1 //===-- combined.h ----------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef SCUDO_COMBINED_H_ 10 #define SCUDO_COMBINED_H_ 11 12 #include "chunk.h" 13 #include "common.h" 14 #include "flags.h" 15 #include "flags_parser.h" 16 #include "local_cache.h" 17 #include "memtag.h" 18 #include "options.h" 19 #include "quarantine.h" 20 #include "report.h" 21 #include "secondary.h" 22 #include "stack_depot.h" 23 #include "string_utils.h" 24 #include "tsd.h" 25 26 #include "scudo/interface.h" 27 28 #ifdef GWP_ASAN_HOOKS 29 #include "gwp_asan/guarded_pool_allocator.h" 30 #include "gwp_asan/optional/backtrace.h" 31 #include "gwp_asan/optional/options_parser.h" 32 #include "gwp_asan/optional/segv_handler.h" 33 #endif // GWP_ASAN_HOOKS 34 35 extern "C" inline void EmptyCallback() {} 36 37 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE 38 // This function is not part of the NDK so it does not appear in any public 39 // header files. We only declare/use it when targeting the platform. 40 extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf, 41 size_t num_entries); 42 #endif 43 44 namespace scudo { 45 46 template <class Params, void (*PostInitCallback)(void) = EmptyCallback> 47 class Allocator { 48 public: 49 using PrimaryT = typename Params::Primary; 50 using CacheT = typename PrimaryT::CacheT; 51 typedef Allocator<Params, PostInitCallback> ThisT; 52 typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT; 53 54 void callPostInitCallback() { 55 static pthread_once_t OnceControl = PTHREAD_ONCE_INIT; 56 pthread_once(&OnceControl, PostInitCallback); 57 } 58 59 struct QuarantineCallback { 60 explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache) 61 : Allocator(Instance), Cache(LocalCache) {} 62 63 // Chunk recycling function, returns a quarantined chunk to the backend, 64 // first making sure it hasn't been tampered with. 65 void recycle(void *Ptr) { 66 Chunk::UnpackedHeader Header; 67 Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); 68 if (UNLIKELY(Header.State != Chunk::State::Quarantined)) 69 reportInvalidChunkState(AllocatorAction::Recycling, Ptr); 70 71 Chunk::UnpackedHeader NewHeader = Header; 72 NewHeader.State = Chunk::State::Available; 73 Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header); 74 75 void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader); 76 const uptr ClassId = NewHeader.ClassId; 77 if (LIKELY(ClassId)) 78 Cache.deallocate(ClassId, BlockBegin); 79 else 80 Allocator.Secondary.deallocate(BlockBegin); 81 } 82 83 // We take a shortcut when allocating a quarantine batch by working with the 84 // appropriate class ID instead of using Size. The compiler should optimize 85 // the class ID computation and work with the associated cache directly. 86 void *allocate(UNUSED uptr Size) { 87 const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( 88 sizeof(QuarantineBatch) + Chunk::getHeaderSize()); 89 void *Ptr = Cache.allocate(QuarantineClassId); 90 // Quarantine batch allocation failure is fatal. 91 if (UNLIKELY(!Ptr)) 92 reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId)); 93 94 Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) + 95 Chunk::getHeaderSize()); 96 Chunk::UnpackedHeader Header = {}; 97 Header.ClassId = QuarantineClassId & Chunk::ClassIdMask; 98 Header.SizeOrUnusedBytes = sizeof(QuarantineBatch); 99 Header.State = Chunk::State::Allocated; 100 Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); 101 102 // Reset tag to 0 as this chunk may have been previously used for a tagged 103 // user allocation. 104 if (UNLIKELY(useMemoryTagging<Params>(Allocator.Primary.Options.load()))) 105 storeTags(reinterpret_cast<uptr>(Ptr), 106 reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch)); 107 108 return Ptr; 109 } 110 111 void deallocate(void *Ptr) { 112 const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( 113 sizeof(QuarantineBatch) + Chunk::getHeaderSize()); 114 Chunk::UnpackedHeader Header; 115 Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); 116 117 if (UNLIKELY(Header.State != Chunk::State::Allocated)) 118 reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); 119 DCHECK_EQ(Header.ClassId, QuarantineClassId); 120 DCHECK_EQ(Header.Offset, 0); 121 DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch)); 122 123 Chunk::UnpackedHeader NewHeader = Header; 124 NewHeader.State = Chunk::State::Available; 125 Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header); 126 Cache.deallocate(QuarantineClassId, 127 reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) - 128 Chunk::getHeaderSize())); 129 } 130 131 private: 132 ThisT &Allocator; 133 CacheT &Cache; 134 }; 135 136 typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT; 137 typedef typename QuarantineT::CacheT QuarantineCacheT; 138 139 void initLinkerInitialized() { 140 performSanityChecks(); 141 142 // Check if hardware CRC32 is supported in the binary and by the platform, 143 // if so, opt for the CRC32 hardware version of the checksum. 144 if (&computeHardwareCRC32 && hasHardwareCRC32()) 145 HashAlgorithm = Checksum::HardwareCRC32; 146 147 if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie)))) 148 Cookie = static_cast<u32>(getMonotonicTime() ^ 149 (reinterpret_cast<uptr>(this) >> 4)); 150 151 initFlags(); 152 reportUnrecognizedFlags(); 153 154 // Store some flags locally. 155 if (getFlags()->may_return_null) 156 Primary.Options.set(OptionBit::MayReturnNull); 157 if (getFlags()->zero_contents) 158 Primary.Options.setFillContentsMode(ZeroFill); 159 else if (getFlags()->pattern_fill_contents) 160 Primary.Options.setFillContentsMode(PatternOrZeroFill); 161 if (getFlags()->dealloc_type_mismatch) 162 Primary.Options.set(OptionBit::DeallocTypeMismatch); 163 if (getFlags()->delete_size_mismatch) 164 Primary.Options.set(OptionBit::DeleteSizeMismatch); 165 if (allocatorSupportsMemoryTagging<Params>() && 166 systemSupportsMemoryTagging()) 167 Primary.Options.set(OptionBit::UseMemoryTagging); 168 Primary.Options.set(OptionBit::UseOddEvenTags); 169 170 QuarantineMaxChunkSize = 171 static_cast<u32>(getFlags()->quarantine_max_chunk_size); 172 173 Stats.initLinkerInitialized(); 174 const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms; 175 Primary.initLinkerInitialized(ReleaseToOsIntervalMs); 176 Secondary.initLinkerInitialized(&Stats, ReleaseToOsIntervalMs); 177 178 Quarantine.init( 179 static_cast<uptr>(getFlags()->quarantine_size_kb << 10), 180 static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10)); 181 } 182 183 // Initialize the embedded GWP-ASan instance. Requires the main allocator to 184 // be functional, best called from PostInitCallback. 185 void initGwpAsan() { 186 #ifdef GWP_ASAN_HOOKS 187 // Bear in mind - Scudo has its own alignment guarantees that are strictly 188 // enforced. Scudo exposes the same allocation function for everything from 189 // malloc() to posix_memalign, so in general this flag goes unused, as Scudo 190 // will always ask GWP-ASan for an aligned amount of bytes. 191 gwp_asan::options::initOptions(getEnv("GWP_ASAN_OPTIONS"), Printf); 192 gwp_asan::options::Options Opt = gwp_asan::options::getOptions(); 193 // Embedded GWP-ASan is locked through the Scudo atfork handler (via 194 // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork 195 // handler. 196 Opt.InstallForkHandlers = false; 197 Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction(); 198 GuardedAlloc.init(Opt); 199 200 if (Opt.InstallSignalHandlers) 201 gwp_asan::segv_handler::installSignalHandlers( 202 &GuardedAlloc, Printf, 203 gwp_asan::backtrace::getPrintBacktraceFunction(), 204 gwp_asan::backtrace::getSegvBacktraceFunction()); 205 #endif // GWP_ASAN_HOOKS 206 } 207 208 ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) { 209 TSDRegistry.initThreadMaybe(this, MinimalInit); 210 } 211 212 void reset() { memset(this, 0, sizeof(*this)); } 213 214 void unmapTestOnly() { 215 TSDRegistry.unmapTestOnly(); 216 Primary.unmapTestOnly(); 217 #ifdef GWP_ASAN_HOOKS 218 if (getFlags()->GWP_ASAN_InstallSignalHandlers) 219 gwp_asan::segv_handler::uninstallSignalHandlers(); 220 GuardedAlloc.uninitTestOnly(); 221 #endif // GWP_ASAN_HOOKS 222 } 223 224 TSDRegistryT *getTSDRegistry() { return &TSDRegistry; } 225 226 // The Cache must be provided zero-initialized. 227 void initCache(CacheT *Cache) { 228 Cache->initLinkerInitialized(&Stats, &Primary); 229 } 230 231 // Release the resources used by a TSD, which involves: 232 // - draining the local quarantine cache to the global quarantine; 233 // - releasing the cached pointers back to the Primary; 234 // - unlinking the local stats from the global ones (destroying the cache does 235 // the last two items). 236 void commitBack(TSD<ThisT> *TSD) { 237 Quarantine.drain(&TSD->QuarantineCache, 238 QuarantineCallback(*this, TSD->Cache)); 239 TSD->Cache.destroy(&Stats); 240 } 241 242 ALWAYS_INLINE void *untagPointerMaybe(void *Ptr) { 243 if (allocatorSupportsMemoryTagging<Params>()) 244 return reinterpret_cast<void *>( 245 untagPointer(reinterpret_cast<uptr>(Ptr))); 246 return Ptr; 247 } 248 249 NOINLINE u32 collectStackTrace() { 250 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE 251 // Discard collectStackTrace() frame and allocator function frame. 252 constexpr uptr DiscardFrames = 2; 253 uptr Stack[MaxTraceSize + DiscardFrames]; 254 uptr Size = 255 android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames); 256 Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames); 257 return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size); 258 #else 259 return 0; 260 #endif 261 } 262 263 uptr computeOddEvenMaskForPointerMaybe(Options Options, uptr Ptr, uptr Size) { 264 if (!Options.get(OptionBit::UseOddEvenTags)) 265 return 0; 266 267 // If a chunk's tag is odd, we want the tags of the surrounding blocks to be 268 // even, and vice versa. Blocks are laid out Size bytes apart, and adding 269 // Size to Ptr will flip the least significant set bit of Size in Ptr, so 270 // that bit will have the pattern 010101... for consecutive blocks, which we 271 // can use to determine which tag mask to use. 272 return (Ptr & (1ULL << getLeastSignificantSetBitIndex(Size))) ? 0xaaaa 273 : 0x5555; 274 } 275 276 NOINLINE void *allocate(uptr Size, Chunk::Origin Origin, 277 uptr Alignment = MinAlignment, 278 bool ZeroContents = false) { 279 initThreadMaybe(); 280 281 #ifdef GWP_ASAN_HOOKS 282 if (UNLIKELY(GuardedAlloc.shouldSample())) { 283 if (void *Ptr = GuardedAlloc.allocate(roundUpTo(Size, Alignment))) 284 return Ptr; 285 } 286 #endif // GWP_ASAN_HOOKS 287 288 const Options Options = Primary.Options.load(); 289 const FillContentsMode FillContents = ZeroContents ? ZeroFill 290 : TSDRegistry.getDisableMemInit() 291 ? NoFill 292 : Options.getFillContentsMode(); 293 294 if (UNLIKELY(Alignment > MaxAlignment)) { 295 if (Options.get(OptionBit::MayReturnNull)) 296 return nullptr; 297 reportAlignmentTooBig(Alignment, MaxAlignment); 298 } 299 if (Alignment < MinAlignment) 300 Alignment = MinAlignment; 301 302 // If the requested size happens to be 0 (more common than you might think), 303 // allocate MinAlignment bytes on top of the header. Then add the extra 304 // bytes required to fulfill the alignment requirements: we allocate enough 305 // to be sure that there will be an address in the block that will satisfy 306 // the alignment. 307 const uptr NeededSize = 308 roundUpTo(Size, MinAlignment) + 309 ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize()); 310 311 // Takes care of extravagantly large sizes as well as integer overflows. 312 static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, ""); 313 if (UNLIKELY(Size >= MaxAllowedMallocSize)) { 314 if (Options.get(OptionBit::MayReturnNull)) 315 return nullptr; 316 reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize); 317 } 318 DCHECK_LE(Size, NeededSize); 319 320 void *Block = nullptr; 321 uptr ClassId = 0; 322 uptr SecondaryBlockEnd = 0; 323 if (LIKELY(PrimaryT::canAllocate(NeededSize))) { 324 ClassId = SizeClassMap::getClassIdBySize(NeededSize); 325 DCHECK_NE(ClassId, 0U); 326 bool UnlockRequired; 327 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); 328 Block = TSD->Cache.allocate(ClassId); 329 // If the allocation failed, the most likely reason with a 32-bit primary 330 // is the region being full. In that event, retry in each successively 331 // larger class until it fits. If it fails to fit in the largest class, 332 // fallback to the Secondary. 333 if (UNLIKELY(!Block)) { 334 while (ClassId < SizeClassMap::LargestClassId && !Block) 335 Block = TSD->Cache.allocate(++ClassId); 336 if (!Block) 337 ClassId = 0; 338 } 339 if (UnlockRequired) 340 TSD->unlock(); 341 } 342 if (UNLIKELY(ClassId == 0)) 343 Block = Secondary.allocate(NeededSize, Alignment, &SecondaryBlockEnd, 344 FillContents); 345 346 if (UNLIKELY(!Block)) { 347 if (Options.get(OptionBit::MayReturnNull)) 348 return nullptr; 349 reportOutOfMemory(NeededSize); 350 } 351 352 const uptr BlockUptr = reinterpret_cast<uptr>(Block); 353 const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize(); 354 const uptr UserPtr = roundUpTo(UnalignedUserPtr, Alignment); 355 356 void *Ptr = reinterpret_cast<void *>(UserPtr); 357 void *TaggedPtr = Ptr; 358 if (LIKELY(ClassId)) { 359 // We only need to zero or tag the contents for Primary backed 360 // allocations. We only set tags for primary allocations in order to avoid 361 // faulting potentially large numbers of pages for large secondary 362 // allocations. We assume that guard pages are enough to protect these 363 // allocations. 364 // 365 // FIXME: When the kernel provides a way to set the background tag of a 366 // mapping, we should be able to tag secondary allocations as well. 367 // 368 // When memory tagging is enabled, zeroing the contents is done as part of 369 // setting the tag. 370 if (UNLIKELY(useMemoryTagging<Params>(Options))) { 371 uptr PrevUserPtr; 372 Chunk::UnpackedHeader Header; 373 const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId); 374 const uptr BlockEnd = BlockUptr + BlockSize; 375 // If possible, try to reuse the UAF tag that was set by deallocate(). 376 // For simplicity, only reuse tags if we have the same start address as 377 // the previous allocation. This handles the majority of cases since 378 // most allocations will not be more aligned than the minimum alignment. 379 // 380 // We need to handle situations involving reclaimed chunks, and retag 381 // the reclaimed portions if necessary. In the case where the chunk is 382 // fully reclaimed, the chunk's header will be zero, which will trigger 383 // the code path for new mappings and invalid chunks that prepares the 384 // chunk from scratch. There are three possibilities for partial 385 // reclaiming: 386 // 387 // (1) Header was reclaimed, data was partially reclaimed. 388 // (2) Header was not reclaimed, all data was reclaimed (e.g. because 389 // data started on a page boundary). 390 // (3) Header was not reclaimed, data was partially reclaimed. 391 // 392 // Case (1) will be handled in the same way as for full reclaiming, 393 // since the header will be zero. 394 // 395 // We can detect case (2) by loading the tag from the start 396 // of the chunk. If it is zero, it means that either all data was 397 // reclaimed (since we never use zero as the chunk tag), or that the 398 // previous allocation was of size zero. Either way, we need to prepare 399 // a new chunk from scratch. 400 // 401 // We can detect case (3) by moving to the next page (if covered by the 402 // chunk) and loading the tag of its first granule. If it is zero, it 403 // means that all following pages may need to be retagged. On the other 404 // hand, if it is nonzero, we can assume that all following pages are 405 // still tagged, according to the logic that if any of the pages 406 // following the next page were reclaimed, the next page would have been 407 // reclaimed as well. 408 uptr TaggedUserPtr; 409 if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) && 410 PrevUserPtr == UserPtr && 411 (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) { 412 uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes; 413 const uptr NextPage = roundUpTo(TaggedUserPtr, getPageSizeCached()); 414 if (NextPage < PrevEnd && loadTag(NextPage) != NextPage) 415 PrevEnd = NextPage; 416 TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr); 417 resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, BlockEnd); 418 if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) { 419 // If an allocation needs to be zeroed (i.e. calloc) we can normally 420 // avoid zeroing the memory now since we can rely on memory having 421 // been zeroed on free, as this is normally done while setting the 422 // UAF tag. But if tagging was disabled per-thread when the memory 423 // was freed, it would not have been retagged and thus zeroed, and 424 // therefore it needs to be zeroed now. 425 memset(TaggedPtr, 0, 426 Min(Size, roundUpTo(PrevEnd - TaggedUserPtr, 427 archMemoryTagGranuleSize()))); 428 } else if (Size) { 429 // Clear any stack metadata that may have previously been stored in 430 // the chunk data. 431 memset(TaggedPtr, 0, archMemoryTagGranuleSize()); 432 } 433 } else { 434 const uptr OddEvenMask = 435 computeOddEvenMaskForPointerMaybe(Options, BlockUptr, BlockSize); 436 TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd); 437 } 438 storeAllocationStackMaybe(Options, Ptr); 439 } else if (UNLIKELY(FillContents != NoFill)) { 440 // This condition is not necessarily unlikely, but since memset is 441 // costly, we might as well mark it as such. 442 memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte, 443 PrimaryT::getSizeByClassId(ClassId)); 444 } 445 } 446 447 Chunk::UnpackedHeader Header = {}; 448 if (UNLIKELY(UnalignedUserPtr != UserPtr)) { 449 const uptr Offset = UserPtr - UnalignedUserPtr; 450 DCHECK_GE(Offset, 2 * sizeof(u32)); 451 // The BlockMarker has no security purpose, but is specifically meant for 452 // the chunk iteration function that can be used in debugging situations. 453 // It is the only situation where we have to locate the start of a chunk 454 // based on its block address. 455 reinterpret_cast<u32 *>(Block)[0] = BlockMarker; 456 reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset); 457 Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask; 458 } 459 Header.ClassId = ClassId & Chunk::ClassIdMask; 460 Header.State = Chunk::State::Allocated; 461 Header.OriginOrWasZeroed = Origin & Chunk::OriginMask; 462 Header.SizeOrUnusedBytes = 463 (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) & 464 Chunk::SizeOrUnusedBytesMask; 465 Chunk::storeHeader(Cookie, Ptr, &Header); 466 467 if (UNLIKELY(&__scudo_allocate_hook)) 468 __scudo_allocate_hook(TaggedPtr, Size); 469 470 return TaggedPtr; 471 } 472 473 NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0, 474 UNUSED uptr Alignment = MinAlignment) { 475 // For a deallocation, we only ensure minimal initialization, meaning thread 476 // local data will be left uninitialized for now (when using ELF TLS). The 477 // fallback cache will be used instead. This is a workaround for a situation 478 // where the only heap operation performed in a thread would be a free past 479 // the TLS destructors, ending up in initialized thread specific data never 480 // being destroyed properly. Any other heap operation will do a full init. 481 initThreadMaybe(/*MinimalInit=*/true); 482 483 #ifdef GWP_ASAN_HOOKS 484 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) { 485 GuardedAlloc.deallocate(Ptr); 486 return; 487 } 488 #endif // GWP_ASAN_HOOKS 489 490 if (UNLIKELY(&__scudo_deallocate_hook)) 491 __scudo_deallocate_hook(Ptr); 492 493 if (UNLIKELY(!Ptr)) 494 return; 495 if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))) 496 reportMisalignedPointer(AllocatorAction::Deallocating, Ptr); 497 498 Ptr = untagPointerMaybe(Ptr); 499 500 Chunk::UnpackedHeader Header; 501 Chunk::loadHeader(Cookie, Ptr, &Header); 502 503 if (UNLIKELY(Header.State != Chunk::State::Allocated)) 504 reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); 505 506 const Options Options = Primary.Options.load(); 507 if (Options.get(OptionBit::DeallocTypeMismatch)) { 508 if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) { 509 // With the exception of memalign'd chunks, that can be still be free'd. 510 if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign || 511 Origin != Chunk::Origin::Malloc) 512 reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr, 513 Header.OriginOrWasZeroed, Origin); 514 } 515 } 516 517 const uptr Size = getSize(Ptr, &Header); 518 if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) { 519 if (UNLIKELY(DeleteSize != Size)) 520 reportDeleteSizeMismatch(Ptr, DeleteSize, Size); 521 } 522 523 quarantineOrDeallocateChunk(Options, Ptr, &Header, Size); 524 } 525 526 void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) { 527 initThreadMaybe(); 528 529 const Options Options = Primary.Options.load(); 530 if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) { 531 if (Options.get(OptionBit::MayReturnNull)) 532 return nullptr; 533 reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize); 534 } 535 536 void *OldTaggedPtr = OldPtr; 537 OldPtr = untagPointerMaybe(OldPtr); 538 539 // The following cases are handled by the C wrappers. 540 DCHECK_NE(OldPtr, nullptr); 541 DCHECK_NE(NewSize, 0); 542 543 #ifdef GWP_ASAN_HOOKS 544 if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) { 545 uptr OldSize = GuardedAlloc.getSize(OldPtr); 546 void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); 547 if (NewPtr) 548 memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize); 549 GuardedAlloc.deallocate(OldPtr); 550 return NewPtr; 551 } 552 #endif // GWP_ASAN_HOOKS 553 554 if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment))) 555 reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr); 556 557 Chunk::UnpackedHeader OldHeader; 558 Chunk::loadHeader(Cookie, OldPtr, &OldHeader); 559 560 if (UNLIKELY(OldHeader.State != Chunk::State::Allocated)) 561 reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr); 562 563 // Pointer has to be allocated with a malloc-type function. Some 564 // applications think that it is OK to realloc a memalign'ed pointer, which 565 // will trigger this check. It really isn't. 566 if (Options.get(OptionBit::DeallocTypeMismatch)) { 567 if (UNLIKELY(OldHeader.OriginOrWasZeroed != Chunk::Origin::Malloc)) 568 reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr, 569 OldHeader.OriginOrWasZeroed, 570 Chunk::Origin::Malloc); 571 } 572 573 void *BlockBegin = getBlockBegin(OldPtr, &OldHeader); 574 uptr BlockEnd; 575 uptr OldSize; 576 const uptr ClassId = OldHeader.ClassId; 577 if (LIKELY(ClassId)) { 578 BlockEnd = reinterpret_cast<uptr>(BlockBegin) + 579 SizeClassMap::getSizeByClassId(ClassId); 580 OldSize = OldHeader.SizeOrUnusedBytes; 581 } else { 582 BlockEnd = SecondaryT::getBlockEnd(BlockBegin); 583 OldSize = BlockEnd - 584 (reinterpret_cast<uptr>(OldPtr) + OldHeader.SizeOrUnusedBytes); 585 } 586 // If the new chunk still fits in the previously allocated block (with a 587 // reasonable delta), we just keep the old block, and update the chunk 588 // header to reflect the size change. 589 if (reinterpret_cast<uptr>(OldPtr) + NewSize <= BlockEnd) { 590 if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) { 591 Chunk::UnpackedHeader NewHeader = OldHeader; 592 NewHeader.SizeOrUnusedBytes = 593 (ClassId ? NewSize 594 : BlockEnd - (reinterpret_cast<uptr>(OldPtr) + NewSize)) & 595 Chunk::SizeOrUnusedBytesMask; 596 Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader); 597 if (UNLIKELY(ClassId && useMemoryTagging<Params>(Options))) { 598 resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize, 599 reinterpret_cast<uptr>(OldTaggedPtr) + NewSize, 600 BlockEnd); 601 storeAllocationStackMaybe(Options, OldPtr); 602 } 603 return OldTaggedPtr; 604 } 605 } 606 607 // Otherwise we allocate a new one, and deallocate the old one. Some 608 // allocators will allocate an even larger chunk (by a fixed factor) to 609 // allow for potential further in-place realloc. The gains of such a trick 610 // are currently unclear. 611 void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); 612 if (LIKELY(NewPtr)) { 613 memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize)); 614 quarantineOrDeallocateChunk(Options, OldPtr, &OldHeader, OldSize); 615 } 616 return NewPtr; 617 } 618 619 // TODO(kostyak): disable() is currently best-effort. There are some small 620 // windows of time when an allocation could still succeed after 621 // this function finishes. We will revisit that later. 622 void disable() { 623 initThreadMaybe(); 624 #ifdef GWP_ASAN_HOOKS 625 GuardedAlloc.disable(); 626 #endif 627 TSDRegistry.disable(); 628 Stats.disable(); 629 Quarantine.disable(); 630 Primary.disable(); 631 Secondary.disable(); 632 } 633 634 void enable() { 635 initThreadMaybe(); 636 Secondary.enable(); 637 Primary.enable(); 638 Quarantine.enable(); 639 Stats.enable(); 640 TSDRegistry.enable(); 641 #ifdef GWP_ASAN_HOOKS 642 GuardedAlloc.enable(); 643 #endif 644 } 645 646 // The function returns the amount of bytes required to store the statistics, 647 // which might be larger than the amount of bytes provided. Note that the 648 // statistics buffer is not necessarily constant between calls to this 649 // function. This can be called with a null buffer or zero size for buffer 650 // sizing purposes. 651 uptr getStats(char *Buffer, uptr Size) { 652 ScopedString Str(1024); 653 disable(); 654 const uptr Length = getStats(&Str) + 1; 655 enable(); 656 if (Length < Size) 657 Size = Length; 658 if (Buffer && Size) { 659 memcpy(Buffer, Str.data(), Size); 660 Buffer[Size - 1] = '\0'; 661 } 662 return Length; 663 } 664 665 void printStats() { 666 ScopedString Str(1024); 667 disable(); 668 getStats(&Str); 669 enable(); 670 Str.output(); 671 } 672 673 void releaseToOS() { 674 initThreadMaybe(); 675 Primary.releaseToOS(); 676 Secondary.releaseToOS(); 677 } 678 679 // Iterate over all chunks and call a callback for all busy chunks located 680 // within the provided memory range. Said callback must not use this allocator 681 // or a deadlock can ensue. This fits Android's malloc_iterate() needs. 682 void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback, 683 void *Arg) { 684 initThreadMaybe(); 685 const uptr From = Base; 686 const uptr To = Base + Size; 687 auto Lambda = [this, From, To, Callback, Arg](uptr Block) { 688 if (Block < From || Block >= To) 689 return; 690 uptr Chunk; 691 Chunk::UnpackedHeader Header; 692 if (getChunkFromBlock(Block, &Chunk, &Header) && 693 Header.State == Chunk::State::Allocated) { 694 uptr TaggedChunk = Chunk; 695 if (useMemoryTagging<Params>(Primary.Options.load())) 696 TaggedChunk = loadTag(Chunk); 697 Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header), 698 Arg); 699 } 700 }; 701 Primary.iterateOverBlocks(Lambda); 702 Secondary.iterateOverBlocks(Lambda); 703 #ifdef GWP_ASAN_HOOKS 704 GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg); 705 #endif 706 } 707 708 bool canReturnNull() { 709 initThreadMaybe(); 710 return Primary.Options.load().get(OptionBit::MayReturnNull); 711 } 712 713 bool setOption(Option O, sptr Value) { 714 initThreadMaybe(); 715 if (O == Option::MemtagTuning) { 716 // Enabling odd/even tags involves a tradeoff between use-after-free 717 // detection and buffer overflow detection. Odd/even tags make it more 718 // likely for buffer overflows to be detected by increasing the size of 719 // the guaranteed "red zone" around the allocation, but on the other hand 720 // use-after-free is less likely to be detected because the tag space for 721 // any particular chunk is cut in half. Therefore we use this tuning 722 // setting to control whether odd/even tags are enabled. 723 if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW) 724 Primary.Options.set(OptionBit::UseOddEvenTags); 725 else if (Value == M_MEMTAG_TUNING_UAF) 726 Primary.Options.clear(OptionBit::UseOddEvenTags); 727 return true; 728 } else { 729 // We leave it to the various sub-components to decide whether or not they 730 // want to handle the option, but we do not want to short-circuit 731 // execution if one of the setOption was to return false. 732 const bool PrimaryResult = Primary.setOption(O, Value); 733 const bool SecondaryResult = Secondary.setOption(O, Value); 734 const bool RegistryResult = TSDRegistry.setOption(O, Value); 735 return PrimaryResult && SecondaryResult && RegistryResult; 736 } 737 return false; 738 } 739 740 // Return the usable size for a given chunk. Technically we lie, as we just 741 // report the actual size of a chunk. This is done to counteract code actively 742 // writing past the end of a chunk (like sqlite3) when the usable size allows 743 // for it, which then forces realloc to copy the usable size of a chunk as 744 // opposed to its actual size. 745 uptr getUsableSize(const void *Ptr) { 746 initThreadMaybe(); 747 if (UNLIKELY(!Ptr)) 748 return 0; 749 750 #ifdef GWP_ASAN_HOOKS 751 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) 752 return GuardedAlloc.getSize(Ptr); 753 #endif // GWP_ASAN_HOOKS 754 755 Ptr = untagPointerMaybe(const_cast<void *>(Ptr)); 756 Chunk::UnpackedHeader Header; 757 Chunk::loadHeader(Cookie, Ptr, &Header); 758 // Getting the usable size of a chunk only makes sense if it's allocated. 759 if (UNLIKELY(Header.State != Chunk::State::Allocated)) 760 reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr)); 761 return getSize(Ptr, &Header); 762 } 763 764 void getStats(StatCounters S) { 765 initThreadMaybe(); 766 Stats.get(S); 767 } 768 769 // Returns true if the pointer provided was allocated by the current 770 // allocator instance, which is compliant with tcmalloc's ownership concept. 771 // A corrupted chunk will not be reported as owned, which is WAI. 772 bool isOwned(const void *Ptr) { 773 initThreadMaybe(); 774 #ifdef GWP_ASAN_HOOKS 775 if (GuardedAlloc.pointerIsMine(Ptr)) 776 return true; 777 #endif // GWP_ASAN_HOOKS 778 if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)) 779 return false; 780 Ptr = untagPointerMaybe(const_cast<void *>(Ptr)); 781 Chunk::UnpackedHeader Header; 782 return Chunk::isValid(Cookie, Ptr, &Header) && 783 Header.State == Chunk::State::Allocated; 784 } 785 786 bool useMemoryTaggingTestOnly() const { 787 return useMemoryTagging<Params>(Primary.Options.load()); 788 } 789 void disableMemoryTagging() { 790 if (allocatorSupportsMemoryTagging<Params>()) 791 Primary.Options.clear(OptionBit::UseMemoryTagging); 792 } 793 794 void setTrackAllocationStacks(bool Track) { 795 initThreadMaybe(); 796 if (Track) 797 Primary.Options.set(OptionBit::TrackAllocationStacks); 798 else 799 Primary.Options.clear(OptionBit::TrackAllocationStacks); 800 } 801 802 void setFillContents(FillContentsMode FillContents) { 803 initThreadMaybe(); 804 Primary.Options.setFillContentsMode(FillContents); 805 } 806 807 const char *getStackDepotAddress() const { 808 return reinterpret_cast<const char *>(&Depot); 809 } 810 811 const char *getRegionInfoArrayAddress() const { 812 return Primary.getRegionInfoArrayAddress(); 813 } 814 815 static uptr getRegionInfoArraySize() { 816 return PrimaryT::getRegionInfoArraySize(); 817 } 818 819 static void getErrorInfo(struct scudo_error_info *ErrorInfo, 820 uintptr_t FaultAddr, const char *DepotPtr, 821 const char *RegionInfoPtr, const char *Memory, 822 const char *MemoryTags, uintptr_t MemoryAddr, 823 size_t MemorySize) { 824 *ErrorInfo = {}; 825 if (!allocatorSupportsMemoryTagging<Params>() || 826 MemoryAddr + MemorySize < MemoryAddr) 827 return; 828 829 uptr UntaggedFaultAddr = untagPointer(FaultAddr); 830 u8 FaultAddrTag = extractTag(FaultAddr); 831 BlockInfo Info = 832 PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr); 833 834 auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool { 835 if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr || 836 Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize) 837 return false; 838 *Data = &Memory[Addr - MemoryAddr]; 839 *Tag = static_cast<u8>( 840 MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]); 841 return true; 842 }; 843 844 auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr, 845 Chunk::UnpackedHeader *Header, const u32 **Data, 846 u8 *Tag) { 847 const char *BlockBegin; 848 u8 BlockBeginTag; 849 if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag)) 850 return false; 851 uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin); 852 *ChunkAddr = Addr + ChunkOffset; 853 854 const char *ChunkBegin; 855 if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag)) 856 return false; 857 *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>( 858 ChunkBegin - Chunk::getHeaderSize()); 859 *Data = reinterpret_cast<const u32 *>(ChunkBegin); 860 return true; 861 }; 862 863 auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr); 864 865 auto MaybeCollectTrace = [&](uintptr_t(&Trace)[MaxTraceSize], u32 Hash) { 866 uptr RingPos, Size; 867 if (!Depot->find(Hash, &RingPos, &Size)) 868 return; 869 for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I) 870 Trace[I] = (*Depot)[RingPos + I]; 871 }; 872 873 size_t NextErrorReport = 0; 874 875 // First, check for UAF. 876 { 877 uptr ChunkAddr; 878 Chunk::UnpackedHeader Header; 879 const u32 *Data; 880 uint8_t Tag; 881 if (ReadBlock(Info.BlockBegin, &ChunkAddr, &Header, &Data, &Tag) && 882 Header.State != Chunk::State::Allocated && 883 Data[MemTagPrevTagIndex] == FaultAddrTag) { 884 auto *R = &ErrorInfo->reports[NextErrorReport++]; 885 R->error_type = USE_AFTER_FREE; 886 R->allocation_address = ChunkAddr; 887 R->allocation_size = Header.SizeOrUnusedBytes; 888 MaybeCollectTrace(R->allocation_trace, 889 Data[MemTagAllocationTraceIndex]); 890 R->allocation_tid = Data[MemTagAllocationTidIndex]; 891 MaybeCollectTrace(R->deallocation_trace, 892 Data[MemTagDeallocationTraceIndex]); 893 R->deallocation_tid = Data[MemTagDeallocationTidIndex]; 894 } 895 } 896 897 auto CheckOOB = [&](uptr BlockAddr) { 898 if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd) 899 return false; 900 901 uptr ChunkAddr; 902 Chunk::UnpackedHeader Header; 903 const u32 *Data; 904 uint8_t Tag; 905 if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) || 906 Header.State != Chunk::State::Allocated || Tag != FaultAddrTag) 907 return false; 908 909 auto *R = &ErrorInfo->reports[NextErrorReport++]; 910 R->error_type = 911 UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW; 912 R->allocation_address = ChunkAddr; 913 R->allocation_size = Header.SizeOrUnusedBytes; 914 MaybeCollectTrace(R->allocation_trace, Data[MemTagAllocationTraceIndex]); 915 R->allocation_tid = Data[MemTagAllocationTidIndex]; 916 return NextErrorReport == 917 sizeof(ErrorInfo->reports) / sizeof(ErrorInfo->reports[0]); 918 }; 919 920 if (CheckOOB(Info.BlockBegin)) 921 return; 922 923 // Check for OOB in the 30 surrounding blocks. Beyond that we are likely to 924 // hit false positives. 925 for (int I = 1; I != 16; ++I) 926 if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) || 927 CheckOOB(Info.BlockBegin - I * Info.BlockSize)) 928 return; 929 } 930 931 private: 932 using SecondaryT = MapAllocator<Params>; 933 typedef typename PrimaryT::SizeClassMap SizeClassMap; 934 935 static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG; 936 static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable. 937 static const uptr MinAlignment = 1UL << MinAlignmentLog; 938 static const uptr MaxAlignment = 1UL << MaxAlignmentLog; 939 static const uptr MaxAllowedMallocSize = 940 FIRST_32_SECOND_64(1UL << 31, 1ULL << 40); 941 942 static_assert(MinAlignment >= sizeof(Chunk::PackedHeader), 943 "Minimal alignment must at least cover a chunk header."); 944 static_assert(!allocatorSupportsMemoryTagging<Params>() || 945 MinAlignment >= archMemoryTagGranuleSize(), 946 ""); 947 948 static const u32 BlockMarker = 0x44554353U; 949 950 // These are indexes into an "array" of 32-bit values that store information 951 // inline with a chunk that is relevant to diagnosing memory tag faults, where 952 // 0 corresponds to the address of the user memory. This means that negative 953 // indexes may be used to store information about allocations, while positive 954 // indexes may only be used to store information about deallocations, because 955 // the user memory is in use until it has been deallocated. The smallest index 956 // that may be used is -2, which corresponds to 8 bytes before the user 957 // memory, because the chunk header size is 8 bytes and in allocators that 958 // support memory tagging the minimum alignment is at least the tag granule 959 // size (16 on aarch64), and the largest index that may be used is 3 because 960 // we are only guaranteed to have at least a granule's worth of space in the 961 // user memory. 962 static const sptr MemTagAllocationTraceIndex = -2; 963 static const sptr MemTagAllocationTidIndex = -1; 964 static const sptr MemTagDeallocationTraceIndex = 0; 965 static const sptr MemTagDeallocationTidIndex = 1; 966 static const sptr MemTagPrevTagIndex = 2; 967 968 static const uptr MaxTraceSize = 64; 969 970 u32 Cookie; 971 u32 QuarantineMaxChunkSize; 972 973 GlobalStats Stats; 974 PrimaryT Primary; 975 SecondaryT Secondary; 976 QuarantineT Quarantine; 977 TSDRegistryT TSDRegistry; 978 979 #ifdef GWP_ASAN_HOOKS 980 gwp_asan::GuardedPoolAllocator GuardedAlloc; 981 #endif // GWP_ASAN_HOOKS 982 983 StackDepot Depot; 984 985 // The following might get optimized out by the compiler. 986 NOINLINE void performSanityChecks() { 987 // Verify that the header offset field can hold the maximum offset. In the 988 // case of the Secondary allocator, it takes care of alignment and the 989 // offset will always be small. In the case of the Primary, the worst case 990 // scenario happens in the last size class, when the backend allocation 991 // would already be aligned on the requested alignment, which would happen 992 // to be the maximum alignment that would fit in that size class. As a 993 // result, the maximum offset will be at most the maximum alignment for the 994 // last size class minus the header size, in multiples of MinAlignment. 995 Chunk::UnpackedHeader Header = {}; 996 const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex( 997 SizeClassMap::MaxSize - MinAlignment); 998 const uptr MaxOffset = 999 (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog; 1000 Header.Offset = MaxOffset & Chunk::OffsetMask; 1001 if (UNLIKELY(Header.Offset != MaxOffset)) 1002 reportSanityCheckError("offset"); 1003 1004 // Verify that we can fit the maximum size or amount of unused bytes in the 1005 // header. Given that the Secondary fits the allocation to a page, the worst 1006 // case scenario happens in the Primary. It will depend on the second to 1007 // last and last class sizes, as well as the dynamic base for the Primary. 1008 // The following is an over-approximation that works for our needs. 1009 const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1; 1010 Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes; 1011 if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)) 1012 reportSanityCheckError("size (or unused bytes)"); 1013 1014 const uptr LargestClassId = SizeClassMap::LargestClassId; 1015 Header.ClassId = LargestClassId; 1016 if (UNLIKELY(Header.ClassId != LargestClassId)) 1017 reportSanityCheckError("class ID"); 1018 } 1019 1020 static inline void *getBlockBegin(const void *Ptr, 1021 Chunk::UnpackedHeader *Header) { 1022 return reinterpret_cast<void *>( 1023 reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() - 1024 (static_cast<uptr>(Header->Offset) << MinAlignmentLog)); 1025 } 1026 1027 // Return the size of a chunk as requested during its allocation. 1028 inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) { 1029 const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes; 1030 if (LIKELY(Header->ClassId)) 1031 return SizeOrUnusedBytes; 1032 return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) - 1033 reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes; 1034 } 1035 1036 void quarantineOrDeallocateChunk(Options Options, void *Ptr, 1037 Chunk::UnpackedHeader *Header, uptr Size) { 1038 Chunk::UnpackedHeader NewHeader = *Header; 1039 if (UNLIKELY(NewHeader.ClassId && useMemoryTagging<Params>(Options))) { 1040 u8 PrevTag = extractTag(loadTag(reinterpret_cast<uptr>(Ptr))); 1041 if (!TSDRegistry.getDisableMemInit()) { 1042 uptr TaggedBegin, TaggedEnd; 1043 const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe( 1044 Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, &NewHeader)), 1045 SizeClassMap::getSizeByClassId(NewHeader.ClassId)); 1046 // Exclude the previous tag so that immediate use after free is detected 1047 // 100% of the time. 1048 setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin, 1049 &TaggedEnd); 1050 } 1051 NewHeader.OriginOrWasZeroed = !TSDRegistry.getDisableMemInit(); 1052 storeDeallocationStackMaybe(Options, Ptr, PrevTag); 1053 } 1054 // If the quarantine is disabled, the actual size of a chunk is 0 or larger 1055 // than the maximum allowed, we return a chunk directly to the backend. 1056 // This purposefully underflows for Size == 0. 1057 const bool BypassQuarantine = 1058 !Quarantine.getCacheSize() || ((Size - 1) >= QuarantineMaxChunkSize); 1059 if (BypassQuarantine) { 1060 NewHeader.State = Chunk::State::Available; 1061 Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header); 1062 void *BlockBegin = getBlockBegin(Ptr, &NewHeader); 1063 const uptr ClassId = NewHeader.ClassId; 1064 if (LIKELY(ClassId)) { 1065 bool UnlockRequired; 1066 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); 1067 TSD->Cache.deallocate(ClassId, BlockBegin); 1068 if (UnlockRequired) 1069 TSD->unlock(); 1070 } else { 1071 Secondary.deallocate(BlockBegin); 1072 } 1073 } else { 1074 NewHeader.State = Chunk::State::Quarantined; 1075 Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header); 1076 bool UnlockRequired; 1077 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); 1078 Quarantine.put(&TSD->QuarantineCache, 1079 QuarantineCallback(*this, TSD->Cache), Ptr, Size); 1080 if (UnlockRequired) 1081 TSD->unlock(); 1082 } 1083 } 1084 1085 bool getChunkFromBlock(uptr Block, uptr *Chunk, 1086 Chunk::UnpackedHeader *Header) { 1087 *Chunk = 1088 Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block)); 1089 return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header); 1090 } 1091 1092 static uptr getChunkOffsetFromBlock(const char *Block) { 1093 u32 Offset = 0; 1094 if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker) 1095 Offset = reinterpret_cast<const u32 *>(Block)[1]; 1096 return Offset + Chunk::getHeaderSize(); 1097 } 1098 1099 void storeAllocationStackMaybe(Options Options, void *Ptr) { 1100 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) 1101 return; 1102 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr); 1103 Ptr32[MemTagAllocationTraceIndex] = collectStackTrace(); 1104 Ptr32[MemTagAllocationTidIndex] = getThreadID(); 1105 } 1106 1107 void storeDeallocationStackMaybe(Options Options, void *Ptr, 1108 uint8_t PrevTag) { 1109 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) 1110 return; 1111 1112 // Disable tag checks here so that we don't need to worry about zero sized 1113 // allocations. 1114 ScopedDisableMemoryTagChecks x; 1115 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr); 1116 Ptr32[MemTagDeallocationTraceIndex] = collectStackTrace(); 1117 Ptr32[MemTagDeallocationTidIndex] = getThreadID(); 1118 Ptr32[MemTagPrevTagIndex] = PrevTag; 1119 } 1120 1121 uptr getStats(ScopedString *Str) { 1122 Primary.getStats(Str); 1123 Secondary.getStats(Str); 1124 Quarantine.getStats(Str); 1125 return Str->length(); 1126 } 1127 }; 1128 1129 } // namespace scudo 1130 1131 #endif // SCUDO_COMBINED_H_ 1132