xref: /freebsd/contrib/llvm-project/compiler-rt/lib/scudo/standalone/combined.h (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- combined.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef SCUDO_COMBINED_H_
10 #define SCUDO_COMBINED_H_
11 
12 #include "allocator_config_wrapper.h"
13 #include "atomic_helpers.h"
14 #include "chunk.h"
15 #include "common.h"
16 #include "flags.h"
17 #include "flags_parser.h"
18 #include "local_cache.h"
19 #include "mem_map.h"
20 #include "memtag.h"
21 #include "mutex.h"
22 #include "options.h"
23 #include "quarantine.h"
24 #include "report.h"
25 #include "secondary.h"
26 #include "stack_depot.h"
27 #include "string_utils.h"
28 #include "tsd.h"
29 
30 #include "scudo/interface.h"
31 
32 #ifdef GWP_ASAN_HOOKS
33 #include "gwp_asan/guarded_pool_allocator.h"
34 #include "gwp_asan/optional/backtrace.h"
35 #include "gwp_asan/optional/segv_handler.h"
36 #endif // GWP_ASAN_HOOKS
37 
38 extern "C" inline void EmptyCallback() {}
39 
40 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
41 // This function is not part of the NDK so it does not appear in any public
42 // header files. We only declare/use it when targeting the platform.
43 extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
44                                                      size_t num_entries);
45 #endif
46 
47 namespace scudo {
48 
49 template <class Config, void (*PostInitCallback)(void) = EmptyCallback>
50 class Allocator {
51 public:
52   using AllocatorConfig = BaseConfig<Config>;
53   using PrimaryT =
54       typename AllocatorConfig::template PrimaryT<PrimaryConfig<Config>>;
55   using SecondaryT =
56       typename AllocatorConfig::template SecondaryT<SecondaryConfig<Config>>;
57   using CacheT = typename PrimaryT::CacheT;
58   typedef Allocator<Config, PostInitCallback> ThisT;
59   typedef typename AllocatorConfig::template TSDRegistryT<ThisT> TSDRegistryT;
60 
61   void callPostInitCallback() {
62     pthread_once(&PostInitNonce, PostInitCallback);
63   }
64 
65   struct QuarantineCallback {
66     explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
67         : Allocator(Instance), Cache(LocalCache) {}
68 
69     // Chunk recycling function, returns a quarantined chunk to the backend,
70     // first making sure it hasn't been tampered with.
71     void recycle(void *Ptr) {
72       Chunk::UnpackedHeader Header;
73       Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
74       if (UNLIKELY(Header.State != Chunk::State::Quarantined))
75         reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
76 
77       Header.State = Chunk::State::Available;
78       Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
79 
80       if (allocatorSupportsMemoryTagging<AllocatorConfig>())
81         Ptr = untagPointer(Ptr);
82       void *BlockBegin = Allocator::getBlockBegin(Ptr, &Header);
83       Cache.deallocate(Header.ClassId, BlockBegin);
84     }
85 
86     // We take a shortcut when allocating a quarantine batch by working with the
87     // appropriate class ID instead of using Size. The compiler should optimize
88     // the class ID computation and work with the associated cache directly.
89     void *allocate(UNUSED uptr Size) {
90       const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
91           sizeof(QuarantineBatch) + Chunk::getHeaderSize());
92       void *Ptr = Cache.allocate(QuarantineClassId);
93       // Quarantine batch allocation failure is fatal.
94       if (UNLIKELY(!Ptr))
95         reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
96 
97       Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
98                                      Chunk::getHeaderSize());
99       Chunk::UnpackedHeader Header = {};
100       Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
101       Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
102       Header.State = Chunk::State::Allocated;
103       Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
104 
105       // Reset tag to 0 as this chunk may have been previously used for a tagged
106       // user allocation.
107       if (UNLIKELY(useMemoryTagging<AllocatorConfig>(
108               Allocator.Primary.Options.load())))
109         storeTags(reinterpret_cast<uptr>(Ptr),
110                   reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch));
111 
112       return Ptr;
113     }
114 
115     void deallocate(void *Ptr) {
116       const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
117           sizeof(QuarantineBatch) + Chunk::getHeaderSize());
118       Chunk::UnpackedHeader Header;
119       Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
120 
121       if (UNLIKELY(Header.State != Chunk::State::Allocated))
122         reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
123       DCHECK_EQ(Header.ClassId, QuarantineClassId);
124       DCHECK_EQ(Header.Offset, 0);
125       DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
126 
127       Header.State = Chunk::State::Available;
128       Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
129       Cache.deallocate(QuarantineClassId,
130                        reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
131                                                 Chunk::getHeaderSize()));
132     }
133 
134   private:
135     ThisT &Allocator;
136     CacheT &Cache;
137   };
138 
139   typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
140   typedef typename QuarantineT::CacheT QuarantineCacheT;
141 
142   void init() {
143     performSanityChecks();
144 
145     // Check if hardware CRC32 is supported in the binary and by the platform,
146     // if so, opt for the CRC32 hardware version of the checksum.
147     if (&computeHardwareCRC32 && hasHardwareCRC32())
148       HashAlgorithm = Checksum::HardwareCRC32;
149 
150     if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
151       Cookie = static_cast<u32>(getMonotonicTime() ^
152                                 (reinterpret_cast<uptr>(this) >> 4));
153 
154     initFlags();
155     reportUnrecognizedFlags();
156 
157     // Store some flags locally.
158     if (getFlags()->may_return_null)
159       Primary.Options.set(OptionBit::MayReturnNull);
160     if (getFlags()->zero_contents)
161       Primary.Options.setFillContentsMode(ZeroFill);
162     else if (getFlags()->pattern_fill_contents)
163       Primary.Options.setFillContentsMode(PatternOrZeroFill);
164     if (getFlags()->dealloc_type_mismatch)
165       Primary.Options.set(OptionBit::DeallocTypeMismatch);
166     if (getFlags()->delete_size_mismatch)
167       Primary.Options.set(OptionBit::DeleteSizeMismatch);
168     if (allocatorSupportsMemoryTagging<AllocatorConfig>() &&
169         systemSupportsMemoryTagging())
170       Primary.Options.set(OptionBit::UseMemoryTagging);
171 
172     QuarantineMaxChunkSize =
173         static_cast<u32>(getFlags()->quarantine_max_chunk_size);
174 
175     Stats.init();
176     // TODO(chiahungduan): Given that we support setting the default value in
177     // the PrimaryConfig and CacheConfig, consider to deprecate the use of
178     // `release_to_os_interval_ms` flag.
179     const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
180     Primary.init(ReleaseToOsIntervalMs);
181     Secondary.init(&Stats, ReleaseToOsIntervalMs);
182     Quarantine.init(
183         static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
184         static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
185   }
186 
187   void enableRingBuffer() NO_THREAD_SAFETY_ANALYSIS {
188     AllocationRingBuffer *RB = getRingBuffer();
189     if (RB)
190       RB->Depot->enable();
191     RingBufferInitLock.unlock();
192   }
193 
194   void disableRingBuffer() NO_THREAD_SAFETY_ANALYSIS {
195     RingBufferInitLock.lock();
196     AllocationRingBuffer *RB = getRingBuffer();
197     if (RB)
198       RB->Depot->disable();
199   }
200 
201   // Initialize the embedded GWP-ASan instance. Requires the main allocator to
202   // be functional, best called from PostInitCallback.
203   void initGwpAsan() {
204 #ifdef GWP_ASAN_HOOKS
205     gwp_asan::options::Options Opt;
206     Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
207     Opt.MaxSimultaneousAllocations =
208         getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
209     Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
210     Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
211     Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable;
212     // Embedded GWP-ASan is locked through the Scudo atfork handler (via
213     // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
214     // handler.
215     Opt.InstallForkHandlers = false;
216     Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction();
217     GuardedAlloc.init(Opt);
218 
219     if (Opt.InstallSignalHandlers)
220       gwp_asan::segv_handler::installSignalHandlers(
221           &GuardedAlloc, Printf,
222           gwp_asan::backtrace::getPrintBacktraceFunction(),
223           gwp_asan::backtrace::getSegvBacktraceFunction(),
224           Opt.Recoverable);
225 
226     GuardedAllocSlotSize =
227         GuardedAlloc.getAllocatorState()->maximumAllocationSize();
228     Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) *
229                             GuardedAllocSlotSize);
230 #endif // GWP_ASAN_HOOKS
231   }
232 
233 #ifdef GWP_ASAN_HOOKS
234   const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() {
235     return GuardedAlloc.getMetadataRegion();
236   }
237 
238   const gwp_asan::AllocatorState *getGwpAsanAllocatorState() {
239     return GuardedAlloc.getAllocatorState();
240   }
241 #endif // GWP_ASAN_HOOKS
242 
243   ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
244     TSDRegistry.initThreadMaybe(this, MinimalInit);
245   }
246 
247   void unmapTestOnly() {
248     unmapRingBuffer();
249     TSDRegistry.unmapTestOnly(this);
250     Primary.unmapTestOnly();
251     Secondary.unmapTestOnly();
252 #ifdef GWP_ASAN_HOOKS
253     if (getFlags()->GWP_ASAN_InstallSignalHandlers)
254       gwp_asan::segv_handler::uninstallSignalHandlers();
255     GuardedAlloc.uninitTestOnly();
256 #endif // GWP_ASAN_HOOKS
257   }
258 
259   TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
260   QuarantineT *getQuarantine() { return &Quarantine; }
261 
262   // The Cache must be provided zero-initialized.
263   void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); }
264 
265   // Release the resources used by a TSD, which involves:
266   // - draining the local quarantine cache to the global quarantine;
267   // - releasing the cached pointers back to the Primary;
268   // - unlinking the local stats from the global ones (destroying the cache does
269   //   the last two items).
270   void commitBack(TSD<ThisT> *TSD) {
271     TSD->assertLocked(/*BypassCheck=*/true);
272     Quarantine.drain(&TSD->getQuarantineCache(),
273                      QuarantineCallback(*this, TSD->getCache()));
274     TSD->getCache().destroy(&Stats);
275   }
276 
277   void drainCache(TSD<ThisT> *TSD) {
278     TSD->assertLocked(/*BypassCheck=*/true);
279     Quarantine.drainAndRecycle(&TSD->getQuarantineCache(),
280                                QuarantineCallback(*this, TSD->getCache()));
281     TSD->getCache().drain();
282   }
283   void drainCaches() { TSDRegistry.drainCaches(this); }
284 
285   ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) {
286     if (!allocatorSupportsMemoryTagging<AllocatorConfig>())
287       return Ptr;
288     auto UntaggedPtr = untagPointer(Ptr);
289     if (UntaggedPtr != Ptr)
290       return UntaggedPtr;
291     // Secondary, or pointer allocated while memory tagging is unsupported or
292     // disabled. The tag mismatch is okay in the latter case because tags will
293     // not be checked.
294     return addHeaderTag(Ptr);
295   }
296 
297   ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) {
298     if (!allocatorSupportsMemoryTagging<AllocatorConfig>())
299       return Ptr;
300     return addFixedTag(Ptr, 2);
301   }
302 
303   ALWAYS_INLINE void *addHeaderTag(void *Ptr) {
304     return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr)));
305   }
306 
307   NOINLINE u32 collectStackTrace(UNUSED StackDepot *Depot) {
308 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
309     // Discard collectStackTrace() frame and allocator function frame.
310     constexpr uptr DiscardFrames = 2;
311     uptr Stack[MaxTraceSize + DiscardFrames];
312     uptr Size =
313         android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
314     Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
315     return Depot->insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
316 #else
317     return 0;
318 #endif
319   }
320 
321   uptr computeOddEvenMaskForPointerMaybe(const Options &Options, uptr Ptr,
322                                          uptr ClassId) {
323     if (!Options.get(OptionBit::UseOddEvenTags))
324       return 0;
325 
326     // If a chunk's tag is odd, we want the tags of the surrounding blocks to be
327     // even, and vice versa. Blocks are laid out Size bytes apart, and adding
328     // Size to Ptr will flip the least significant set bit of Size in Ptr, so
329     // that bit will have the pattern 010101... for consecutive blocks, which we
330     // can use to determine which tag mask to use.
331     return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1);
332   }
333 
334   NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
335                           uptr Alignment = MinAlignment,
336                           bool ZeroContents = false) NO_THREAD_SAFETY_ANALYSIS {
337     initThreadMaybe();
338 
339     const Options Options = Primary.Options.load();
340     if (UNLIKELY(Alignment > MaxAlignment)) {
341       if (Options.get(OptionBit::MayReturnNull))
342         return nullptr;
343       reportAlignmentTooBig(Alignment, MaxAlignment);
344     }
345     if (Alignment < MinAlignment)
346       Alignment = MinAlignment;
347 
348 #ifdef GWP_ASAN_HOOKS
349     if (UNLIKELY(GuardedAlloc.shouldSample())) {
350       if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) {
351         Stats.lock();
352         Stats.add(StatAllocated, GuardedAllocSlotSize);
353         Stats.sub(StatFree, GuardedAllocSlotSize);
354         Stats.unlock();
355         return Ptr;
356       }
357     }
358 #endif // GWP_ASAN_HOOKS
359 
360     const FillContentsMode FillContents = ZeroContents ? ZeroFill
361                                           : TSDRegistry.getDisableMemInit()
362                                               ? NoFill
363                                               : Options.getFillContentsMode();
364 
365     // If the requested size happens to be 0 (more common than you might think),
366     // allocate MinAlignment bytes on top of the header. Then add the extra
367     // bytes required to fulfill the alignment requirements: we allocate enough
368     // to be sure that there will be an address in the block that will satisfy
369     // the alignment.
370     const uptr NeededSize =
371         roundUp(Size, MinAlignment) +
372         ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());
373 
374     // Takes care of extravagantly large sizes as well as integer overflows.
375     static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
376     if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
377       if (Options.get(OptionBit::MayReturnNull))
378         return nullptr;
379       reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
380     }
381     DCHECK_LE(Size, NeededSize);
382 
383     void *Block = nullptr;
384     uptr ClassId = 0;
385     uptr SecondaryBlockEnd = 0;
386     if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
387       ClassId = SizeClassMap::getClassIdBySize(NeededSize);
388       DCHECK_NE(ClassId, 0U);
389       typename TSDRegistryT::ScopedTSD TSD(TSDRegistry);
390       Block = TSD->getCache().allocate(ClassId);
391       // If the allocation failed, retry in each successively larger class until
392       // it fits. If it fails to fit in the largest class, fallback to the
393       // Secondary.
394       if (UNLIKELY(!Block)) {
395         while (ClassId < SizeClassMap::LargestClassId && !Block)
396           Block = TSD->getCache().allocate(++ClassId);
397         if (!Block)
398           ClassId = 0;
399       }
400     }
401     if (UNLIKELY(ClassId == 0)) {
402       Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd,
403                                  FillContents);
404     }
405 
406     if (UNLIKELY(!Block)) {
407       if (Options.get(OptionBit::MayReturnNull))
408         return nullptr;
409       printStats();
410       reportOutOfMemory(NeededSize);
411     }
412 
413     const uptr UserPtr = roundUp(
414         reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize(), Alignment);
415     const uptr SizeOrUnusedBytes =
416         ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size);
417 
418     if (LIKELY(!useMemoryTagging<AllocatorConfig>(Options))) {
419       return initChunk(ClassId, Origin, Block, UserPtr, SizeOrUnusedBytes,
420                        FillContents);
421     }
422 
423     return initChunkWithMemoryTagging(ClassId, Origin, Block, UserPtr, Size,
424                                       SizeOrUnusedBytes, FillContents);
425   }
426 
427   NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
428                            UNUSED uptr Alignment = MinAlignment) {
429     if (UNLIKELY(!Ptr))
430       return;
431 
432     // For a deallocation, we only ensure minimal initialization, meaning thread
433     // local data will be left uninitialized for now (when using ELF TLS). The
434     // fallback cache will be used instead. This is a workaround for a situation
435     // where the only heap operation performed in a thread would be a free past
436     // the TLS destructors, ending up in initialized thread specific data never
437     // being destroyed properly. Any other heap operation will do a full init.
438     initThreadMaybe(/*MinimalInit=*/true);
439 
440 #ifdef GWP_ASAN_HOOKS
441     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
442       GuardedAlloc.deallocate(Ptr);
443       Stats.lock();
444       Stats.add(StatFree, GuardedAllocSlotSize);
445       Stats.sub(StatAllocated, GuardedAllocSlotSize);
446       Stats.unlock();
447       return;
448     }
449 #endif // GWP_ASAN_HOOKS
450 
451     if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
452       reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
453 
454     void *TaggedPtr = Ptr;
455     Ptr = getHeaderTaggedPointer(Ptr);
456 
457     Chunk::UnpackedHeader Header;
458     Chunk::loadHeader(Cookie, Ptr, &Header);
459 
460     if (UNLIKELY(Header.State != Chunk::State::Allocated))
461       reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
462 
463     const Options Options = Primary.Options.load();
464     if (Options.get(OptionBit::DeallocTypeMismatch)) {
465       if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) {
466         // With the exception of memalign'd chunks, that can be still be free'd.
467         if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign ||
468             Origin != Chunk::Origin::Malloc)
469           reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
470                                     Header.OriginOrWasZeroed, Origin);
471       }
472     }
473 
474     const uptr Size = getSize(Ptr, &Header);
475     if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) {
476       if (UNLIKELY(DeleteSize != Size))
477         reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
478     }
479 
480     quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size);
481   }
482 
483   void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
484     initThreadMaybe();
485 
486     const Options Options = Primary.Options.load();
487     if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
488       if (Options.get(OptionBit::MayReturnNull))
489         return nullptr;
490       reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
491     }
492 
493     // The following cases are handled by the C wrappers.
494     DCHECK_NE(OldPtr, nullptr);
495     DCHECK_NE(NewSize, 0);
496 
497 #ifdef GWP_ASAN_HOOKS
498     if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
499       uptr OldSize = GuardedAlloc.getSize(OldPtr);
500       void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
501       if (NewPtr)
502         memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
503       GuardedAlloc.deallocate(OldPtr);
504       Stats.lock();
505       Stats.add(StatFree, GuardedAllocSlotSize);
506       Stats.sub(StatAllocated, GuardedAllocSlotSize);
507       Stats.unlock();
508       return NewPtr;
509     }
510 #endif // GWP_ASAN_HOOKS
511 
512     void *OldTaggedPtr = OldPtr;
513     OldPtr = getHeaderTaggedPointer(OldPtr);
514 
515     if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
516       reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
517 
518     Chunk::UnpackedHeader Header;
519     Chunk::loadHeader(Cookie, OldPtr, &Header);
520 
521     if (UNLIKELY(Header.State != Chunk::State::Allocated))
522       reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
523 
524     // Pointer has to be allocated with a malloc-type function. Some
525     // applications think that it is OK to realloc a memalign'ed pointer, which
526     // will trigger this check. It really isn't.
527     if (Options.get(OptionBit::DeallocTypeMismatch)) {
528       if (UNLIKELY(Header.OriginOrWasZeroed != Chunk::Origin::Malloc))
529         reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
530                                   Header.OriginOrWasZeroed,
531                                   Chunk::Origin::Malloc);
532     }
533 
534     void *BlockBegin = getBlockBegin(OldTaggedPtr, &Header);
535     uptr BlockEnd;
536     uptr OldSize;
537     const uptr ClassId = Header.ClassId;
538     if (LIKELY(ClassId)) {
539       BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
540                  SizeClassMap::getSizeByClassId(ClassId);
541       OldSize = Header.SizeOrUnusedBytes;
542     } else {
543       BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
544       OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) +
545                             Header.SizeOrUnusedBytes);
546     }
547     // If the new chunk still fits in the previously allocated block (with a
548     // reasonable delta), we just keep the old block, and update the chunk
549     // header to reflect the size change.
550     if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) {
551       if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
552         // If we have reduced the size, set the extra bytes to the fill value
553         // so that we are ready to grow it again in the future.
554         if (NewSize < OldSize) {
555           const FillContentsMode FillContents =
556               TSDRegistry.getDisableMemInit() ? NoFill
557                                               : Options.getFillContentsMode();
558           if (FillContents != NoFill) {
559             memset(reinterpret_cast<char *>(OldTaggedPtr) + NewSize,
560                    FillContents == ZeroFill ? 0 : PatternFillByte,
561                    OldSize - NewSize);
562           }
563         }
564 
565         Header.SizeOrUnusedBytes =
566             (ClassId ? NewSize
567                      : BlockEnd -
568                            (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) &
569             Chunk::SizeOrUnusedBytesMask;
570         Chunk::storeHeader(Cookie, OldPtr, &Header);
571         if (UNLIKELY(useMemoryTagging<AllocatorConfig>(Options))) {
572           if (ClassId) {
573             resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
574                               reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
575                               NewSize, untagPointer(BlockEnd));
576             storePrimaryAllocationStackMaybe(Options, OldPtr);
577           } else {
578             storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize);
579           }
580         }
581         return OldTaggedPtr;
582       }
583     }
584 
585     // Otherwise we allocate a new one, and deallocate the old one. Some
586     // allocators will allocate an even larger chunk (by a fixed factor) to
587     // allow for potential further in-place realloc. The gains of such a trick
588     // are currently unclear.
589     void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
590     if (LIKELY(NewPtr)) {
591       memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
592       quarantineOrDeallocateChunk(Options, OldTaggedPtr, &Header, OldSize);
593     }
594     return NewPtr;
595   }
596 
597   // TODO(kostyak): disable() is currently best-effort. There are some small
598   //                windows of time when an allocation could still succeed after
599   //                this function finishes. We will revisit that later.
600   void disable() NO_THREAD_SAFETY_ANALYSIS {
601     initThreadMaybe();
602 #ifdef GWP_ASAN_HOOKS
603     GuardedAlloc.disable();
604 #endif
605     TSDRegistry.disable();
606     Stats.disable();
607     Quarantine.disable();
608     Primary.disable();
609     Secondary.disable();
610     disableRingBuffer();
611   }
612 
613   void enable() NO_THREAD_SAFETY_ANALYSIS {
614     initThreadMaybe();
615     enableRingBuffer();
616     Secondary.enable();
617     Primary.enable();
618     Quarantine.enable();
619     Stats.enable();
620     TSDRegistry.enable();
621 #ifdef GWP_ASAN_HOOKS
622     GuardedAlloc.enable();
623 #endif
624   }
625 
626   // The function returns the amount of bytes required to store the statistics,
627   // which might be larger than the amount of bytes provided. Note that the
628   // statistics buffer is not necessarily constant between calls to this
629   // function. This can be called with a null buffer or zero size for buffer
630   // sizing purposes.
631   uptr getStats(char *Buffer, uptr Size) {
632     ScopedString Str;
633     const uptr Length = getStats(&Str) + 1;
634     if (Length < Size)
635       Size = Length;
636     if (Buffer && Size) {
637       memcpy(Buffer, Str.data(), Size);
638       Buffer[Size - 1] = '\0';
639     }
640     return Length;
641   }
642 
643   void printStats() {
644     ScopedString Str;
645     getStats(&Str);
646     Str.output();
647   }
648 
649   void printFragmentationInfo() {
650     ScopedString Str;
651     Primary.getFragmentationInfo(&Str);
652     // Secondary allocator dumps the fragmentation data in getStats().
653     Str.output();
654   }
655 
656   void releaseToOS(ReleaseToOS ReleaseType) {
657     initThreadMaybe();
658     if (ReleaseType == ReleaseToOS::ForceAll)
659       drainCaches();
660     Primary.releaseToOS(ReleaseType);
661     Secondary.releaseToOS();
662   }
663 
664   // Iterate over all chunks and call a callback for all busy chunks located
665   // within the provided memory range. Said callback must not use this allocator
666   // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
667   void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
668                          void *Arg) {
669     initThreadMaybe();
670     if (archSupportsMemoryTagging())
671       Base = untagPointer(Base);
672     const uptr From = Base;
673     const uptr To = Base + Size;
674     bool MayHaveTaggedPrimary =
675         allocatorSupportsMemoryTagging<AllocatorConfig>() &&
676         systemSupportsMemoryTagging();
677     auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback,
678                    Arg](uptr Block) {
679       if (Block < From || Block >= To)
680         return;
681       uptr Chunk;
682       Chunk::UnpackedHeader Header;
683       if (MayHaveTaggedPrimary) {
684         // A chunk header can either have a zero tag (tagged primary) or the
685         // header tag (secondary, or untagged primary). We don't know which so
686         // try both.
687         ScopedDisableMemoryTagChecks x;
688         if (!getChunkFromBlock(Block, &Chunk, &Header) &&
689             !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
690           return;
691       } else {
692         if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
693           return;
694       }
695       if (Header.State == Chunk::State::Allocated) {
696         uptr TaggedChunk = Chunk;
697         if (allocatorSupportsMemoryTagging<AllocatorConfig>())
698           TaggedChunk = untagPointer(TaggedChunk);
699         if (useMemoryTagging<AllocatorConfig>(Primary.Options.load()))
700           TaggedChunk = loadTag(Chunk);
701         Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
702                  Arg);
703       }
704     };
705     Primary.iterateOverBlocks(Lambda);
706     Secondary.iterateOverBlocks(Lambda);
707 #ifdef GWP_ASAN_HOOKS
708     GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
709 #endif
710   }
711 
712   bool canReturnNull() {
713     initThreadMaybe();
714     return Primary.Options.load().get(OptionBit::MayReturnNull);
715   }
716 
717   bool setOption(Option O, sptr Value) {
718     initThreadMaybe();
719     if (O == Option::MemtagTuning) {
720       // Enabling odd/even tags involves a tradeoff between use-after-free
721       // detection and buffer overflow detection. Odd/even tags make it more
722       // likely for buffer overflows to be detected by increasing the size of
723       // the guaranteed "red zone" around the allocation, but on the other hand
724       // use-after-free is less likely to be detected because the tag space for
725       // any particular chunk is cut in half. Therefore we use this tuning
726       // setting to control whether odd/even tags are enabled.
727       if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW)
728         Primary.Options.set(OptionBit::UseOddEvenTags);
729       else if (Value == M_MEMTAG_TUNING_UAF)
730         Primary.Options.clear(OptionBit::UseOddEvenTags);
731       return true;
732     } else {
733       // We leave it to the various sub-components to decide whether or not they
734       // want to handle the option, but we do not want to short-circuit
735       // execution if one of the setOption was to return false.
736       const bool PrimaryResult = Primary.setOption(O, Value);
737       const bool SecondaryResult = Secondary.setOption(O, Value);
738       const bool RegistryResult = TSDRegistry.setOption(O, Value);
739       return PrimaryResult && SecondaryResult && RegistryResult;
740     }
741     return false;
742   }
743 
744   // Return the usable size for a given chunk. Technically we lie, as we just
745   // report the actual size of a chunk. This is done to counteract code actively
746   // writing past the end of a chunk (like sqlite3) when the usable size allows
747   // for it, which then forces realloc to copy the usable size of a chunk as
748   // opposed to its actual size.
749   uptr getUsableSize(const void *Ptr) {
750     if (UNLIKELY(!Ptr))
751       return 0;
752 
753     return getAllocSize(Ptr);
754   }
755 
756   uptr getAllocSize(const void *Ptr) {
757     initThreadMaybe();
758 
759 #ifdef GWP_ASAN_HOOKS
760     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
761       return GuardedAlloc.getSize(Ptr);
762 #endif // GWP_ASAN_HOOKS
763 
764     Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
765     Chunk::UnpackedHeader Header;
766     Chunk::loadHeader(Cookie, Ptr, &Header);
767 
768     // Getting the alloc size of a chunk only makes sense if it's allocated.
769     if (UNLIKELY(Header.State != Chunk::State::Allocated))
770       reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
771 
772     return getSize(Ptr, &Header);
773   }
774 
775   void getStats(StatCounters S) {
776     initThreadMaybe();
777     Stats.get(S);
778   }
779 
780   // Returns true if the pointer provided was allocated by the current
781   // allocator instance, which is compliant with tcmalloc's ownership concept.
782   // A corrupted chunk will not be reported as owned, which is WAI.
783   bool isOwned(const void *Ptr) {
784     initThreadMaybe();
785 #ifdef GWP_ASAN_HOOKS
786     if (GuardedAlloc.pointerIsMine(Ptr))
787       return true;
788 #endif // GWP_ASAN_HOOKS
789     if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
790       return false;
791     Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
792     Chunk::UnpackedHeader Header;
793     return Chunk::isValid(Cookie, Ptr, &Header) &&
794            Header.State == Chunk::State::Allocated;
795   }
796 
797   bool useMemoryTaggingTestOnly() const {
798     return useMemoryTagging<AllocatorConfig>(Primary.Options.load());
799   }
800   void disableMemoryTagging() {
801     // If we haven't been initialized yet, we need to initialize now in order to
802     // prevent a future call to initThreadMaybe() from enabling memory tagging
803     // based on feature detection. But don't call initThreadMaybe() because it
804     // may end up calling the allocator (via pthread_atfork, via the post-init
805     // callback), which may cause mappings to be created with memory tagging
806     // enabled.
807     TSDRegistry.initOnceMaybe(this);
808     if (allocatorSupportsMemoryTagging<AllocatorConfig>()) {
809       Secondary.disableMemoryTagging();
810       Primary.Options.clear(OptionBit::UseMemoryTagging);
811     }
812   }
813 
814   void setTrackAllocationStacks(bool Track) {
815     initThreadMaybe();
816     if (getFlags()->allocation_ring_buffer_size <= 0) {
817       DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks));
818       return;
819     }
820 
821     if (Track) {
822       initRingBufferMaybe();
823       Primary.Options.set(OptionBit::TrackAllocationStacks);
824     } else
825       Primary.Options.clear(OptionBit::TrackAllocationStacks);
826   }
827 
828   void setFillContents(FillContentsMode FillContents) {
829     initThreadMaybe();
830     Primary.Options.setFillContentsMode(FillContents);
831   }
832 
833   void setAddLargeAllocationSlack(bool AddSlack) {
834     initThreadMaybe();
835     if (AddSlack)
836       Primary.Options.set(OptionBit::AddLargeAllocationSlack);
837     else
838       Primary.Options.clear(OptionBit::AddLargeAllocationSlack);
839   }
840 
841   const char *getStackDepotAddress() {
842     initThreadMaybe();
843     AllocationRingBuffer *RB = getRingBuffer();
844     return RB ? reinterpret_cast<char *>(RB->Depot) : nullptr;
845   }
846 
847   uptr getStackDepotSize() {
848     initThreadMaybe();
849     AllocationRingBuffer *RB = getRingBuffer();
850     return RB ? RB->StackDepotSize : 0;
851   }
852 
853   const char *getRegionInfoArrayAddress() const {
854     return Primary.getRegionInfoArrayAddress();
855   }
856 
857   static uptr getRegionInfoArraySize() {
858     return PrimaryT::getRegionInfoArraySize();
859   }
860 
861   const char *getRingBufferAddress() {
862     initThreadMaybe();
863     return reinterpret_cast<char *>(getRingBuffer());
864   }
865 
866   uptr getRingBufferSize() {
867     initThreadMaybe();
868     AllocationRingBuffer *RB = getRingBuffer();
869     return RB && RB->RingBufferElements
870                ? ringBufferSizeInBytes(RB->RingBufferElements)
871                : 0;
872   }
873 
874   static const uptr MaxTraceSize = 64;
875 
876   static void collectTraceMaybe(const StackDepot *Depot,
877                                 uintptr_t (&Trace)[MaxTraceSize], u32 Hash) {
878     uptr RingPos, Size;
879     if (!Depot->find(Hash, &RingPos, &Size))
880       return;
881     for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
882       Trace[I] = static_cast<uintptr_t>(Depot->at(RingPos + I));
883   }
884 
885   static void getErrorInfo(struct scudo_error_info *ErrorInfo,
886                            uintptr_t FaultAddr, const char *DepotPtr,
887                            size_t DepotSize, const char *RegionInfoPtr,
888                            const char *RingBufferPtr, size_t RingBufferSize,
889                            const char *Memory, const char *MemoryTags,
890                            uintptr_t MemoryAddr, size_t MemorySize) {
891     // N.B. we need to support corrupted data in any of the buffers here. We get
892     // this information from an external process (the crashing process) that
893     // should not be able to crash the crash dumper (crash_dump on Android).
894     // See also the get_error_info_fuzzer.
895     *ErrorInfo = {};
896     if (!allocatorSupportsMemoryTagging<AllocatorConfig>() ||
897         MemoryAddr + MemorySize < MemoryAddr)
898       return;
899 
900     const StackDepot *Depot = nullptr;
901     if (DepotPtr) {
902       // check for corrupted StackDepot. First we need to check whether we can
903       // read the metadata, then whether the metadata matches the size.
904       if (DepotSize < sizeof(*Depot))
905         return;
906       Depot = reinterpret_cast<const StackDepot *>(DepotPtr);
907       if (!Depot->isValid(DepotSize))
908         return;
909     }
910 
911     size_t NextErrorReport = 0;
912 
913     // Check for OOB in the current block and the two surrounding blocks. Beyond
914     // that, UAF is more likely.
915     if (extractTag(FaultAddr) != 0)
916       getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
917                          RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
918                          MemorySize, 0, 2);
919 
920     // Check the ring buffer. For primary allocations this will only find UAF;
921     // for secondary allocations we can find either UAF or OOB.
922     getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
923                            RingBufferPtr, RingBufferSize);
924 
925     // Check for OOB in the 28 blocks surrounding the 3 we checked earlier.
926     // Beyond that we are likely to hit false positives.
927     if (extractTag(FaultAddr) != 0)
928       getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
929                          RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
930                          MemorySize, 2, 16);
931   }
932 
933 private:
934   typedef typename PrimaryT::SizeClassMap SizeClassMap;
935 
936   static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
937   static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
938   static const uptr MinAlignment = 1UL << MinAlignmentLog;
939   static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
940   static const uptr MaxAllowedMallocSize =
941       FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
942 
943   static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
944                 "Minimal alignment must at least cover a chunk header.");
945   static_assert(!allocatorSupportsMemoryTagging<AllocatorConfig>() ||
946                     MinAlignment >= archMemoryTagGranuleSize(),
947                 "");
948 
949   static const u32 BlockMarker = 0x44554353U;
950 
951   // These are indexes into an "array" of 32-bit values that store information
952   // inline with a chunk that is relevant to diagnosing memory tag faults, where
953   // 0 corresponds to the address of the user memory. This means that only
954   // negative indexes may be used. The smallest index that may be used is -2,
955   // which corresponds to 8 bytes before the user memory, because the chunk
956   // header size is 8 bytes and in allocators that support memory tagging the
957   // minimum alignment is at least the tag granule size (16 on aarch64).
958   static const sptr MemTagAllocationTraceIndex = -2;
959   static const sptr MemTagAllocationTidIndex = -1;
960 
961   u32 Cookie = 0;
962   u32 QuarantineMaxChunkSize = 0;
963 
964   GlobalStats Stats;
965   PrimaryT Primary;
966   SecondaryT Secondary;
967   QuarantineT Quarantine;
968   TSDRegistryT TSDRegistry;
969   pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT;
970 
971 #ifdef GWP_ASAN_HOOKS
972   gwp_asan::GuardedPoolAllocator GuardedAlloc;
973   uptr GuardedAllocSlotSize = 0;
974 #endif // GWP_ASAN_HOOKS
975 
976   struct AllocationRingBuffer {
977     struct Entry {
978       atomic_uptr Ptr;
979       atomic_uptr AllocationSize;
980       atomic_u32 AllocationTrace;
981       atomic_u32 AllocationTid;
982       atomic_u32 DeallocationTrace;
983       atomic_u32 DeallocationTid;
984     };
985     StackDepot *Depot = nullptr;
986     uptr StackDepotSize = 0;
987     MemMapT RawRingBufferMap;
988     MemMapT RawStackDepotMap;
989     u32 RingBufferElements = 0;
990     atomic_uptr Pos;
991     // An array of Size (at least one) elements of type Entry is immediately
992     // following to this struct.
993   };
994   static_assert(sizeof(AllocationRingBuffer) %
995                         alignof(typename AllocationRingBuffer::Entry) ==
996                     0,
997                 "invalid alignment");
998 
999   // Lock to initialize the RingBuffer
1000   HybridMutex RingBufferInitLock;
1001 
1002   // Pointer to memory mapped area starting with AllocationRingBuffer struct,
1003   // and immediately followed by Size elements of type Entry.
1004   atomic_uptr RingBufferAddress = {};
1005 
1006   AllocationRingBuffer *getRingBuffer() {
1007     return reinterpret_cast<AllocationRingBuffer *>(
1008         atomic_load(&RingBufferAddress, memory_order_acquire));
1009   }
1010 
1011   // The following might get optimized out by the compiler.
1012   NOINLINE void performSanityChecks() {
1013     // Verify that the header offset field can hold the maximum offset. In the
1014     // case of the Secondary allocator, it takes care of alignment and the
1015     // offset will always be small. In the case of the Primary, the worst case
1016     // scenario happens in the last size class, when the backend allocation
1017     // would already be aligned on the requested alignment, which would happen
1018     // to be the maximum alignment that would fit in that size class. As a
1019     // result, the maximum offset will be at most the maximum alignment for the
1020     // last size class minus the header size, in multiples of MinAlignment.
1021     Chunk::UnpackedHeader Header = {};
1022     const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
1023                                          SizeClassMap::MaxSize - MinAlignment);
1024     const uptr MaxOffset =
1025         (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
1026     Header.Offset = MaxOffset & Chunk::OffsetMask;
1027     if (UNLIKELY(Header.Offset != MaxOffset))
1028       reportSanityCheckError("offset");
1029 
1030     // Verify that we can fit the maximum size or amount of unused bytes in the
1031     // header. Given that the Secondary fits the allocation to a page, the worst
1032     // case scenario happens in the Primary. It will depend on the second to
1033     // last and last class sizes, as well as the dynamic base for the Primary.
1034     // The following is an over-approximation that works for our needs.
1035     const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
1036     Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
1037     if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
1038       reportSanityCheckError("size (or unused bytes)");
1039 
1040     const uptr LargestClassId = SizeClassMap::LargestClassId;
1041     Header.ClassId = LargestClassId;
1042     if (UNLIKELY(Header.ClassId != LargestClassId))
1043       reportSanityCheckError("class ID");
1044   }
1045 
1046   static inline void *getBlockBegin(const void *Ptr,
1047                                     Chunk::UnpackedHeader *Header) {
1048     return reinterpret_cast<void *>(
1049         reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
1050         (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
1051   }
1052 
1053   // Return the size of a chunk as requested during its allocation.
1054   inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
1055     const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
1056     if (LIKELY(Header->ClassId))
1057       return SizeOrUnusedBytes;
1058     if (allocatorSupportsMemoryTagging<AllocatorConfig>())
1059       Ptr = untagPointer(const_cast<void *>(Ptr));
1060     return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
1061            reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
1062   }
1063 
1064   ALWAYS_INLINE void *initChunk(const uptr ClassId, const Chunk::Origin Origin,
1065                                 void *Block, const uptr UserPtr,
1066                                 const uptr SizeOrUnusedBytes,
1067                                 const FillContentsMode FillContents) {
1068     // Compute the default pointer before adding the header tag
1069     const uptr DefaultAlignedPtr =
1070         reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize();
1071 
1072     Block = addHeaderTag(Block);
1073     // Only do content fill when it's from primary allocator because secondary
1074     // allocator has filled the content.
1075     if (ClassId != 0 && UNLIKELY(FillContents != NoFill)) {
1076       // This condition is not necessarily unlikely, but since memset is
1077       // costly, we might as well mark it as such.
1078       memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
1079              PrimaryT::getSizeByClassId(ClassId));
1080     }
1081 
1082     Chunk::UnpackedHeader Header = {};
1083 
1084     if (UNLIKELY(DefaultAlignedPtr != UserPtr)) {
1085       const uptr Offset = UserPtr - DefaultAlignedPtr;
1086       DCHECK_GE(Offset, 2 * sizeof(u32));
1087       // The BlockMarker has no security purpose, but is specifically meant for
1088       // the chunk iteration function that can be used in debugging situations.
1089       // It is the only situation where we have to locate the start of a chunk
1090       // based on its block address.
1091       reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
1092       reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
1093       Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
1094     }
1095 
1096     Header.ClassId = ClassId & Chunk::ClassIdMask;
1097     Header.State = Chunk::State::Allocated;
1098     Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
1099     Header.SizeOrUnusedBytes = SizeOrUnusedBytes & Chunk::SizeOrUnusedBytesMask;
1100     Chunk::storeHeader(Cookie, reinterpret_cast<void *>(addHeaderTag(UserPtr)),
1101                        &Header);
1102 
1103     return reinterpret_cast<void *>(UserPtr);
1104   }
1105 
1106   NOINLINE void *
1107   initChunkWithMemoryTagging(const uptr ClassId, const Chunk::Origin Origin,
1108                              void *Block, const uptr UserPtr, const uptr Size,
1109                              const uptr SizeOrUnusedBytes,
1110                              const FillContentsMode FillContents) {
1111     const Options Options = Primary.Options.load();
1112     DCHECK(useMemoryTagging<AllocatorConfig>(Options));
1113 
1114     // Compute the default pointer before adding the header tag
1115     const uptr DefaultAlignedPtr =
1116         reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize();
1117 
1118     void *Ptr = reinterpret_cast<void *>(UserPtr);
1119     void *TaggedPtr = Ptr;
1120 
1121     if (LIKELY(ClassId)) {
1122       // Init the primary chunk.
1123       //
1124       // We only need to zero or tag the contents for Primary backed
1125       // allocations. We only set tags for primary allocations in order to avoid
1126       // faulting potentially large numbers of pages for large secondary
1127       // allocations. We assume that guard pages are enough to protect these
1128       // allocations.
1129       //
1130       // FIXME: When the kernel provides a way to set the background tag of a
1131       // mapping, we should be able to tag secondary allocations as well.
1132       //
1133       // When memory tagging is enabled, zeroing the contents is done as part of
1134       // setting the tag.
1135 
1136       Chunk::UnpackedHeader Header;
1137       const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId);
1138       const uptr BlockUptr = reinterpret_cast<uptr>(Block);
1139       const uptr BlockEnd = BlockUptr + BlockSize;
1140       // If possible, try to reuse the UAF tag that was set by deallocate().
1141       // For simplicity, only reuse tags if we have the same start address as
1142       // the previous allocation. This handles the majority of cases since
1143       // most allocations will not be more aligned than the minimum alignment.
1144       //
1145       // We need to handle situations involving reclaimed chunks, and retag
1146       // the reclaimed portions if necessary. In the case where the chunk is
1147       // fully reclaimed, the chunk's header will be zero, which will trigger
1148       // the code path for new mappings and invalid chunks that prepares the
1149       // chunk from scratch. There are three possibilities for partial
1150       // reclaiming:
1151       //
1152       // (1) Header was reclaimed, data was partially reclaimed.
1153       // (2) Header was not reclaimed, all data was reclaimed (e.g. because
1154       //     data started on a page boundary).
1155       // (3) Header was not reclaimed, data was partially reclaimed.
1156       //
1157       // Case (1) will be handled in the same way as for full reclaiming,
1158       // since the header will be zero.
1159       //
1160       // We can detect case (2) by loading the tag from the start
1161       // of the chunk. If it is zero, it means that either all data was
1162       // reclaimed (since we never use zero as the chunk tag), or that the
1163       // previous allocation was of size zero. Either way, we need to prepare
1164       // a new chunk from scratch.
1165       //
1166       // We can detect case (3) by moving to the next page (if covered by the
1167       // chunk) and loading the tag of its first granule. If it is zero, it
1168       // means that all following pages may need to be retagged. On the other
1169       // hand, if it is nonzero, we can assume that all following pages are
1170       // still tagged, according to the logic that if any of the pages
1171       // following the next page were reclaimed, the next page would have been
1172       // reclaimed as well.
1173       uptr TaggedUserPtr;
1174       uptr PrevUserPtr;
1175       if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
1176           PrevUserPtr == UserPtr &&
1177           (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
1178         uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
1179         const uptr NextPage = roundUp(TaggedUserPtr, getPageSizeCached());
1180         if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
1181           PrevEnd = NextPage;
1182         TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
1183         resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd);
1184         if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) {
1185           // If an allocation needs to be zeroed (i.e. calloc) we can normally
1186           // avoid zeroing the memory now since we can rely on memory having
1187           // been zeroed on free, as this is normally done while setting the
1188           // UAF tag. But if tagging was disabled per-thread when the memory
1189           // was freed, it would not have been retagged and thus zeroed, and
1190           // therefore it needs to be zeroed now.
1191           memset(TaggedPtr, 0,
1192                  Min(Size, roundUp(PrevEnd - TaggedUserPtr,
1193                                    archMemoryTagGranuleSize())));
1194         } else if (Size) {
1195           // Clear any stack metadata that may have previously been stored in
1196           // the chunk data.
1197           memset(TaggedPtr, 0, archMemoryTagGranuleSize());
1198         }
1199       } else {
1200         const uptr OddEvenMask =
1201             computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId);
1202         TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd);
1203       }
1204       storePrimaryAllocationStackMaybe(Options, Ptr);
1205     } else {
1206       // Init the secondary chunk.
1207 
1208       Block = addHeaderTag(Block);
1209       Ptr = addHeaderTag(Ptr);
1210       storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr));
1211       storeSecondaryAllocationStackMaybe(Options, Ptr, Size);
1212     }
1213 
1214     Chunk::UnpackedHeader Header = {};
1215 
1216     if (UNLIKELY(DefaultAlignedPtr != UserPtr)) {
1217       const uptr Offset = UserPtr - DefaultAlignedPtr;
1218       DCHECK_GE(Offset, 2 * sizeof(u32));
1219       // The BlockMarker has no security purpose, but is specifically meant for
1220       // the chunk iteration function that can be used in debugging situations.
1221       // It is the only situation where we have to locate the start of a chunk
1222       // based on its block address.
1223       reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
1224       reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
1225       Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
1226     }
1227 
1228     Header.ClassId = ClassId & Chunk::ClassIdMask;
1229     Header.State = Chunk::State::Allocated;
1230     Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
1231     Header.SizeOrUnusedBytes = SizeOrUnusedBytes & Chunk::SizeOrUnusedBytesMask;
1232     Chunk::storeHeader(Cookie, Ptr, &Header);
1233 
1234     return TaggedPtr;
1235   }
1236 
1237   void quarantineOrDeallocateChunk(const Options &Options, void *TaggedPtr,
1238                                    Chunk::UnpackedHeader *Header,
1239                                    uptr Size) NO_THREAD_SAFETY_ANALYSIS {
1240     void *Ptr = getHeaderTaggedPointer(TaggedPtr);
1241     // If the quarantine is disabled, the actual size of a chunk is 0 or larger
1242     // than the maximum allowed, we return a chunk directly to the backend.
1243     // This purposefully underflows for Size == 0.
1244     const bool BypassQuarantine = !Quarantine.getCacheSize() ||
1245                                   ((Size - 1) >= QuarantineMaxChunkSize) ||
1246                                   !Header->ClassId;
1247     if (BypassQuarantine)
1248       Header->State = Chunk::State::Available;
1249     else
1250       Header->State = Chunk::State::Quarantined;
1251 
1252     void *BlockBegin;
1253     if (LIKELY(!useMemoryTagging<AllocatorConfig>(Options))) {
1254       Header->OriginOrWasZeroed = 0U;
1255       if (BypassQuarantine && allocatorSupportsMemoryTagging<AllocatorConfig>())
1256         Ptr = untagPointer(Ptr);
1257       BlockBegin = getBlockBegin(Ptr, Header);
1258     } else {
1259       Header->OriginOrWasZeroed =
1260           Header->ClassId && !TSDRegistry.getDisableMemInit();
1261       BlockBegin =
1262           retagBlock(Options, TaggedPtr, Ptr, Header, Size, BypassQuarantine);
1263     }
1264 
1265     Chunk::storeHeader(Cookie, Ptr, Header);
1266 
1267     if (BypassQuarantine) {
1268       const uptr ClassId = Header->ClassId;
1269       if (LIKELY(ClassId)) {
1270         bool CacheDrained;
1271         {
1272           typename TSDRegistryT::ScopedTSD TSD(TSDRegistry);
1273           CacheDrained = TSD->getCache().deallocate(ClassId, BlockBegin);
1274         }
1275         // When we have drained some blocks back to the Primary from TSD, that
1276         // implies that we may have the chance to release some pages as well.
1277         // Note that in order not to block other thread's accessing the TSD,
1278         // release the TSD first then try the page release.
1279         if (CacheDrained)
1280           Primary.tryReleaseToOS(ClassId, ReleaseToOS::Normal);
1281       } else {
1282         Secondary.deallocate(Options, BlockBegin);
1283       }
1284     } else {
1285       typename TSDRegistryT::ScopedTSD TSD(TSDRegistry);
1286       Quarantine.put(&TSD->getQuarantineCache(),
1287                      QuarantineCallback(*this, TSD->getCache()), Ptr, Size);
1288     }
1289   }
1290 
1291   NOINLINE void *retagBlock(const Options &Options, void *TaggedPtr, void *&Ptr,
1292                             Chunk::UnpackedHeader *Header, const uptr Size,
1293                             bool BypassQuarantine) {
1294     DCHECK(useMemoryTagging<AllocatorConfig>(Options));
1295 
1296     const u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr));
1297     storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size);
1298     if (Header->ClassId && !TSDRegistry.getDisableMemInit()) {
1299       uptr TaggedBegin, TaggedEnd;
1300       const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(
1301           Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, Header)),
1302           Header->ClassId);
1303       // Exclude the previous tag so that immediate use after free is
1304       // detected 100% of the time.
1305       setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin,
1306                    &TaggedEnd);
1307     }
1308 
1309     Ptr = untagPointer(Ptr);
1310     void *BlockBegin = getBlockBegin(Ptr, Header);
1311     if (BypassQuarantine && !Header->ClassId) {
1312       storeTags(reinterpret_cast<uptr>(BlockBegin),
1313                 reinterpret_cast<uptr>(Ptr));
1314     }
1315 
1316     return BlockBegin;
1317   }
1318 
1319   bool getChunkFromBlock(uptr Block, uptr *Chunk,
1320                          Chunk::UnpackedHeader *Header) {
1321     *Chunk =
1322         Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
1323     return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
1324   }
1325 
1326   static uptr getChunkOffsetFromBlock(const char *Block) {
1327     u32 Offset = 0;
1328     if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
1329       Offset = reinterpret_cast<const u32 *>(Block)[1];
1330     return Offset + Chunk::getHeaderSize();
1331   }
1332 
1333   // Set the tag of the granule past the end of the allocation to 0, to catch
1334   // linear overflows even if a previous larger allocation used the same block
1335   // and tag. Only do this if the granule past the end is in our block, because
1336   // this would otherwise lead to a SEGV if the allocation covers the entire
1337   // block and our block is at the end of a mapping. The tag of the next block's
1338   // header granule will be set to 0, so it will serve the purpose of catching
1339   // linear overflows in this case.
1340   //
1341   // For allocations of size 0 we do not end up storing the address tag to the
1342   // memory tag space, which getInlineErrorInfo() normally relies on to match
1343   // address tags against chunks. To allow matching in this case we store the
1344   // address tag in the first byte of the chunk.
1345   void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) {
1346     DCHECK_EQ(BlockEnd, untagPointer(BlockEnd));
1347     uptr UntaggedEnd = untagPointer(End);
1348     if (UntaggedEnd != BlockEnd) {
1349       storeTag(UntaggedEnd);
1350       if (Size == 0)
1351         *reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End);
1352     }
1353   }
1354 
1355   void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask,
1356                            uptr BlockEnd) {
1357     // Prepare the granule before the chunk to store the chunk header by setting
1358     // its tag to 0. Normally its tag will already be 0, but in the case where a
1359     // chunk holding a low alignment allocation is reused for a higher alignment
1360     // allocation, the chunk may already have a non-zero tag from the previous
1361     // allocation.
1362     storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize());
1363 
1364     uptr TaggedBegin, TaggedEnd;
1365     setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd);
1366 
1367     storeEndMarker(TaggedEnd, Size, BlockEnd);
1368     return reinterpret_cast<void *>(TaggedBegin);
1369   }
1370 
1371   void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize,
1372                          uptr BlockEnd) {
1373     uptr RoundOldPtr = roundUp(OldPtr, archMemoryTagGranuleSize());
1374     uptr RoundNewPtr;
1375     if (RoundOldPtr >= NewPtr) {
1376       // If the allocation is shrinking we just need to set the tag past the end
1377       // of the allocation to 0. See explanation in storeEndMarker() above.
1378       RoundNewPtr = roundUp(NewPtr, archMemoryTagGranuleSize());
1379     } else {
1380       // Set the memory tag of the region
1381       // [RoundOldPtr, roundUp(NewPtr, archMemoryTagGranuleSize()))
1382       // to the pointer tag stored in OldPtr.
1383       RoundNewPtr = storeTags(RoundOldPtr, NewPtr);
1384     }
1385     storeEndMarker(RoundNewPtr, NewSize, BlockEnd);
1386   }
1387 
1388   void storePrimaryAllocationStackMaybe(const Options &Options, void *Ptr) {
1389     if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1390       return;
1391     AllocationRingBuffer *RB = getRingBuffer();
1392     if (!RB)
1393       return;
1394     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1395     Ptr32[MemTagAllocationTraceIndex] = collectStackTrace(RB->Depot);
1396     Ptr32[MemTagAllocationTidIndex] = getThreadID();
1397   }
1398 
1399   void storeRingBufferEntry(AllocationRingBuffer *RB, void *Ptr,
1400                             u32 AllocationTrace, u32 AllocationTid,
1401                             uptr AllocationSize, u32 DeallocationTrace,
1402                             u32 DeallocationTid) {
1403     uptr Pos = atomic_fetch_add(&RB->Pos, 1, memory_order_relaxed);
1404     typename AllocationRingBuffer::Entry *Entry =
1405         getRingBufferEntry(RB, Pos % RB->RingBufferElements);
1406 
1407     // First invalidate our entry so that we don't attempt to interpret a
1408     // partially written state in getSecondaryErrorInfo(). The fences below
1409     // ensure that the compiler does not move the stores to Ptr in between the
1410     // stores to the other fields.
1411     atomic_store_relaxed(&Entry->Ptr, 0);
1412 
1413     __atomic_signal_fence(__ATOMIC_SEQ_CST);
1414     atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace);
1415     atomic_store_relaxed(&Entry->AllocationTid, AllocationTid);
1416     atomic_store_relaxed(&Entry->AllocationSize, AllocationSize);
1417     atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace);
1418     atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid);
1419     __atomic_signal_fence(__ATOMIC_SEQ_CST);
1420 
1421     atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr));
1422   }
1423 
1424   void storeSecondaryAllocationStackMaybe(const Options &Options, void *Ptr,
1425                                           uptr Size) {
1426     if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1427       return;
1428     AllocationRingBuffer *RB = getRingBuffer();
1429     if (!RB)
1430       return;
1431     u32 Trace = collectStackTrace(RB->Depot);
1432     u32 Tid = getThreadID();
1433 
1434     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1435     Ptr32[MemTagAllocationTraceIndex] = Trace;
1436     Ptr32[MemTagAllocationTidIndex] = Tid;
1437 
1438     storeRingBufferEntry(RB, untagPointer(Ptr), Trace, Tid, Size, 0, 0);
1439   }
1440 
1441   void storeDeallocationStackMaybe(const Options &Options, void *Ptr,
1442                                    u8 PrevTag, uptr Size) {
1443     if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1444       return;
1445     AllocationRingBuffer *RB = getRingBuffer();
1446     if (!RB)
1447       return;
1448     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1449     u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex];
1450     u32 AllocationTid = Ptr32[MemTagAllocationTidIndex];
1451 
1452     u32 DeallocationTrace = collectStackTrace(RB->Depot);
1453     u32 DeallocationTid = getThreadID();
1454 
1455     storeRingBufferEntry(RB, addFixedTag(untagPointer(Ptr), PrevTag),
1456                          AllocationTrace, AllocationTid, Size,
1457                          DeallocationTrace, DeallocationTid);
1458   }
1459 
1460   static const size_t NumErrorReports =
1461       sizeof(((scudo_error_info *)nullptr)->reports) /
1462       sizeof(((scudo_error_info *)nullptr)->reports[0]);
1463 
1464   static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo,
1465                                  size_t &NextErrorReport, uintptr_t FaultAddr,
1466                                  const StackDepot *Depot,
1467                                  const char *RegionInfoPtr, const char *Memory,
1468                                  const char *MemoryTags, uintptr_t MemoryAddr,
1469                                  size_t MemorySize, size_t MinDistance,
1470                                  size_t MaxDistance) {
1471     uptr UntaggedFaultAddr = untagPointer(FaultAddr);
1472     u8 FaultAddrTag = extractTag(FaultAddr);
1473     BlockInfo Info =
1474         PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);
1475 
1476     auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
1477       if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr ||
1478           Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
1479         return false;
1480       *Data = &Memory[Addr - MemoryAddr];
1481       *Tag = static_cast<u8>(
1482           MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
1483       return true;
1484     };
1485 
1486     auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
1487                          Chunk::UnpackedHeader *Header, const u32 **Data,
1488                          u8 *Tag) {
1489       const char *BlockBegin;
1490       u8 BlockBeginTag;
1491       if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
1492         return false;
1493       uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
1494       *ChunkAddr = Addr + ChunkOffset;
1495 
1496       const char *ChunkBegin;
1497       if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
1498         return false;
1499       *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
1500           ChunkBegin - Chunk::getHeaderSize());
1501       *Data = reinterpret_cast<const u32 *>(ChunkBegin);
1502 
1503       // Allocations of size 0 will have stashed the tag in the first byte of
1504       // the chunk, see storeEndMarker().
1505       if (Header->SizeOrUnusedBytes == 0)
1506         *Tag = static_cast<u8>(*ChunkBegin);
1507 
1508       return true;
1509     };
1510 
1511     if (NextErrorReport == NumErrorReports)
1512       return;
1513 
1514     auto CheckOOB = [&](uptr BlockAddr) {
1515       if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
1516         return false;
1517 
1518       uptr ChunkAddr;
1519       Chunk::UnpackedHeader Header;
1520       const u32 *Data;
1521       uint8_t Tag;
1522       if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
1523           Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
1524         return false;
1525 
1526       auto *R = &ErrorInfo->reports[NextErrorReport++];
1527       R->error_type =
1528           UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
1529       R->allocation_address = ChunkAddr;
1530       R->allocation_size = Header.SizeOrUnusedBytes;
1531       if (Depot) {
1532         collectTraceMaybe(Depot, R->allocation_trace,
1533                           Data[MemTagAllocationTraceIndex]);
1534       }
1535       R->allocation_tid = Data[MemTagAllocationTidIndex];
1536       return NextErrorReport == NumErrorReports;
1537     };
1538 
1539     if (MinDistance == 0 && CheckOOB(Info.BlockBegin))
1540       return;
1541 
1542     for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I)
1543       if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
1544           CheckOOB(Info.BlockBegin - I * Info.BlockSize))
1545         return;
1546   }
1547 
1548   static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo,
1549                                      size_t &NextErrorReport,
1550                                      uintptr_t FaultAddr,
1551                                      const StackDepot *Depot,
1552                                      const char *RingBufferPtr,
1553                                      size_t RingBufferSize) {
1554     auto *RingBuffer =
1555         reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr);
1556     size_t RingBufferElements = ringBufferElementsFromBytes(RingBufferSize);
1557     if (!RingBuffer || RingBufferElements == 0 || !Depot)
1558       return;
1559     uptr Pos = atomic_load_relaxed(&RingBuffer->Pos);
1560 
1561     for (uptr I = Pos - 1; I != Pos - 1 - RingBufferElements &&
1562                            NextErrorReport != NumErrorReports;
1563          --I) {
1564       auto *Entry = getRingBufferEntry(RingBuffer, I % RingBufferElements);
1565       uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr);
1566       if (!EntryPtr)
1567         continue;
1568 
1569       uptr UntaggedEntryPtr = untagPointer(EntryPtr);
1570       uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize);
1571       u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace);
1572       u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid);
1573       u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace);
1574       u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid);
1575 
1576       if (DeallocationTid) {
1577         // For UAF we only consider in-bounds fault addresses because
1578         // out-of-bounds UAF is rare and attempting to detect it is very likely
1579         // to result in false positives.
1580         if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize)
1581           continue;
1582       } else {
1583         // Ring buffer OOB is only possible with secondary allocations. In this
1584         // case we are guaranteed a guard region of at least a page on either
1585         // side of the allocation (guard page on the right, guard page + tagged
1586         // region on the left), so ignore any faults outside of that range.
1587         if (FaultAddr < EntryPtr - getPageSizeCached() ||
1588             FaultAddr >= EntryPtr + EntrySize + getPageSizeCached())
1589           continue;
1590 
1591         // For UAF the ring buffer will contain two entries, one for the
1592         // allocation and another for the deallocation. Don't report buffer
1593         // overflow/underflow using the allocation entry if we have already
1594         // collected a report from the deallocation entry.
1595         bool Found = false;
1596         for (uptr J = 0; J != NextErrorReport; ++J) {
1597           if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) {
1598             Found = true;
1599             break;
1600           }
1601         }
1602         if (Found)
1603           continue;
1604       }
1605 
1606       auto *R = &ErrorInfo->reports[NextErrorReport++];
1607       if (DeallocationTid)
1608         R->error_type = USE_AFTER_FREE;
1609       else if (FaultAddr < EntryPtr)
1610         R->error_type = BUFFER_UNDERFLOW;
1611       else
1612         R->error_type = BUFFER_OVERFLOW;
1613 
1614       R->allocation_address = UntaggedEntryPtr;
1615       R->allocation_size = EntrySize;
1616       collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace);
1617       R->allocation_tid = AllocationTid;
1618       collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace);
1619       R->deallocation_tid = DeallocationTid;
1620     }
1621   }
1622 
1623   uptr getStats(ScopedString *Str) {
1624     Primary.getStats(Str);
1625     Secondary.getStats(Str);
1626     Quarantine.getStats(Str);
1627     TSDRegistry.getStats(Str);
1628     return Str->length();
1629   }
1630 
1631   static typename AllocationRingBuffer::Entry *
1632   getRingBufferEntry(AllocationRingBuffer *RB, uptr N) {
1633     char *RBEntryStart =
1634         &reinterpret_cast<char *>(RB)[sizeof(AllocationRingBuffer)];
1635     return &reinterpret_cast<typename AllocationRingBuffer::Entry *>(
1636         RBEntryStart)[N];
1637   }
1638   static const typename AllocationRingBuffer::Entry *
1639   getRingBufferEntry(const AllocationRingBuffer *RB, uptr N) {
1640     const char *RBEntryStart =
1641         &reinterpret_cast<const char *>(RB)[sizeof(AllocationRingBuffer)];
1642     return &reinterpret_cast<const typename AllocationRingBuffer::Entry *>(
1643         RBEntryStart)[N];
1644   }
1645 
1646   void initRingBufferMaybe() {
1647     ScopedLock L(RingBufferInitLock);
1648     if (getRingBuffer() != nullptr)
1649       return;
1650 
1651     int ring_buffer_size = getFlags()->allocation_ring_buffer_size;
1652     if (ring_buffer_size <= 0)
1653       return;
1654 
1655     u32 AllocationRingBufferSize = static_cast<u32>(ring_buffer_size);
1656 
1657     // We store alloc and free stacks for each entry.
1658     constexpr u32 kStacksPerRingBufferEntry = 2;
1659     constexpr u32 kMaxU32Pow2 = ~(UINT32_MAX >> 1);
1660     static_assert(isPowerOfTwo(kMaxU32Pow2));
1661     // On Android we always have 3 frames at the bottom: __start_main,
1662     // __libc_init, main, and 3 at the top: malloc, scudo_malloc and
1663     // Allocator::allocate. This leaves 10 frames for the user app. The next
1664     // smallest power of two (8) would only leave 2, which is clearly too
1665     // little.
1666     constexpr u32 kFramesPerStack = 16;
1667     static_assert(isPowerOfTwo(kFramesPerStack));
1668 
1669     if (AllocationRingBufferSize > kMaxU32Pow2 / kStacksPerRingBufferEntry)
1670       return;
1671     u32 TabSize = static_cast<u32>(roundUpPowerOfTwo(kStacksPerRingBufferEntry *
1672                                                      AllocationRingBufferSize));
1673     if (TabSize > UINT32_MAX / kFramesPerStack)
1674       return;
1675     u32 RingSize = static_cast<u32>(TabSize * kFramesPerStack);
1676 
1677     uptr StackDepotSize = sizeof(StackDepot) + sizeof(atomic_u64) * RingSize +
1678                           sizeof(atomic_u32) * TabSize;
1679     MemMapT DepotMap;
1680     DepotMap.map(
1681         /*Addr=*/0U, roundUp(StackDepotSize, getPageSizeCached()),
1682         "scudo:stack_depot");
1683     auto *Depot = reinterpret_cast<StackDepot *>(DepotMap.getBase());
1684     Depot->init(RingSize, TabSize);
1685 
1686     MemMapT MemMap;
1687     MemMap.map(
1688         /*Addr=*/0U,
1689         roundUp(ringBufferSizeInBytes(AllocationRingBufferSize),
1690                 getPageSizeCached()),
1691         "scudo:ring_buffer");
1692     auto *RB = reinterpret_cast<AllocationRingBuffer *>(MemMap.getBase());
1693     RB->RawRingBufferMap = MemMap;
1694     RB->RingBufferElements = AllocationRingBufferSize;
1695     RB->Depot = Depot;
1696     RB->StackDepotSize = StackDepotSize;
1697     RB->RawStackDepotMap = DepotMap;
1698 
1699     atomic_store(&RingBufferAddress, reinterpret_cast<uptr>(RB),
1700                  memory_order_release);
1701   }
1702 
1703   void unmapRingBuffer() {
1704     AllocationRingBuffer *RB = getRingBuffer();
1705     if (RB == nullptr)
1706       return;
1707     // N.B. because RawStackDepotMap is part of RawRingBufferMap, the order
1708     // is very important.
1709     RB->RawStackDepotMap.unmap(RB->RawStackDepotMap.getBase(),
1710                                RB->RawStackDepotMap.getCapacity());
1711     // Note that the `RB->RawRingBufferMap` is stored on the pages managed by
1712     // itself. Take over the ownership before calling unmap() so that any
1713     // operation along with unmap() won't touch inaccessible pages.
1714     MemMapT RawRingBufferMap = RB->RawRingBufferMap;
1715     RawRingBufferMap.unmap(RawRingBufferMap.getBase(),
1716                            RawRingBufferMap.getCapacity());
1717     atomic_store(&RingBufferAddress, 0, memory_order_release);
1718   }
1719 
1720   static constexpr size_t ringBufferSizeInBytes(u32 RingBufferElements) {
1721     return sizeof(AllocationRingBuffer) +
1722            RingBufferElements * sizeof(typename AllocationRingBuffer::Entry);
1723   }
1724 
1725   static constexpr size_t ringBufferElementsFromBytes(size_t Bytes) {
1726     if (Bytes < sizeof(AllocationRingBuffer)) {
1727       return 0;
1728     }
1729     return (Bytes - sizeof(AllocationRingBuffer)) /
1730            sizeof(typename AllocationRingBuffer::Entry);
1731   }
1732 };
1733 
1734 } // namespace scudo
1735 
1736 #endif // SCUDO_COMBINED_H_
1737