038     // amount of batches pushed to the freelist before attempting to release.
1039     if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal)
1040       if (PushedBytesDelta < Sci->AllocatedUser / 16U)
1041         return false;
1042 
1043     if (ReleaseType == ReleaseToOS::Normal) {
1044       const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
1045       if (IntervalMs < 0)
1046         return false;
1047 
1048       // The constant 8 here is selected from profiling some apps and the number
1049       // of unreleased pages in the large size classes is around 16 pages or
1050       // more. Choose half of it as a heuristic and which also avoids page
1051       // release every time for every pushBlocks() attempt by large blocks.
1052       const bool ByPassReleaseInterval =
1053           isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize;
1054       if (!ByPassReleaseInterval) {
1055         if (Sci->ReleaseInfo.LastReleaseAtNs +
1056                 static_cast<u64>(IntervalMs) * 1000000 >
1057             getMonotonicTimeFast()) {
1058           // Memory was returned recently.
1059           return false;
1060         }
1061       }
1062     } // if (ReleaseType == ReleaseToOS::Normal)
1063 
1064     return true;
1065   }
1066 
1067   PageReleaseContext markFreeBlocks(SizeClassInfo *Sci, const uptr ClassId,
1068                                     const uptr BlockSize, const uptr Base,
1069                                     const uptr NumberOfRegions,
1070                                     ReleaseToOS ReleaseType)
1071       REQUIRES(Sci->Mutex) {
1072     const uptr PageSize = getPageSizeCached();
1073     const uptr GroupSize = (1UL << GroupSizeLog);
1074     const uptr CurGroupBase =
1075         compactPtrGroupBase(compactPtr(ClassId, Sci->CurrentRegion));
1076 
1077     PageReleaseContext Context(BlockSize, NumberOfRegions,
1078                                /*ReleaseSize=*/RegionSize);
1079 
1080     auto DecompactPtr = [](CompactPtrT CompactPtr) {
1081       return reinterpret_cast<uptr>(CompactPtr);
1082     };
1083     for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
1084       const uptr GroupBase = decompactGroupBase(BG.CompactPtrGroupBase);
1085       // The `GroupSize` may not be divided by `BlockSize`, which means there is
1086       // an unused space at the end of Region. Exclude that space to avoid
1087       // unused page map entry.
1088       uptr AllocatedGroupSize = GroupBase == CurGroupBase
1089                                     ? Sci->CurrentRegionAllocated
1090                                     : roundDownSlow(GroupSize, BlockSize);
1091       if (AllocatedGroupSize == 0)
1092         continue;
1093 
1094       // TransferBatches are pushed in front of BG.Batches. The first one may
1095       // not have all caches used.
1096       const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
1097                              BG.Batches.front()->getCount();
1098       const uptr BytesInBG = NumBlocks * BlockSize;
1099 
1100       if (ReleaseType != ReleaseToOS::ForceAll) {
1101         if (BytesInBG <= BG.BytesInBGAtLastCheckpoint) {
1102           BG.BytesInBGAtLastCheckpoint = BytesInBG;
1103           continue;
1104         }
1105 
1106         const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint;
1107         if (PushedBytesDelta < PageSize)
1108           continue;
1109 
1110         // Given the randomness property, we try to release the pages only if
1111         // the bytes used by free blocks exceed certain proportion of allocated
1112         // spaces.
1113         if (isSmallBlock(BlockSize) && (BytesInBG * 100U) / AllocatedGroupSize <
1114                                            (100U - 1U - BlockSize / 16U)) {
1115           continue;
1116         }
1117       }
1118 
1119       // TODO: Consider updating this after page release if `ReleaseRecorder`
1120       // can tell the released bytes in each group.
1121       BG.BytesInBGAtLastCheckpoint = BytesInBG;
1122 
1123       const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
1124       const uptr RegionIndex = (GroupBase - Base) / RegionSize;
1125 
1126       if (NumBlocks == MaxContainedBlocks) {
1127         for (const auto &It : BG.Batches)
1128           for (u16 I = 0; I < It.getCount(); ++I)
1129             DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase);
1130 
1131         const uptr To = GroupBase + AllocatedGroupSize;
1132         Context.markRangeAsAllCounted(GroupBase, To, GroupBase, RegionIndex,
1133                                       AllocatedGroupSize);
1134       } else {
1135         DCHECK_LT(NumBlocks, MaxContainedBlocks);
1136 
1137         // Note that we don't always visit blocks in each BatchGroup so that we
1138         // may miss the chance of releasing certain pages that cross
1139         // BatchGroups.
1140         Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase,
1141                                        RegionIndex, AllocatedGroupSize,
1142                                        /*MayContainLastBlockInRegion=*/true);
1143       }
1144 
1145       // We may not be able to do the page release In a rare case that we may
1146       // fail on PageMap allocation.
1147       if (UNLIKELY(!Context.hasBlockMarked()))
1148         break;
1149     }
1150 
1151     return Context;
1152   }
1153 
1154   SizeClassInfo SizeClassInfoArray[NumClasses] = {};
1155 
1156   HybridMutex ByteMapMutex;
1157   // Track the regions in use, 0 is unused, otherwise store ClassId + 1.
1158   ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {};
1159   atomic_s32 ReleaseToOsIntervalMs = {};
1160   // Unless several threads request regions simultaneously from different size
1161   // classes, the stash rarely contains more than 1 entry.
1162   static constexpr uptr MaxStashedRegions = 4;
1163   HybridMutex RegionsStashMutex;
1164   uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0;
1165   uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {};
1166 };
1167 
1168 } // namespace scudo
1169 
1170 #endif // SCUDO_PRIMARY32_H_
1171