1 //===-- combined.h ----------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef SCUDO_COMBINED_H_ 10 #define SCUDO_COMBINED_H_ 11 12 #include "allocator_config_wrapper.h" 13 #include "atomic_helpers.h" 14 #include "chunk.h" 15 #include "common.h" 16 #include "flags.h" 17 #include "flags_parser.h" 18 #include "local_cache.h" 19 #include "mem_map.h" 20 #include "memtag.h" 21 #include "mutex.h" 22 #include "options.h" 23 #include "quarantine.h" 24 #include "report.h" 25 #include "secondary.h" 26 #include "stack_depot.h" 27 #include "string_utils.h" 28 #include "tsd.h" 29 30 #include "scudo/interface.h" 31 32 #ifdef GWP_ASAN_HOOKS 33 #include "gwp_asan/guarded_pool_allocator.h" 34 #include "gwp_asan/optional/backtrace.h" 35 #include "gwp_asan/optional/segv_handler.h" 36 #endif // GWP_ASAN_HOOKS 37 38 extern "C" inline void EmptyCallback() {} 39 40 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE 41 // This function is not part of the NDK so it does not appear in any public 42 // header files. We only declare/use it when targeting the platform. 43 extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf, 44 size_t num_entries); 45 #endif 46 47 namespace scudo { 48 49 template <class Config, void (*PostInitCallback)(void) = EmptyCallback> 50 class Allocator { 51 public: 52 using AllocatorConfig = BaseConfig<Config>; 53 using PrimaryT = 54 typename AllocatorConfig::template PrimaryT<PrimaryConfig<Config>>; 55 using SecondaryT = 56 typename AllocatorConfig::template SecondaryT<SecondaryConfig<Config>>; 57 using CacheT = typename PrimaryT::CacheT; 58 typedef Allocator<Config, PostInitCallback> ThisT; 59 typedef typename AllocatorConfig::template TSDRegistryT<ThisT> TSDRegistryT; 60 61 void callPostInitCallback() { 62 pthread_once(&PostInitNonce, PostInitCallback); 63 } 64 65 struct QuarantineCallback { 66 explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache) 67 : Allocator(Instance), Cache(LocalCache) {} 68 69 // Chunk recycling function, returns a quarantined chunk to the backend, 70 // first making sure it hasn't been tampered with. 71 void recycle(void *Ptr) { 72 Chunk::UnpackedHeader Header; 73 Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); 74 if (UNLIKELY(Header.State != Chunk::State::Quarantined)) 75 reportInvalidChunkState(AllocatorAction::Recycling, Ptr); 76 77 Header.State = Chunk::State::Available; 78 Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); 79 80 if (allocatorSupportsMemoryTagging<AllocatorConfig>()) 81 Ptr = untagPointer(Ptr); 82 void *BlockBegin = Allocator::getBlockBegin(Ptr, &Header); 83 Cache.deallocate(Header.ClassId, BlockBegin); 84 } 85 86 // We take a shortcut when allocating a quarantine batch by working with the 87 // appropriate class ID instead of using Size. The compiler should optimize 88 // the class ID computation and work with the associated cache directly. 89 void *allocate(UNUSED uptr Size) { 90 const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( 91 sizeof(QuarantineBatch) + Chunk::getHeaderSize()); 92 void *Ptr = Cache.allocate(QuarantineClassId); 93 // Quarantine batch allocation failure is fatal. 94 if (UNLIKELY(!Ptr)) 95 reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId)); 96 97 Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) + 98 Chunk::getHeaderSize()); 99 Chunk::UnpackedHeader Header = {}; 100 Header.ClassId = QuarantineClassId & Chunk::ClassIdMask; 101 Header.SizeOrUnusedBytes = sizeof(QuarantineBatch); 102 Header.State = Chunk::State::Allocated; 103 Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); 104 105 // Reset tag to 0 as this chunk may have been previously used for a tagged 106 // user allocation. 107 if (UNLIKELY(useMemoryTagging<AllocatorConfig>( 108 Allocator.Primary.Options.load()))) 109 storeTags(reinterpret_cast<uptr>(Ptr), 110 reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch)); 111 112 return Ptr; 113 } 114 115 void deallocate(void *Ptr) { 116 const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( 117 sizeof(QuarantineBatch) + Chunk::getHeaderSize()); 118 Chunk::UnpackedHeader Header; 119 Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); 120 121 if (UNLIKELY(Header.State != Chunk::State::Allocated)) 122 reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); 123 DCHECK_EQ(Header.ClassId, QuarantineClassId); 124 DCHECK_EQ(Header.Offset, 0); 125 DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch)); 126 127 Header.State = Chunk::State::Available; 128 Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); 129 Cache.deallocate(QuarantineClassId, 130 reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) - 131 Chunk::getHeaderSize())); 132 } 133 134 private: 135 ThisT &Allocator; 136 CacheT &Cache; 137 }; 138 139 typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT; 140 typedef typename QuarantineT::CacheT QuarantineCacheT; 141 142 void init() { 143 performSanityChecks(); 144 145 // Check if hardware CRC32 is supported in the binary and by the platform, 146 // if so, opt for the CRC32 hardware version of the checksum. 147 if (&computeHardwareCRC32 && hasHardwareCRC32()) 148 HashAlgorithm = Checksum::HardwareCRC32; 149 150 if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie)))) 151 Cookie = static_cast<u32>(getMonotonicTime() ^ 152 (reinterpret_cast<uptr>(this) >> 4)); 153 154 initFlags(); 155 reportUnrecognizedFlags(); 156 157 // Store some flags locally. 158 if (getFlags()->may_return_null) 159 Primary.Options.set(OptionBit::MayReturnNull); 160 if (getFlags()->zero_contents) 161 Primary.Options.setFillContentsMode(ZeroFill); 162 else if (getFlags()->pattern_fill_contents) 163 Primary.Options.setFillContentsMode(PatternOrZeroFill); 164 if (getFlags()->dealloc_type_mismatch) 165 Primary.Options.set(OptionBit::DeallocTypeMismatch); 166 if (getFlags()->delete_size_mismatch) 167 Primary.Options.set(OptionBit::DeleteSizeMismatch); 168 if (allocatorSupportsMemoryTagging<AllocatorConfig>() && 169 systemSupportsMemoryTagging()) 170 Primary.Options.set(OptionBit::UseMemoryTagging); 171 172 QuarantineMaxChunkSize = 173 static_cast<u32>(getFlags()->quarantine_max_chunk_size); 174 175 Stats.init(); 176 // TODO(chiahungduan): Given that we support setting the default value in 177 // the PrimaryConfig and CacheConfig, consider to deprecate the use of 178 // `release_to_os_interval_ms` flag. 179 const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms; 180 Primary.init(ReleaseToOsIntervalMs); 181 Secondary.init(&Stats, ReleaseToOsIntervalMs); 182 Quarantine.init( 183 static_cast<uptr>(getFlags()->quarantine_size_kb << 10), 184 static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10)); 185 } 186 187 void enableRingBuffer() NO_THREAD_SAFETY_ANALYSIS { 188 AllocationRingBuffer *RB = getRingBuffer(); 189 if (RB) 190 RB->Depot->enable(); 191 RingBufferInitLock.unlock(); 192 } 193 194 void disableRingBuffer() NO_THREAD_SAFETY_ANALYSIS { 195 RingBufferInitLock.lock(); 196 AllocationRingBuffer *RB = getRingBuffer(); 197 if (RB) 198 RB->Depot->disable(); 199 } 200 201 // Initialize the embedded GWP-ASan instance. Requires the main allocator to 202 // be functional, best called from PostInitCallback. 203 void initGwpAsan() { 204 #ifdef GWP_ASAN_HOOKS 205 gwp_asan::options::Options Opt; 206 Opt.Enabled = getFlags()->GWP_ASAN_Enabled; 207 Opt.MaxSimultaneousAllocations = 208 getFlags()->GWP_ASAN_MaxSimultaneousAllocations; 209 Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate; 210 Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers; 211 Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable; 212 // Embedded GWP-ASan is locked through the Scudo atfork handler (via 213 // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork 214 // handler. 215 Opt.InstallForkHandlers = false; 216 Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction(); 217 GuardedAlloc.init(Opt); 218 219 if (Opt.InstallSignalHandlers) 220 gwp_asan::segv_handler::installSignalHandlers( 221 &GuardedAlloc, Printf, 222 gwp_asan::backtrace::getPrintBacktraceFunction(), 223 gwp_asan::backtrace::getSegvBacktraceFunction(), 224 Opt.Recoverable); 225 226 GuardedAllocSlotSize = 227 GuardedAlloc.getAllocatorState()->maximumAllocationSize(); 228 Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) * 229 GuardedAllocSlotSize); 230 #endif // GWP_ASAN_HOOKS 231 } 232 233 #ifdef GWP_ASAN_HOOKS 234 const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() { 235 return GuardedAlloc.getMetadataRegion(); 236 } 237 238 const gwp_asan::AllocatorState *getGwpAsanAllocatorState() { 239 return GuardedAlloc.getAllocatorState(); 240 } 241 #endif // GWP_ASAN_HOOKS 242 243 ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) { 244 TSDRegistry.initThreadMaybe(this, MinimalInit); 245 } 246 247 void unmapTestOnly() { 248 unmapRingBuffer(); 249 TSDRegistry.unmapTestOnly(this); 250 Primary.unmapTestOnly(); 251 Secondary.unmapTestOnly(); 252 #ifdef GWP_ASAN_HOOKS 253 if (getFlags()->GWP_ASAN_InstallSignalHandlers) 254 gwp_asan::segv_handler::uninstallSignalHandlers(); 255 GuardedAlloc.uninitTestOnly(); 256 #endif // GWP_ASAN_HOOKS 257 } 258 259 TSDRegistryT *getTSDRegistry() { return &TSDRegistry; } 260 QuarantineT *getQuarantine() { return &Quarantine; } 261 262 // The Cache must be provided zero-initialized. 263 void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); } 264 265 // Release the resources used by a TSD, which involves: 266 // - draining the local quarantine cache to the global quarantine; 267 // - releasing the cached pointers back to the Primary; 268 // - unlinking the local stats from the global ones (destroying the cache does 269 // the last two items). 270 void commitBack(TSD<ThisT> *TSD) { 271 TSD->assertLocked(/*BypassCheck=*/true); 272 Quarantine.drain(&TSD->getQuarantineCache(), 273 QuarantineCallback(*this, TSD->getCache())); 274 TSD->getCache().destroy(&Stats); 275 } 276 277 void drainCache(TSD<ThisT> *TSD) { 278 TSD->assertLocked(/*BypassCheck=*/true); 279 Quarantine.drainAndRecycle(&TSD->getQuarantineCache(), 280 QuarantineCallback(*this, TSD->getCache())); 281 TSD->getCache().drain(); 282 } 283 void drainCaches() { TSDRegistry.drainCaches(this); } 284 285 ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) { 286 if (!allocatorSupportsMemoryTagging<AllocatorConfig>()) 287 return Ptr; 288 auto UntaggedPtr = untagPointer(Ptr); 289 if (UntaggedPtr != Ptr) 290 return UntaggedPtr; 291 // Secondary, or pointer allocated while memory tagging is unsupported or 292 // disabled. The tag mismatch is okay in the latter case because tags will 293 // not be checked. 294 return addHeaderTag(Ptr); 295 } 296 297 ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) { 298 if (!allocatorSupportsMemoryTagging<AllocatorConfig>()) 299 return Ptr; 300 return addFixedTag(Ptr, 2); 301 } 302 303 ALWAYS_INLINE void *addHeaderTag(void *Ptr) { 304 return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr))); 305 } 306 307 NOINLINE u32 collectStackTrace(UNUSED StackDepot *Depot) { 308 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE 309 // Discard collectStackTrace() frame and allocator function frame. 310 constexpr uptr DiscardFrames = 2; 311 uptr Stack[MaxTraceSize + DiscardFrames]; 312 uptr Size = 313 android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames); 314 Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames); 315 return Depot->insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size); 316 #else 317 return 0; 318 #endif 319 } 320 321 uptr computeOddEvenMaskForPointerMaybe(const Options &Options, uptr Ptr, 322 uptr ClassId) { 323 if (!Options.get(OptionBit::UseOddEvenTags)) 324 return 0; 325 326 // If a chunk's tag is odd, we want the tags of the surrounding blocks to be 327 // even, and vice versa. Blocks are laid out Size bytes apart, and adding 328 // Size to Ptr will flip the least significant set bit of Size in Ptr, so 329 // that bit will have the pattern 010101... for consecutive blocks, which we 330 // can use to determine which tag mask to use. 331 return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1); 332 } 333 334 NOINLINE void *allocate(uptr Size, Chunk::Origin Origin, 335 uptr Alignment = MinAlignment, 336 bool ZeroContents = false) NO_THREAD_SAFETY_ANALYSIS { 337 initThreadMaybe(); 338 339 const Options Options = Primary.Options.load(); 340 if (UNLIKELY(Alignment > MaxAlignment)) { 341 if (Options.get(OptionBit::MayReturnNull)) 342 return nullptr; 343 reportAlignmentTooBig(Alignment, MaxAlignment); 344 } 345 if (Alignment < MinAlignment) 346 Alignment = MinAlignment; 347 348 #ifdef GWP_ASAN_HOOKS 349 if (UNLIKELY(GuardedAlloc.shouldSample())) { 350 if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) { 351 Stats.lock(); 352 Stats.add(StatAllocated, GuardedAllocSlotSize); 353 Stats.sub(StatFree, GuardedAllocSlotSize); 354 Stats.unlock(); 355 return Ptr; 356 } 357 } 358 #endif // GWP_ASAN_HOOKS 359 360 const FillContentsMode FillContents = ZeroContents ? ZeroFill 361 : TSDRegistry.getDisableMemInit() 362 ? NoFill 363 : Options.getFillContentsMode(); 364 365 // If the requested size happens to be 0 (more common than you might think), 366 // allocate MinAlignment bytes on top of the header. Then add the extra 367 // bytes required to fulfill the alignment requirements: we allocate enough 368 // to be sure that there will be an address in the block that will satisfy 369 // the alignment. 370 const uptr NeededSize = 371 roundUp(Size, MinAlignment) + 372 ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize()); 373 374 // Takes care of extravagantly large sizes as well as integer overflows. 375 static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, ""); 376 if (UNLIKELY(Size >= MaxAllowedMallocSize)) { 377 if (Options.get(OptionBit::MayReturnNull)) 378 return nullptr; 379 reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize); 380 } 381 DCHECK_LE(Size, NeededSize); 382 383 void *Block = nullptr; 384 uptr ClassId = 0; 385 uptr SecondaryBlockEnd = 0; 386 if (LIKELY(PrimaryT::canAllocate(NeededSize))) { 387 ClassId = SizeClassMap::getClassIdBySize(NeededSize); 388 DCHECK_NE(ClassId, 0U); 389 typename TSDRegistryT::ScopedTSD TSD(TSDRegistry); 390 Block = TSD->getCache().allocate(ClassId); 391 // If the allocation failed, retry in each successively larger class until 392 // it fits. If it fails to fit in the largest class, fallback to the 393 // Secondary. 394 if (UNLIKELY(!Block)) { 395 while (ClassId < SizeClassMap::LargestClassId && !Block) 396 Block = TSD->getCache().allocate(++ClassId); 397 if (!Block) 398 ClassId = 0; 399 } 400 } 401 if (UNLIKELY(ClassId == 0)) { 402 Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd, 403 FillContents); 404 } 405 406 if (UNLIKELY(!Block)) { 407 if (Options.get(OptionBit::MayReturnNull)) 408 return nullptr; 409 printStats(); 410 reportOutOfMemory(NeededSize); 411 } 412 413 const uptr UserPtr = roundUp( 414 reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize(), Alignment); 415 const uptr SizeOrUnusedBytes = 416 ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size); 417 418 if (LIKELY(!useMemoryTagging<AllocatorConfig>(Options))) { 419 return initChunk(ClassId, Origin, Block, UserPtr, SizeOrUnusedBytes, 420 FillContents); 421 } 422 423 return initChunkWithMemoryTagging(ClassId, Origin, Block, UserPtr, Size, 424 SizeOrUnusedBytes, FillContents); 425 } 426 427 NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0, 428 UNUSED uptr Alignment = MinAlignment) { 429 if (UNLIKELY(!Ptr)) 430 return; 431 432 // For a deallocation, we only ensure minimal initialization, meaning thread 433 // local data will be left uninitialized for now (when using ELF TLS). The 434 // fallback cache will be used instead. This is a workaround for a situation 435 // where the only heap operation performed in a thread would be a free past 436 // the TLS destructors, ending up in initialized thread specific data never 437 // being destroyed properly. Any other heap operation will do a full init. 438 initThreadMaybe(/*MinimalInit=*/true); 439 440 #ifdef GWP_ASAN_HOOKS 441 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) { 442 GuardedAlloc.deallocate(Ptr); 443 Stats.lock(); 444 Stats.add(StatFree, GuardedAllocSlotSize); 445 Stats.sub(StatAllocated, GuardedAllocSlotSize); 446 Stats.unlock(); 447 return; 448 } 449 #endif // GWP_ASAN_HOOKS 450 451 if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))) 452 reportMisalignedPointer(AllocatorAction::Deallocating, Ptr); 453 454 void *TaggedPtr = Ptr; 455 Ptr = getHeaderTaggedPointer(Ptr); 456 457 Chunk::UnpackedHeader Header; 458 Chunk::loadHeader(Cookie, Ptr, &Header); 459 460 if (UNLIKELY(Header.State != Chunk::State::Allocated)) 461 reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); 462 463 const Options Options = Primary.Options.load(); 464 if (Options.get(OptionBit::DeallocTypeMismatch)) { 465 if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) { 466 // With the exception of memalign'd chunks, that can be still be free'd. 467 if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign || 468 Origin != Chunk::Origin::Malloc) 469 reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr, 470 Header.OriginOrWasZeroed, Origin); 471 } 472 } 473 474 const uptr Size = getSize(Ptr, &Header); 475 if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) { 476 if (UNLIKELY(DeleteSize != Size)) 477 reportDeleteSizeMismatch(Ptr, DeleteSize, Size); 478 } 479 480 quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size); 481 } 482 483 void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) { 484 initThreadMaybe(); 485 486 const Options Options = Primary.Options.load(); 487 if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) { 488 if (Options.get(OptionBit::MayReturnNull)) 489 return nullptr; 490 reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize); 491 } 492 493 // The following cases are handled by the C wrappers. 494 DCHECK_NE(OldPtr, nullptr); 495 DCHECK_NE(NewSize, 0); 496 497 #ifdef GWP_ASAN_HOOKS 498 if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) { 499 uptr OldSize = GuardedAlloc.getSize(OldPtr); 500 void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); 501 if (NewPtr) 502 memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize); 503 GuardedAlloc.deallocate(OldPtr); 504 Stats.lock(); 505 Stats.add(StatFree, GuardedAllocSlotSize); 506 Stats.sub(StatAllocated, GuardedAllocSlotSize); 507 Stats.unlock(); 508 return NewPtr; 509 } 510 #endif // GWP_ASAN_HOOKS 511 512 void *OldTaggedPtr = OldPtr; 513 OldPtr = getHeaderTaggedPointer(OldPtr); 514 515 if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment))) 516 reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr); 517 518 Chunk::UnpackedHeader Header; 519 Chunk::loadHeader(Cookie, OldPtr, &Header); 520 521 if (UNLIKELY(Header.State != Chunk::State::Allocated)) 522 reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr); 523 524 // Pointer has to be allocated with a malloc-type function. Some 525 // applications think that it is OK to realloc a memalign'ed pointer, which 526 // will trigger this check. It really isn't. 527 if (Options.get(OptionBit::DeallocTypeMismatch)) { 528 if (UNLIKELY(Header.OriginOrWasZeroed != Chunk::Origin::Malloc)) 529 reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr, 530 Header.OriginOrWasZeroed, 531 Chunk::Origin::Malloc); 532 } 533 534 void *BlockBegin = getBlockBegin(OldTaggedPtr, &Header); 535 uptr BlockEnd; 536 uptr OldSize; 537 const uptr ClassId = Header.ClassId; 538 if (LIKELY(ClassId)) { 539 BlockEnd = reinterpret_cast<uptr>(BlockBegin) + 540 SizeClassMap::getSizeByClassId(ClassId); 541 OldSize = Header.SizeOrUnusedBytes; 542 } else { 543 BlockEnd = SecondaryT::getBlockEnd(BlockBegin); 544 OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) + 545 Header.SizeOrUnusedBytes); 546 } 547 // If the new chunk still fits in the previously allocated block (with a 548 // reasonable delta), we just keep the old block, and update the chunk 549 // header to reflect the size change. 550 if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) { 551 if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) { 552 // If we have reduced the size, set the extra bytes to the fill value 553 // so that we are ready to grow it again in the future. 554 if (NewSize < OldSize) { 555 const FillContentsMode FillContents = 556 TSDRegistry.getDisableMemInit() ? NoFill 557 : Options.getFillContentsMode(); 558 if (FillContents != NoFill) { 559 memset(reinterpret_cast<char *>(OldTaggedPtr) + NewSize, 560 FillContents == ZeroFill ? 0 : PatternFillByte, 561 OldSize - NewSize); 562 } 563 } 564 565 Header.SizeOrUnusedBytes = 566 (ClassId ? NewSize 567 : BlockEnd - 568 (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) & 569 Chunk::SizeOrUnusedBytesMask; 570 Chunk::storeHeader(Cookie, OldPtr, &Header); 571 if (UNLIKELY(useMemoryTagging<AllocatorConfig>(Options))) { 572 if (ClassId) { 573 resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize, 574 reinterpret_cast<uptr>(OldTaggedPtr) + NewSize, 575 NewSize, untagPointer(BlockEnd)); 576 storePrimaryAllocationStackMaybe(Options, OldPtr); 577 } else { 578 storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize); 579 } 580 } 581 return OldTaggedPtr; 582 } 583 } 584 585 // Otherwise we allocate a new one, and deallocate the old one. Some 586 // allocators will allocate an even larger chunk (by a fixed factor) to 587 // allow for potential further in-place realloc. The gains of such a trick 588 // are currently unclear. 589 void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); 590 if (LIKELY(NewPtr)) { 591 memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize)); 592 quarantineOrDeallocateChunk(Options, OldTaggedPtr, &Header, OldSize); 593 } 594 return NewPtr; 595 } 596 597 // TODO(kostyak): disable() is currently best-effort. There are some small 598 // windows of time when an allocation could still succeed after 599 // this function finishes. We will revisit that later. 600 void disable() NO_THREAD_SAFETY_ANALYSIS { 601 initThreadMaybe(); 602 #ifdef GWP_ASAN_HOOKS 603 GuardedAlloc.disable(); 604 #endif 605 TSDRegistry.disable(); 606 Stats.disable(); 607 Quarantine.disable(); 608 Primary.disable(); 609 Secondary.disable(); 610 disableRingBuffer(); 611 } 612 613 void enable() NO_THREAD_SAFETY_ANALYSIS { 614 initThreadMaybe(); 615 enableRingBuffer(); 616 Secondary.enable(); 617 Primary.enable(); 618 Quarantine.enable(); 619 Stats.enable(); 620 TSDRegistry.enable(); 621 #ifdef GWP_ASAN_HOOKS 622 GuardedAlloc.enable(); 623 #endif 624 } 625 626 // The function returns the amount of bytes required to store the statistics, 627 // which might be larger than the amount of bytes provided. Note that the 628 // statistics buffer is not necessarily constant between calls to this 629 // function. This can be called with a null buffer or zero size for buffer 630 // sizing purposes. 631 uptr getStats(char *Buffer, uptr Size) { 632 ScopedString Str; 633 const uptr Length = getStats(&Str) + 1; 634 if (Length < Size) 635 Size = Length; 636 if (Buffer && Size) { 637 memcpy(Buffer, Str.data(), Size); 638 Buffer[Size - 1] = '\0'; 639 } 640 return Length; 641 } 642 643 void printStats() { 644 ScopedString Str; 645 getStats(&Str); 646 Str.output(); 647 } 648 649 void printFragmentationInfo() { 650 ScopedString Str; 651 Primary.getFragmentationInfo(&Str); 652 // Secondary allocator dumps the fragmentation data in getStats(). 653 Str.output(); 654 } 655 656 void releaseToOS(ReleaseToOS ReleaseType) { 657 initThreadMaybe(); 658 if (ReleaseType == ReleaseToOS::ForceAll) 659 drainCaches(); 660 Primary.releaseToOS(ReleaseType); 661 Secondary.releaseToOS(); 662 } 663 664 // Iterate over all chunks and call a callback for all busy chunks located 665 // within the provided memory range. Said callback must not use this allocator 666 // or a deadlock can ensue. This fits Android's malloc_iterate() needs. 667 void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback, 668 void *Arg) { 669 initThreadMaybe(); 670 if (archSupportsMemoryTagging()) 671 Base = untagPointer(Base); 672 const uptr From = Base; 673 const uptr To = Base + Size; 674 bool MayHaveTaggedPrimary = 675 allocatorSupportsMemoryTagging<AllocatorConfig>() && 676 systemSupportsMemoryTagging(); 677 auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback, 678 Arg](uptr Block) { 679 if (Block < From || Block >= To) 680 return; 681 uptr Chunk; 682 Chunk::UnpackedHeader Header; 683 if (MayHaveTaggedPrimary) { 684 // A chunk header can either have a zero tag (tagged primary) or the 685 // header tag (secondary, or untagged primary). We don't know which so 686 // try both. 687 ScopedDisableMemoryTagChecks x; 688 if (!getChunkFromBlock(Block, &Chunk, &Header) && 689 !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header)) 690 return; 691 } else { 692 if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header)) 693 return; 694 } 695 if (Header.State == Chunk::State::Allocated) { 696 uptr TaggedChunk = Chunk; 697 if (allocatorSupportsMemoryTagging<AllocatorConfig>()) 698 TaggedChunk = untagPointer(TaggedChunk); 699 if (useMemoryTagging<AllocatorConfig>(Primary.Options.load())) 700 TaggedChunk = loadTag(Chunk); 701 Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header), 702 Arg); 703 } 704 }; 705 Primary.iterateOverBlocks(Lambda); 706 Secondary.iterateOverBlocks(Lambda); 707 #ifdef GWP_ASAN_HOOKS 708 GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg); 709 #endif 710 } 711 712 bool canReturnNull() { 713 initThreadMaybe(); 714 return Primary.Options.load().get(OptionBit::MayReturnNull); 715 } 716 717 bool setOption(Option O, sptr Value) { 718 initThreadMaybe(); 719 if (O == Option::MemtagTuning) { 720 // Enabling odd/even tags involves a tradeoff between use-after-free 721 // detection and buffer overflow detection. Odd/even tags make it more 722 // likely for buffer overflows to be detected by increasing the size of 723 // the guaranteed "red zone" around the allocation, but on the other hand 724 // use-after-free is less likely to be detected because the tag space for 725 // any particular chunk is cut in half. Therefore we use this tuning 726 // setting to control whether odd/even tags are enabled. 727 if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW) 728 Primary.Options.set(OptionBit::UseOddEvenTags); 729 else if (Value == M_MEMTAG_TUNING_UAF) 730 Primary.Options.clear(OptionBit::UseOddEvenTags); 731 return true; 732 } else { 733 // We leave it to the various sub-components to decide whether or not they 734 // want to handle the option, but we do not want to short-circuit 735 // execution if one of the setOption was to return false. 736 const bool PrimaryResult = Primary.setOption(O, Value); 737 const bool SecondaryResult = Secondary.setOption(O, Value); 738 const bool RegistryResult = TSDRegistry.setOption(O, Value); 739 return PrimaryResult && SecondaryResult && RegistryResult; 740 } 741 return false; 742 } 743 744 // Return the usable size for a given chunk. Technically we lie, as we just 745 // report the actual size of a chunk. This is done to counteract code actively 746 // writing past the end of a chunk (like sqlite3) when the usable size allows 747 // for it, which then forces realloc to copy the usable size of a chunk as 748 // opposed to its actual size. 749 uptr getUsableSize(const void *Ptr) { 750 if (UNLIKELY(!Ptr)) 751 return 0; 752 753 return getAllocSize(Ptr); 754 } 755 756 uptr getAllocSize(const void *Ptr) { 757 initThreadMaybe(); 758 759 #ifdef GWP_ASAN_HOOKS 760 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) 761 return GuardedAlloc.getSize(Ptr); 762 #endif // GWP_ASAN_HOOKS 763 764 Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr)); 765 Chunk::UnpackedHeader Header; 766 Chunk::loadHeader(Cookie, Ptr, &Header); 767 768 // Getting the alloc size of a chunk only makes sense if it's allocated. 769 if (UNLIKELY(Header.State != Chunk::State::Allocated)) 770 reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr)); 771 772 return getSize(Ptr, &Header); 773 } 774 775 void getStats(StatCounters S) { 776 initThreadMaybe(); 777 Stats.get(S); 778 } 779 780 // Returns true if the pointer provided was allocated by the current 781 // allocator instance, which is compliant with tcmalloc's ownership concept. 782 // A corrupted chunk will not be reported as owned, which is WAI. 783 bool isOwned(const void *Ptr) { 784 initThreadMaybe(); 785 #ifdef GWP_ASAN_HOOKS 786 if (GuardedAlloc.pointerIsMine(Ptr)) 787 return true; 788 #endif // GWP_ASAN_HOOKS 789 if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)) 790 return false; 791 Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr)); 792 Chunk::UnpackedHeader Header; 793 return Chunk::isValid(Cookie, Ptr, &Header) && 794 Header.State == Chunk::State::Allocated; 795 } 796 797 bool useMemoryTaggingTestOnly() const { 798 return useMemoryTagging<AllocatorConfig>(Primary.Options.load()); 799 } 800 void disableMemoryTagging() { 801 // If we haven't been initialized yet, we need to initialize now in order to 802 // prevent a future call to initThreadMaybe() from enabling memory tagging 803 // based on feature detection. But don't call initThreadMaybe() because it 804 // may end up calling the allocator (via pthread_atfork, via the post-init 805 // callback), which may cause mappings to be created with memory tagging 806 // enabled. 807 TSDRegistry.initOnceMaybe(this); 808 if (allocatorSupportsMemoryTagging<AllocatorConfig>()) { 809 Secondary.disableMemoryTagging(); 810 Primary.Options.clear(OptionBit::UseMemoryTagging); 811 } 812 } 813 814 void setTrackAllocationStacks(bool Track) { 815 initThreadMaybe(); 816 if (getFlags()->allocation_ring_buffer_size <= 0) { 817 DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks)); 818 return; 819 } 820 821 if (Track) { 822 initRingBufferMaybe(); 823 Primary.Options.set(OptionBit::TrackAllocationStacks); 824 } else 825 Primary.Options.clear(OptionBit::TrackAllocationStacks); 826 } 827 828 void setFillContents(FillContentsMode FillContents) { 829 initThreadMaybe(); 830 Primary.Options.setFillContentsMode(FillContents); 831 } 832 833 void setAddLargeAllocationSlack(bool AddSlack) { 834 initThreadMaybe(); 835 if (AddSlack) 836 Primary.Options.set(OptionBit::AddLargeAllocationSlack); 837 else 838 Primary.Options.clear(OptionBit::AddLargeAllocationSlack); 839 } 840 841 const char *getStackDepotAddress() { 842 initThreadMaybe(); 843 AllocationRingBuffer *RB = getRingBuffer(); 844 return RB ? reinterpret_cast<char *>(RB->Depot) : nullptr; 845 } 846 847 uptr getStackDepotSize() { 848 initThreadMaybe(); 849 AllocationRingBuffer *RB = getRingBuffer(); 850 return RB ? RB->StackDepotSize : 0; 851 } 852 853 const char *getRegionInfoArrayAddress() const { 854 return Primary.getRegionInfoArrayAddress(); 855 } 856 857 static uptr getRegionInfoArraySize() { 858 return PrimaryT::getRegionInfoArraySize(); 859 } 860 861 const char *getRingBufferAddress() { 862 initThreadMaybe(); 863 return reinterpret_cast<char *>(getRingBuffer()); 864 } 865 866 uptr getRingBufferSize() { 867 initThreadMaybe(); 868 AllocationRingBuffer *RB = getRingBuffer(); 869 return RB && RB->RingBufferElements 870 ? ringBufferSizeInBytes(RB->RingBufferElements) 871 : 0; 872 } 873 874 static const uptr MaxTraceSize = 64; 875 876 static void collectTraceMaybe(const StackDepot *Depot, 877 uintptr_t (&Trace)[MaxTraceSize], u32 Hash) { 878 uptr RingPos, Size; 879 if (!Depot->find(Hash, &RingPos, &Size)) 880 return; 881 for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I) 882 Trace[I] = static_cast<uintptr_t>(Depot->at(RingPos + I)); 883 } 884 885 static void getErrorInfo(struct scudo_error_info *ErrorInfo, 886 uintptr_t FaultAddr, const char *DepotPtr, 887 size_t DepotSize, const char *RegionInfoPtr, 888 const char *RingBufferPtr, size_t RingBufferSize, 889 const char *Memory, const char *MemoryTags, 890 uintptr_t MemoryAddr, size_t MemorySize) { 891 // N.B. we need to support corrupted data in any of the buffers here. We get 892 // this information from an external process (the crashing process) that 893 // should not be able to crash the crash dumper (crash_dump on Android). 894 // See also the get_error_info_fuzzer. 895 *ErrorInfo = {}; 896 if (!allocatorSupportsMemoryTagging<AllocatorConfig>() || 897 MemoryAddr + MemorySize < MemoryAddr) 898 return; 899 900 const StackDepot *Depot = nullptr; 901 if (DepotPtr) { 902 // check for corrupted StackDepot. First we need to check whether we can 903 // read the metadata, then whether the metadata matches the size. 904 if (DepotSize < sizeof(*Depot)) 905 return; 906 Depot = reinterpret_cast<const StackDepot *>(DepotPtr); 907 if (!Depot->isValid(DepotSize)) 908 return; 909 } 910 911 size_t NextErrorReport = 0; 912 913 // Check for OOB in the current block and the two surrounding blocks. Beyond 914 // that, UAF is more likely. 915 if (extractTag(FaultAddr) != 0) 916 getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, 917 RegionInfoPtr, Memory, MemoryTags, MemoryAddr, 918 MemorySize, 0, 2); 919 920 // Check the ring buffer. For primary allocations this will only find UAF; 921 // for secondary allocations we can find either UAF or OOB. 922 getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, 923 RingBufferPtr, RingBufferSize); 924 925 // Check for OOB in the 28 blocks surrounding the 3 we checked earlier. 926 // Beyond that we are likely to hit false positives. 927 if (extractTag(FaultAddr) != 0) 928 getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, 929 RegionInfoPtr, Memory, MemoryTags, MemoryAddr, 930 MemorySize, 2, 16); 931 } 932 933 private: 934 typedef typename PrimaryT::SizeClassMap SizeClassMap; 935 936 static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG; 937 static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable. 938 static const uptr MinAlignment = 1UL << MinAlignmentLog; 939 static const uptr MaxAlignment = 1UL << MaxAlignmentLog; 940 static const uptr MaxAllowedMallocSize = 941 FIRST_32_SECOND_64(1UL << 31, 1ULL << 40); 942 943 static_assert(MinAlignment >= sizeof(Chunk::PackedHeader), 944 "Minimal alignment must at least cover a chunk header."); 945 static_assert(!allocatorSupportsMemoryTagging<AllocatorConfig>() || 946 MinAlignment >= archMemoryTagGranuleSize(), 947 ""); 948 949 static const u32 BlockMarker = 0x44554353U; 950 951 // These are indexes into an "array" of 32-bit values that store information 952 // inline with a chunk that is relevant to diagnosing memory tag faults, where 953 // 0 corresponds to the address of the user memory. This means that only 954 // negative indexes may be used. The smallest index that may be used is -2, 955 // which corresponds to 8 bytes before the user memory, because the chunk 956 // header size is 8 bytes and in allocators that support memory tagging the 957 // minimum alignment is at least the tag granule size (16 on aarch64). 958 static const sptr MemTagAllocationTraceIndex = -2; 959 static const sptr MemTagAllocationTidIndex = -1; 960 961 u32 Cookie = 0; 962 u32 QuarantineMaxChunkSize = 0; 963 964 GlobalStats Stats; 965 PrimaryT Primary; 966 SecondaryT Secondary; 967 QuarantineT Quarantine; 968 TSDRegistryT TSDRegistry; 969 pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT; 970 971 #ifdef GWP_ASAN_HOOKS 972 gwp_asan::GuardedPoolAllocator GuardedAlloc; 973 uptr GuardedAllocSlotSize = 0; 974 #endif // GWP_ASAN_HOOKS 975 976 struct AllocationRingBuffer { 977 struct Entry { 978 atomic_uptr Ptr; 979 atomic_uptr AllocationSize; 980 atomic_u32 AllocationTrace; 981 atomic_u32 AllocationTid; 982 atomic_u32 DeallocationTrace; 983 atomic_u32 DeallocationTid; 984 }; 985 StackDepot *Depot = nullptr; 986 uptr StackDepotSize = 0; 987 MemMapT RawRingBufferMap; 988 MemMapT RawStackDepotMap; 989 u32 RingBufferElements = 0; 990 atomic_uptr Pos; 991 // An array of Size (at least one) elements of type Entry is immediately 992 // following to this struct. 993 }; 994 static_assert(sizeof(AllocationRingBuffer) % 995 alignof(typename AllocationRingBuffer::Entry) == 996 0, 997 "invalid alignment"); 998 999 // Lock to initialize the RingBuffer 1000 HybridMutex RingBufferInitLock; 1001 1002 // Pointer to memory mapped area starting with AllocationRingBuffer struct, 1003 // and immediately followed by Size elements of type Entry. 1004 atomic_uptr RingBufferAddress = {}; 1005 1006 AllocationRingBuffer *getRingBuffer() { 1007 return reinterpret_cast<AllocationRingBuffer *>( 1008 atomic_load(&RingBufferAddress, memory_order_acquire)); 1009 } 1010 1011 // The following might get optimized out by the compiler. 1012 NOINLINE void performSanityChecks() { 1013 // Verify that the header offset field can hold the maximum offset. In the 1014 // case of the Secondary allocator, it takes care of alignment and the 1015 // offset will always be small. In the case of the Primary, the worst case 1016 // scenario happens in the last size class, when the backend allocation 1017 // would already be aligned on the requested alignment, which would happen 1018 // to be the maximum alignment that would fit in that size class. As a 1019 // result, the maximum offset will be at most the maximum alignment for the 1020 // last size class minus the header size, in multiples of MinAlignment. 1021 Chunk::UnpackedHeader Header = {}; 1022 const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex( 1023 SizeClassMap::MaxSize - MinAlignment); 1024 const uptr MaxOffset = 1025 (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog; 1026 Header.Offset = MaxOffset & Chunk::OffsetMask; 1027 if (UNLIKELY(Header.Offset != MaxOffset)) 1028 reportSanityCheckError("offset"); 1029 1030 // Verify that we can fit the maximum size or amount of unused bytes in the 1031 // header. Given that the Secondary fits the allocation to a page, the worst 1032 // case scenario happens in the Primary. It will depend on the second to 1033 // last and last class sizes, as well as the dynamic base for the Primary. 1034 // The following is an over-approximation that works for our needs. 1035 const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1; 1036 Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes; 1037 if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)) 1038 reportSanityCheckError("size (or unused bytes)"); 1039 1040 const uptr LargestClassId = SizeClassMap::LargestClassId; 1041 Header.ClassId = LargestClassId; 1042 if (UNLIKELY(Header.ClassId != LargestClassId)) 1043 reportSanityCheckError("class ID"); 1044 } 1045 1046 static inline void *getBlockBegin(const void *Ptr, 1047 Chunk::UnpackedHeader *Header) { 1048 return reinterpret_cast<void *>( 1049 reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() - 1050 (static_cast<uptr>(Header->Offset) << MinAlignmentLog)); 1051 } 1052 1053 // Return the size of a chunk as requested during its allocation. 1054 inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) { 1055 const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes; 1056 if (LIKELY(Header->ClassId)) 1057 return SizeOrUnusedBytes; 1058 if (allocatorSupportsMemoryTagging<AllocatorConfig>()) 1059 Ptr = untagPointer(const_cast<void *>(Ptr)); 1060 return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) - 1061 reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes; 1062 } 1063 1064 ALWAYS_INLINE void *initChunk(const uptr ClassId, const Chunk::Origin Origin, 1065 void *Block, const uptr UserPtr, 1066 const uptr SizeOrUnusedBytes, 1067 const FillContentsMode FillContents) { 1068 // Compute the default pointer before adding the header tag 1069 const uptr DefaultAlignedPtr = 1070 reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize(); 1071 1072 Block = addHeaderTag(Block); 1073 // Only do content fill when it's from primary allocator because secondary 1074 // allocator has filled the content. 1075 if (ClassId != 0 && UNLIKELY(FillContents != NoFill)) { 1076 // This condition is not necessarily unlikely, but since memset is 1077 // costly, we might as well mark it as such. 1078 memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte, 1079 PrimaryT::getSizeByClassId(ClassId)); 1080 } 1081 1082 Chunk::UnpackedHeader Header = {}; 1083 1084 if (UNLIKELY(DefaultAlignedPtr != UserPtr)) { 1085 const uptr Offset = UserPtr - DefaultAlignedPtr; 1086 DCHECK_GE(Offset, 2 * sizeof(u32)); 1087 // The BlockMarker has no security purpose, but is specifically meant for 1088 // the chunk iteration function that can be used in debugging situations. 1089 // It is the only situation where we have to locate the start of a chunk 1090 // based on its block address. 1091 reinterpret_cast<u32 *>(Block)[0] = BlockMarker; 1092 reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset); 1093 Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask; 1094 } 1095 1096 Header.ClassId = ClassId & Chunk::ClassIdMask; 1097 Header.State = Chunk::State::Allocated; 1098 Header.OriginOrWasZeroed = Origin & Chunk::OriginMask; 1099 Header.SizeOrUnusedBytes = SizeOrUnusedBytes & Chunk::SizeOrUnusedBytesMask; 1100 Chunk::storeHeader(Cookie, reinterpret_cast<void *>(addHeaderTag(UserPtr)), 1101 &Header); 1102 1103 return reinterpret_cast<void *>(UserPtr); 1104 } 1105 1106 NOINLINE void * 1107 initChunkWithMemoryTagging(const uptr ClassId, const Chunk::Origin Origin, 1108 void *Block, const uptr UserPtr, const uptr Size, 1109 const uptr SizeOrUnusedBytes, 1110 const FillContentsMode FillContents) { 1111 const Options Options = Primary.Options.load(); 1112 DCHECK(useMemoryTagging<AllocatorConfig>(Options)); 1113 1114 // Compute the default pointer before adding the header tag 1115 const uptr DefaultAlignedPtr = 1116 reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize(); 1117 1118 void *Ptr = reinterpret_cast<void *>(UserPtr); 1119 void *TaggedPtr = Ptr; 1120 1121 if (LIKELY(ClassId)) { 1122 // Init the primary chunk. 1123 // 1124 // We only need to zero or tag the contents for Primary backed 1125 // allocations. We only set tags for primary allocations in order to avoid 1126 // faulting potentially large numbers of pages for large secondary 1127 // allocations. We assume that guard pages are enough to protect these 1128 // allocations. 1129 // 1130 // FIXME: When the kernel provides a way to set the background tag of a 1131 // mapping, we should be able to tag secondary allocations as well. 1132 // 1133 // When memory tagging is enabled, zeroing the contents is done as part of 1134 // setting the tag. 1135 1136 Chunk::UnpackedHeader Header; 1137 const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId); 1138 const uptr BlockUptr = reinterpret_cast<uptr>(Block); 1139 const uptr BlockEnd = BlockUptr + BlockSize; 1140 // If possible, try to reuse the UAF tag that was set by deallocate(). 1141 // For simplicity, only reuse tags if we have the same start address as 1142 // the previous allocation. This handles the majority of cases since 1143 // most allocations will not be more aligned than the minimum alignment. 1144 // 1145 // We need to handle situations involving reclaimed chunks, and retag 1146 // the reclaimed portions if necessary. In the case where the chunk is 1147 // fully reclaimed, the chunk's header will be zero, which will trigger 1148 // the code path for new mappings and invalid chunks that prepares the 1149 // chunk from scratch. There are three possibilities for partial 1150 // reclaiming: 1151 // 1152 // (1) Header was reclaimed, data was partially reclaimed. 1153 // (2) Header was not reclaimed, all data was reclaimed (e.g. because 1154 // data started on a page boundary). 1155 // (3) Header was not reclaimed, data was partially reclaimed. 1156 // 1157 // Case (1) will be handled in the same way as for full reclaiming, 1158 // since the header will be zero. 1159 // 1160 // We can detect case (2) by loading the tag from the start 1161 // of the chunk. If it is zero, it means that either all data was 1162 // reclaimed (since we never use zero as the chunk tag), or that the 1163 // previous allocation was of size zero. Either way, we need to prepare 1164 // a new chunk from scratch. 1165 // 1166 // We can detect case (3) by moving to the next page (if covered by the 1167 // chunk) and loading the tag of its first granule. If it is zero, it 1168 // means that all following pages may need to be retagged. On the other 1169 // hand, if it is nonzero, we can assume that all following pages are 1170 // still tagged, according to the logic that if any of the pages 1171 // following the next page were reclaimed, the next page would have been 1172 // reclaimed as well. 1173 uptr TaggedUserPtr; 1174 uptr PrevUserPtr; 1175 if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) && 1176 PrevUserPtr == UserPtr && 1177 (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) { 1178 uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes; 1179 const uptr NextPage = roundUp(TaggedUserPtr, getPageSizeCached()); 1180 if (NextPage < PrevEnd && loadTag(NextPage) != NextPage) 1181 PrevEnd = NextPage; 1182 TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr); 1183 resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd); 1184 if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) { 1185 // If an allocation needs to be zeroed (i.e. calloc) we can normally 1186 // avoid zeroing the memory now since we can rely on memory having 1187 // been zeroed on free, as this is normally done while setting the 1188 // UAF tag. But if tagging was disabled per-thread when the memory 1189 // was freed, it would not have been retagged and thus zeroed, and 1190 // therefore it needs to be zeroed now. 1191 memset(TaggedPtr, 0, 1192 Min(Size, roundUp(PrevEnd - TaggedUserPtr, 1193 archMemoryTagGranuleSize()))); 1194 } else if (Size) { 1195 // Clear any stack metadata that may have previously been stored in 1196 // the chunk data. 1197 memset(TaggedPtr, 0, archMemoryTagGranuleSize()); 1198 } 1199 } else { 1200 const uptr OddEvenMask = 1201 computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId); 1202 TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd); 1203 } 1204 storePrimaryAllocationStackMaybe(Options, Ptr); 1205 } else { 1206 // Init the secondary chunk. 1207 1208 Block = addHeaderTag(Block); 1209 Ptr = addHeaderTag(Ptr); 1210 storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr)); 1211 storeSecondaryAllocationStackMaybe(Options, Ptr, Size); 1212 } 1213 1214 Chunk::UnpackedHeader Header = {}; 1215 1216 if (UNLIKELY(DefaultAlignedPtr != UserPtr)) { 1217 const uptr Offset = UserPtr - DefaultAlignedPtr; 1218 DCHECK_GE(Offset, 2 * sizeof(u32)); 1219 // The BlockMarker has no security purpose, but is specifically meant for 1220 // the chunk iteration function that can be used in debugging situations. 1221 // It is the only situation where we have to locate the start of a chunk 1222 // based on its block address. 1223 reinterpret_cast<u32 *>(Block)[0] = BlockMarker; 1224 reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset); 1225 Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask; 1226 } 1227 1228 Header.ClassId = ClassId & Chunk::ClassIdMask; 1229 Header.State = Chunk::State::Allocated; 1230 Header.OriginOrWasZeroed = Origin & Chunk::OriginMask; 1231 Header.SizeOrUnusedBytes = SizeOrUnusedBytes & Chunk::SizeOrUnusedBytesMask; 1232 Chunk::storeHeader(Cookie, Ptr, &Header); 1233 1234 return TaggedPtr; 1235 } 1236 1237 void quarantineOrDeallocateChunk(const Options &Options, void *TaggedPtr, 1238 Chunk::UnpackedHeader *Header, 1239 uptr Size) NO_THREAD_SAFETY_ANALYSIS { 1240 void *Ptr = getHeaderTaggedPointer(TaggedPtr); 1241 // If the quarantine is disabled, the actual size of a chunk is 0 or larger 1242 // than the maximum allowed, we return a chunk directly to the backend. 1243 // This purposefully underflows for Size == 0. 1244 const bool BypassQuarantine = !Quarantine.getCacheSize() || 1245 ((Size - 1) >= QuarantineMaxChunkSize) || 1246 !Header->ClassId; 1247 if (BypassQuarantine) 1248 Header->State = Chunk::State::Available; 1249 else 1250 Header->State = Chunk::State::Quarantined; 1251 1252 void *BlockBegin; 1253 if (LIKELY(!useMemoryTagging<AllocatorConfig>(Options))) { 1254 Header->OriginOrWasZeroed = 0U; 1255 if (BypassQuarantine && allocatorSupportsMemoryTagging<AllocatorConfig>()) 1256 Ptr = untagPointer(Ptr); 1257 BlockBegin = getBlockBegin(Ptr, Header); 1258 } else { 1259 Header->OriginOrWasZeroed = 1260 Header->ClassId && !TSDRegistry.getDisableMemInit(); 1261 BlockBegin = 1262 retagBlock(Options, TaggedPtr, Ptr, Header, Size, BypassQuarantine); 1263 } 1264 1265 Chunk::storeHeader(Cookie, Ptr, Header); 1266 1267 if (BypassQuarantine) { 1268 const uptr ClassId = Header->ClassId; 1269 if (LIKELY(ClassId)) { 1270 bool CacheDrained; 1271 { 1272 typename TSDRegistryT::ScopedTSD TSD(TSDRegistry); 1273 CacheDrained = TSD->getCache().deallocate(ClassId, BlockBegin); 1274 } 1275 // When we have drained some blocks back to the Primary from TSD, that 1276 // implies that we may have the chance to release some pages as well. 1277 // Note that in order not to block other thread's accessing the TSD, 1278 // release the TSD first then try the page release. 1279 if (CacheDrained) 1280 Primary.tryReleaseToOS(ClassId, ReleaseToOS::Normal); 1281 } else { 1282 Secondary.deallocate(Options, BlockBegin); 1283 } 1284 } else { 1285 typename TSDRegistryT::ScopedTSD TSD(TSDRegistry); 1286 Quarantine.put(&TSD->getQuarantineCache(), 1287 QuarantineCallback(*this, TSD->getCache()), Ptr, Size); 1288 } 1289 } 1290 1291 NOINLINE void *retagBlock(const Options &Options, void *TaggedPtr, void *&Ptr, 1292 Chunk::UnpackedHeader *Header, const uptr Size, 1293 bool BypassQuarantine) { 1294 DCHECK(useMemoryTagging<AllocatorConfig>(Options)); 1295 1296 const u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr)); 1297 storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size); 1298 if (Header->ClassId && !TSDRegistry.getDisableMemInit()) { 1299 uptr TaggedBegin, TaggedEnd; 1300 const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe( 1301 Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, Header)), 1302 Header->ClassId); 1303 // Exclude the previous tag so that immediate use after free is 1304 // detected 100% of the time. 1305 setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin, 1306 &TaggedEnd); 1307 } 1308 1309 Ptr = untagPointer(Ptr); 1310 void *BlockBegin = getBlockBegin(Ptr, Header); 1311 if (BypassQuarantine && !Header->ClassId) { 1312 storeTags(reinterpret_cast<uptr>(BlockBegin), 1313 reinterpret_cast<uptr>(Ptr)); 1314 } 1315 1316 return BlockBegin; 1317 } 1318 1319 bool getChunkFromBlock(uptr Block, uptr *Chunk, 1320 Chunk::UnpackedHeader *Header) { 1321 *Chunk = 1322 Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block)); 1323 return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header); 1324 } 1325 1326 static uptr getChunkOffsetFromBlock(const char *Block) { 1327 u32 Offset = 0; 1328 if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker) 1329 Offset = reinterpret_cast<const u32 *>(Block)[1]; 1330 return Offset + Chunk::getHeaderSize(); 1331 } 1332 1333 // Set the tag of the granule past the end of the allocation to 0, to catch 1334 // linear overflows even if a previous larger allocation used the same block 1335 // and tag. Only do this if the granule past the end is in our block, because 1336 // this would otherwise lead to a SEGV if the allocation covers the entire 1337 // block and our block is at the end of a mapping. The tag of the next block's 1338 // header granule will be set to 0, so it will serve the purpose of catching 1339 // linear overflows in this case. 1340 // 1341 // For allocations of size 0 we do not end up storing the address tag to the 1342 // memory tag space, which getInlineErrorInfo() normally relies on to match 1343 // address tags against chunks. To allow matching in this case we store the 1344 // address tag in the first byte of the chunk. 1345 void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) { 1346 DCHECK_EQ(BlockEnd, untagPointer(BlockEnd)); 1347 uptr UntaggedEnd = untagPointer(End); 1348 if (UntaggedEnd != BlockEnd) { 1349 storeTag(UntaggedEnd); 1350 if (Size == 0) 1351 *reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End); 1352 } 1353 } 1354 1355 void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask, 1356 uptr BlockEnd) { 1357 // Prepare the granule before the chunk to store the chunk header by setting 1358 // its tag to 0. Normally its tag will already be 0, but in the case where a 1359 // chunk holding a low alignment allocation is reused for a higher alignment 1360 // allocation, the chunk may already have a non-zero tag from the previous 1361 // allocation. 1362 storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize()); 1363 1364 uptr TaggedBegin, TaggedEnd; 1365 setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd); 1366 1367 storeEndMarker(TaggedEnd, Size, BlockEnd); 1368 return reinterpret_cast<void *>(TaggedBegin); 1369 } 1370 1371 void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize, 1372 uptr BlockEnd) { 1373 uptr RoundOldPtr = roundUp(OldPtr, archMemoryTagGranuleSize()); 1374 uptr RoundNewPtr; 1375 if (RoundOldPtr >= NewPtr) { 1376 // If the allocation is shrinking we just need to set the tag past the end 1377 // of the allocation to 0. See explanation in storeEndMarker() above. 1378 RoundNewPtr = roundUp(NewPtr, archMemoryTagGranuleSize()); 1379 } else { 1380 // Set the memory tag of the region 1381 // [RoundOldPtr, roundUp(NewPtr, archMemoryTagGranuleSize())) 1382 // to the pointer tag stored in OldPtr. 1383 RoundNewPtr = storeTags(RoundOldPtr, NewPtr); 1384 } 1385 storeEndMarker(RoundNewPtr, NewSize, BlockEnd); 1386 } 1387 1388 void storePrimaryAllocationStackMaybe(const Options &Options, void *Ptr) { 1389 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) 1390 return; 1391 AllocationRingBuffer *RB = getRingBuffer(); 1392 if (!RB) 1393 return; 1394 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr); 1395 Ptr32[MemTagAllocationTraceIndex] = collectStackTrace(RB->Depot); 1396 Ptr32[MemTagAllocationTidIndex] = getThreadID(); 1397 } 1398 1399 void storeRingBufferEntry(AllocationRingBuffer *RB, void *Ptr, 1400 u32 AllocationTrace, u32 AllocationTid, 1401 uptr AllocationSize, u32 DeallocationTrace, 1402 u32 DeallocationTid) { 1403 uptr Pos = atomic_fetch_add(&RB->Pos, 1, memory_order_relaxed); 1404 typename AllocationRingBuffer::Entry *Entry = 1405 getRingBufferEntry(RB, Pos % RB->RingBufferElements); 1406 1407 // First invalidate our entry so that we don't attempt to interpret a 1408 // partially written state in getSecondaryErrorInfo(). The fences below 1409 // ensure that the compiler does not move the stores to Ptr in between the 1410 // stores to the other fields. 1411 atomic_store_relaxed(&Entry->Ptr, 0); 1412 1413 __atomic_signal_fence(__ATOMIC_SEQ_CST); 1414 atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace); 1415 atomic_store_relaxed(&Entry->AllocationTid, AllocationTid); 1416 atomic_store_relaxed(&Entry->AllocationSize, AllocationSize); 1417 atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace); 1418 atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid); 1419 __atomic_signal_fence(__ATOMIC_SEQ_CST); 1420 1421 atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr)); 1422 } 1423 1424 void storeSecondaryAllocationStackMaybe(const Options &Options, void *Ptr, 1425 uptr Size) { 1426 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) 1427 return; 1428 AllocationRingBuffer *RB = getRingBuffer(); 1429 if (!RB) 1430 return; 1431 u32 Trace = collectStackTrace(RB->Depot); 1432 u32 Tid = getThreadID(); 1433 1434 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr); 1435 Ptr32[MemTagAllocationTraceIndex] = Trace; 1436 Ptr32[MemTagAllocationTidIndex] = Tid; 1437 1438 storeRingBufferEntry(RB, untagPointer(Ptr), Trace, Tid, Size, 0, 0); 1439 } 1440 1441 void storeDeallocationStackMaybe(const Options &Options, void *Ptr, 1442 u8 PrevTag, uptr Size) { 1443 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) 1444 return; 1445 AllocationRingBuffer *RB = getRingBuffer(); 1446 if (!RB) 1447 return; 1448 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr); 1449 u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex]; 1450 u32 AllocationTid = Ptr32[MemTagAllocationTidIndex]; 1451 1452 u32 DeallocationTrace = collectStackTrace(RB->Depot); 1453 u32 DeallocationTid = getThreadID(); 1454 1455 storeRingBufferEntry(RB, addFixedTag(untagPointer(Ptr), PrevTag), 1456 AllocationTrace, AllocationTid, Size, 1457 DeallocationTrace, DeallocationTid); 1458 } 1459 1460 static const size_t NumErrorReports = 1461 sizeof(((scudo_error_info *)nullptr)->reports) / 1462 sizeof(((scudo_error_info *)nullptr)->reports[0]); 1463 1464 static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo, 1465 size_t &NextErrorReport, uintptr_t FaultAddr, 1466 const StackDepot *Depot, 1467 const char *RegionInfoPtr, const char *Memory, 1468 const char *MemoryTags, uintptr_t MemoryAddr, 1469 size_t MemorySize, size_t MinDistance, 1470 size_t MaxDistance) { 1471 uptr UntaggedFaultAddr = untagPointer(FaultAddr); 1472 u8 FaultAddrTag = extractTag(FaultAddr); 1473 BlockInfo Info = 1474 PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr); 1475 1476 auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool { 1477 if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr || 1478 Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize) 1479 return false; 1480 *Data = &Memory[Addr - MemoryAddr]; 1481 *Tag = static_cast<u8>( 1482 MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]); 1483 return true; 1484 }; 1485 1486 auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr, 1487 Chunk::UnpackedHeader *Header, const u32 **Data, 1488 u8 *Tag) { 1489 const char *BlockBegin; 1490 u8 BlockBeginTag; 1491 if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag)) 1492 return false; 1493 uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin); 1494 *ChunkAddr = Addr + ChunkOffset; 1495 1496 const char *ChunkBegin; 1497 if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag)) 1498 return false; 1499 *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>( 1500 ChunkBegin - Chunk::getHeaderSize()); 1501 *Data = reinterpret_cast<const u32 *>(ChunkBegin); 1502 1503 // Allocations of size 0 will have stashed the tag in the first byte of 1504 // the chunk, see storeEndMarker(). 1505 if (Header->SizeOrUnusedBytes == 0) 1506 *Tag = static_cast<u8>(*ChunkBegin); 1507 1508 return true; 1509 }; 1510 1511 if (NextErrorReport == NumErrorReports) 1512 return; 1513 1514 auto CheckOOB = [&](uptr BlockAddr) { 1515 if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd) 1516 return false; 1517 1518 uptr ChunkAddr; 1519 Chunk::UnpackedHeader Header; 1520 const u32 *Data; 1521 uint8_t Tag; 1522 if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) || 1523 Header.State != Chunk::State::Allocated || Tag != FaultAddrTag) 1524 return false; 1525 1526 auto *R = &ErrorInfo->reports[NextErrorReport++]; 1527 R->error_type = 1528 UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW; 1529 R->allocation_address = ChunkAddr; 1530 R->allocation_size = Header.SizeOrUnusedBytes; 1531 if (Depot) { 1532 collectTraceMaybe(Depot, R->allocation_trace, 1533 Data[MemTagAllocationTraceIndex]); 1534 } 1535 R->allocation_tid = Data[MemTagAllocationTidIndex]; 1536 return NextErrorReport == NumErrorReports; 1537 }; 1538 1539 if (MinDistance == 0 && CheckOOB(Info.BlockBegin)) 1540 return; 1541 1542 for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I) 1543 if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) || 1544 CheckOOB(Info.BlockBegin - I * Info.BlockSize)) 1545 return; 1546 } 1547 1548 static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo, 1549 size_t &NextErrorReport, 1550 uintptr_t FaultAddr, 1551 const StackDepot *Depot, 1552 const char *RingBufferPtr, 1553 size_t RingBufferSize) { 1554 auto *RingBuffer = 1555 reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr); 1556 size_t RingBufferElements = ringBufferElementsFromBytes(RingBufferSize); 1557 if (!RingBuffer || RingBufferElements == 0 || !Depot) 1558 return; 1559 uptr Pos = atomic_load_relaxed(&RingBuffer->Pos); 1560 1561 for (uptr I = Pos - 1; I != Pos - 1 - RingBufferElements && 1562 NextErrorReport != NumErrorReports; 1563 --I) { 1564 auto *Entry = getRingBufferEntry(RingBuffer, I % RingBufferElements); 1565 uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr); 1566 if (!EntryPtr) 1567 continue; 1568 1569 uptr UntaggedEntryPtr = untagPointer(EntryPtr); 1570 uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize); 1571 u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace); 1572 u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid); 1573 u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace); 1574 u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid); 1575 1576 if (DeallocationTid) { 1577 // For UAF we only consider in-bounds fault addresses because 1578 // out-of-bounds UAF is rare and attempting to detect it is very likely 1579 // to result in false positives. 1580 if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize) 1581 continue; 1582 } else { 1583 // Ring buffer OOB is only possible with secondary allocations. In this 1584 // case we are guaranteed a guard region of at least a page on either 1585 // side of the allocation (guard page on the right, guard page + tagged 1586 // region on the left), so ignore any faults outside of that range. 1587 if (FaultAddr < EntryPtr - getPageSizeCached() || 1588 FaultAddr >= EntryPtr + EntrySize + getPageSizeCached()) 1589 continue; 1590 1591 // For UAF the ring buffer will contain two entries, one for the 1592 // allocation and another for the deallocation. Don't report buffer 1593 // overflow/underflow using the allocation entry if we have already 1594 // collected a report from the deallocation entry. 1595 bool Found = false; 1596 for (uptr J = 0; J != NextErrorReport; ++J) { 1597 if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) { 1598 Found = true; 1599 break; 1600 } 1601 } 1602 if (Found) 1603 continue; 1604 } 1605 1606 auto *R = &ErrorInfo->reports[NextErrorReport++]; 1607 if (DeallocationTid) 1608 R->error_type = USE_AFTER_FREE; 1609 else if (FaultAddr < EntryPtr) 1610 R->error_type = BUFFER_UNDERFLOW; 1611 else 1612 R->error_type = BUFFER_OVERFLOW; 1613 1614 R->allocation_address = UntaggedEntryPtr; 1615 R->allocation_size = EntrySize; 1616 collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace); 1617 R->allocation_tid = AllocationTid; 1618 collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace); 1619 R->deallocation_tid = DeallocationTid; 1620 } 1621 } 1622 1623 uptr getStats(ScopedString *Str) { 1624 Primary.getStats(Str); 1625 Secondary.getStats(Str); 1626 Quarantine.getStats(Str); 1627 TSDRegistry.getStats(Str); 1628 return Str->length(); 1629 } 1630 1631 static typename AllocationRingBuffer::Entry * 1632 getRingBufferEntry(AllocationRingBuffer *RB, uptr N) { 1633 char *RBEntryStart = 1634 &reinterpret_cast<char *>(RB)[sizeof(AllocationRingBuffer)]; 1635 return &reinterpret_cast<typename AllocationRingBuffer::Entry *>( 1636 RBEntryStart)[N]; 1637 } 1638 static const typename AllocationRingBuffer::Entry * 1639 getRingBufferEntry(const AllocationRingBuffer *RB, uptr N) { 1640 const char *RBEntryStart = 1641 &reinterpret_cast<const char *>(RB)[sizeof(AllocationRingBuffer)]; 1642 return &reinterpret_cast<const typename AllocationRingBuffer::Entry *>( 1643 RBEntryStart)[N]; 1644 } 1645 1646 void initRingBufferMaybe() { 1647 ScopedLock L(RingBufferInitLock); 1648 if (getRingBuffer() != nullptr) 1649 return; 1650 1651 int ring_buffer_size = getFlags()->allocation_ring_buffer_size; 1652 if (ring_buffer_size <= 0) 1653 return; 1654 1655 u32 AllocationRingBufferSize = static_cast<u32>(ring_buffer_size); 1656 1657 // We store alloc and free stacks for each entry. 1658 constexpr u32 kStacksPerRingBufferEntry = 2; 1659 constexpr u32 kMaxU32Pow2 = ~(UINT32_MAX >> 1); 1660 static_assert(isPowerOfTwo(kMaxU32Pow2)); 1661 // On Android we always have 3 frames at the bottom: __start_main, 1662 // __libc_init, main, and 3 at the top: malloc, scudo_malloc and 1663 // Allocator::allocate. This leaves 10 frames for the user app. The next 1664 // smallest power of two (8) would only leave 2, which is clearly too 1665 // little. 1666 constexpr u32 kFramesPerStack = 16; 1667 static_assert(isPowerOfTwo(kFramesPerStack)); 1668 1669 if (AllocationRingBufferSize > kMaxU32Pow2 / kStacksPerRingBufferEntry) 1670 return; 1671 u32 TabSize = static_cast<u32>(roundUpPowerOfTwo(kStacksPerRingBufferEntry * 1672 AllocationRingBufferSize)); 1673 if (TabSize > UINT32_MAX / kFramesPerStack) 1674 return; 1675 u32 RingSize = static_cast<u32>(TabSize * kFramesPerStack); 1676 1677 uptr StackDepotSize = sizeof(StackDepot) + sizeof(atomic_u64) * RingSize + 1678 sizeof(atomic_u32) * TabSize; 1679 MemMapT DepotMap; 1680 DepotMap.map( 1681 /*Addr=*/0U, roundUp(StackDepotSize, getPageSizeCached()), 1682 "scudo:stack_depot"); 1683 auto *Depot = reinterpret_cast<StackDepot *>(DepotMap.getBase()); 1684 Depot->init(RingSize, TabSize); 1685 1686 MemMapT MemMap; 1687 MemMap.map( 1688 /*Addr=*/0U, 1689 roundUp(ringBufferSizeInBytes(AllocationRingBufferSize), 1690 getPageSizeCached()), 1691 "scudo:ring_buffer"); 1692 auto *RB = reinterpret_cast<AllocationRingBuffer *>(MemMap.getBase()); 1693 RB->RawRingBufferMap = MemMap; 1694 RB->RingBufferElements = AllocationRingBufferSize; 1695 RB->Depot = Depot; 1696 RB->StackDepotSize = StackDepotSize; 1697 RB->RawStackDepotMap = DepotMap; 1698 1699 atomic_store(&RingBufferAddress, reinterpret_cast<uptr>(RB), 1700 memory_order_release); 1701 } 1702 1703 void unmapRingBuffer() { 1704 AllocationRingBuffer *RB = getRingBuffer(); 1705 if (RB == nullptr) 1706 return; 1707 // N.B. because RawStackDepotMap is part of RawRingBufferMap, the order 1708 // is very important. 1709 RB->RawStackDepotMap.unmap(RB->RawStackDepotMap.getBase(), 1710 RB->RawStackDepotMap.getCapacity()); 1711 // Note that the `RB->RawRingBufferMap` is stored on the pages managed by 1712 // itself. Take over the ownership before calling unmap() so that any 1713 // operation along with unmap() won't touch inaccessible pages. 1714 MemMapT RawRingBufferMap = RB->RawRingBufferMap; 1715 RawRingBufferMap.unmap(RawRingBufferMap.getBase(), 1716 RawRingBufferMap.getCapacity()); 1717 atomic_store(&RingBufferAddress, 0, memory_order_release); 1718 } 1719 1720 static constexpr size_t ringBufferSizeInBytes(u32 RingBufferElements) { 1721 return sizeof(AllocationRingBuffer) + 1722 RingBufferElements * sizeof(typename AllocationRingBuffer::Entry); 1723 } 1724 1725 static constexpr size_t ringBufferElementsFromBytes(size_t Bytes) { 1726 if (Bytes < sizeof(AllocationRingBuffer)) { 1727 return 0; 1728 } 1729 return (Bytes - sizeof(AllocationRingBuffer)) / 1730 sizeof(typename AllocationRingBuffer::Entry); 1731 } 1732 }; 1733 1734 } // namespace scudo 1735 1736 #endif // SCUDO_COMBINED_H_ 1737