1 //===-- combined.h ----------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef SCUDO_COMBINED_H_ 10 #define SCUDO_COMBINED_H_ 11 12 #include "chunk.h" 13 #include "common.h" 14 #include "flags.h" 15 #include "flags_parser.h" 16 #include "local_cache.h" 17 #include "memtag.h" 18 #include "options.h" 19 #include "quarantine.h" 20 #include "report.h" 21 #include "rss_limit_checker.h" 22 #include "secondary.h" 23 #include "stack_depot.h" 24 #include "string_utils.h" 25 #include "tsd.h" 26 27 #include "scudo/interface.h" 28 29 #ifdef GWP_ASAN_HOOKS 30 #include "gwp_asan/guarded_pool_allocator.h" 31 #include "gwp_asan/optional/backtrace.h" 32 #include "gwp_asan/optional/segv_handler.h" 33 #endif // GWP_ASAN_HOOKS 34 35 extern "C" inline void EmptyCallback() {} 36 37 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE 38 // This function is not part of the NDK so it does not appear in any public 39 // header files. We only declare/use it when targeting the platform. 40 extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf, 41 size_t num_entries); 42 #endif 43 44 namespace scudo { 45 46 template <class Params, void (*PostInitCallback)(void) = EmptyCallback> 47 class Allocator { 48 public: 49 using PrimaryT = typename Params::Primary; 50 using CacheT = typename PrimaryT::CacheT; 51 typedef Allocator<Params, PostInitCallback> ThisT; 52 typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT; 53 54 void callPostInitCallback() { 55 pthread_once(&PostInitNonce, PostInitCallback); 56 } 57 58 struct QuarantineCallback { 59 explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache) 60 : Allocator(Instance), Cache(LocalCache) {} 61 62 // Chunk recycling function, returns a quarantined chunk to the backend, 63 // first making sure it hasn't been tampered with. 64 void recycle(void *Ptr) { 65 Chunk::UnpackedHeader Header; 66 Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); 67 if (UNLIKELY(Header.State != Chunk::State::Quarantined)) 68 reportInvalidChunkState(AllocatorAction::Recycling, Ptr); 69 70 Chunk::UnpackedHeader NewHeader = Header; 71 NewHeader.State = Chunk::State::Available; 72 Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header); 73 74 if (allocatorSupportsMemoryTagging<Params>()) 75 Ptr = untagPointer(Ptr); 76 void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader); 77 Cache.deallocate(NewHeader.ClassId, BlockBegin); 78 } 79 80 // We take a shortcut when allocating a quarantine batch by working with the 81 // appropriate class ID instead of using Size. The compiler should optimize 82 // the class ID computation and work with the associated cache directly. 83 void *allocate(UNUSED uptr Size) { 84 const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( 85 sizeof(QuarantineBatch) + Chunk::getHeaderSize()); 86 void *Ptr = Cache.allocate(QuarantineClassId); 87 // Quarantine batch allocation failure is fatal. 88 if (UNLIKELY(!Ptr)) 89 reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId)); 90 91 Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) + 92 Chunk::getHeaderSize()); 93 Chunk::UnpackedHeader Header = {}; 94 Header.ClassId = QuarantineClassId & Chunk::ClassIdMask; 95 Header.SizeOrUnusedBytes = sizeof(QuarantineBatch); 96 Header.State = Chunk::State::Allocated; 97 Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); 98 99 // Reset tag to 0 as this chunk may have been previously used for a tagged 100 // user allocation. 101 if (UNLIKELY(useMemoryTagging<Params>(Allocator.Primary.Options.load()))) 102 storeTags(reinterpret_cast<uptr>(Ptr), 103 reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch)); 104 105 return Ptr; 106 } 107 108 void deallocate(void *Ptr) { 109 const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( 110 sizeof(QuarantineBatch) + Chunk::getHeaderSize()); 111 Chunk::UnpackedHeader Header; 112 Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); 113 114 if (UNLIKELY(Header.State != Chunk::State::Allocated)) 115 reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); 116 DCHECK_EQ(Header.ClassId, QuarantineClassId); 117 DCHECK_EQ(Header.Offset, 0); 118 DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch)); 119 120 Chunk::UnpackedHeader NewHeader = Header; 121 NewHeader.State = Chunk::State::Available; 122 Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header); 123 Cache.deallocate(QuarantineClassId, 124 reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) - 125 Chunk::getHeaderSize())); 126 } 127 128 private: 129 ThisT &Allocator; 130 CacheT &Cache; 131 }; 132 133 typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT; 134 typedef typename QuarantineT::CacheT QuarantineCacheT; 135 136 void init() { 137 performSanityChecks(); 138 139 // Check if hardware CRC32 is supported in the binary and by the platform, 140 // if so, opt for the CRC32 hardware version of the checksum. 141 if (&computeHardwareCRC32 && hasHardwareCRC32()) 142 HashAlgorithm = Checksum::HardwareCRC32; 143 144 if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie)))) 145 Cookie = static_cast<u32>(getMonotonicTime() ^ 146 (reinterpret_cast<uptr>(this) >> 4)); 147 148 initFlags(); 149 reportUnrecognizedFlags(); 150 151 RssChecker.init(scudo::getFlags()->soft_rss_limit_mb, 152 scudo::getFlags()->hard_rss_limit_mb); 153 154 // Store some flags locally. 155 if (getFlags()->may_return_null) 156 Primary.Options.set(OptionBit::MayReturnNull); 157 if (getFlags()->zero_contents) 158 Primary.Options.setFillContentsMode(ZeroFill); 159 else if (getFlags()->pattern_fill_contents) 160 Primary.Options.setFillContentsMode(PatternOrZeroFill); 161 if (getFlags()->dealloc_type_mismatch) 162 Primary.Options.set(OptionBit::DeallocTypeMismatch); 163 if (getFlags()->delete_size_mismatch) 164 Primary.Options.set(OptionBit::DeleteSizeMismatch); 165 if (allocatorSupportsMemoryTagging<Params>() && 166 systemSupportsMemoryTagging()) 167 Primary.Options.set(OptionBit::UseMemoryTagging); 168 Primary.Options.set(OptionBit::UseOddEvenTags); 169 170 QuarantineMaxChunkSize = 171 static_cast<u32>(getFlags()->quarantine_max_chunk_size); 172 173 Stats.init(); 174 const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms; 175 Primary.init(ReleaseToOsIntervalMs); 176 Secondary.init(&Stats, ReleaseToOsIntervalMs); 177 Quarantine.init( 178 static_cast<uptr>(getFlags()->quarantine_size_kb << 10), 179 static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10)); 180 181 initRingBuffer(); 182 } 183 184 // Initialize the embedded GWP-ASan instance. Requires the main allocator to 185 // be functional, best called from PostInitCallback. 186 void initGwpAsan() { 187 #ifdef GWP_ASAN_HOOKS 188 gwp_asan::options::Options Opt; 189 Opt.Enabled = getFlags()->GWP_ASAN_Enabled; 190 Opt.MaxSimultaneousAllocations = 191 getFlags()->GWP_ASAN_MaxSimultaneousAllocations; 192 Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate; 193 Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers; 194 Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable; 195 // Embedded GWP-ASan is locked through the Scudo atfork handler (via 196 // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork 197 // handler. 198 Opt.InstallForkHandlers = false; 199 Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction(); 200 GuardedAlloc.init(Opt); 201 202 if (Opt.InstallSignalHandlers) 203 gwp_asan::segv_handler::installSignalHandlers( 204 &GuardedAlloc, Printf, 205 gwp_asan::backtrace::getPrintBacktraceFunction(), 206 gwp_asan::backtrace::getSegvBacktraceFunction(), 207 Opt.Recoverable); 208 209 GuardedAllocSlotSize = 210 GuardedAlloc.getAllocatorState()->maximumAllocationSize(); 211 Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) * 212 GuardedAllocSlotSize); 213 #endif // GWP_ASAN_HOOKS 214 } 215 216 #ifdef GWP_ASAN_HOOKS 217 const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() { 218 return GuardedAlloc.getMetadataRegion(); 219 } 220 221 const gwp_asan::AllocatorState *getGwpAsanAllocatorState() { 222 return GuardedAlloc.getAllocatorState(); 223 } 224 #endif // GWP_ASAN_HOOKS 225 226 ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) { 227 TSDRegistry.initThreadMaybe(this, MinimalInit); 228 } 229 230 void unmapTestOnly() { 231 TSDRegistry.unmapTestOnly(this); 232 Primary.unmapTestOnly(); 233 Secondary.unmapTestOnly(); 234 #ifdef GWP_ASAN_HOOKS 235 if (getFlags()->GWP_ASAN_InstallSignalHandlers) 236 gwp_asan::segv_handler::uninstallSignalHandlers(); 237 GuardedAlloc.uninitTestOnly(); 238 #endif // GWP_ASAN_HOOKS 239 } 240 241 TSDRegistryT *getTSDRegistry() { return &TSDRegistry; } 242 243 // The Cache must be provided zero-initialized. 244 void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); } 245 246 // Release the resources used by a TSD, which involves: 247 // - draining the local quarantine cache to the global quarantine; 248 // - releasing the cached pointers back to the Primary; 249 // - unlinking the local stats from the global ones (destroying the cache does 250 // the last two items). 251 void commitBack(TSD<ThisT> *TSD) { 252 Quarantine.drain(&TSD->QuarantineCache, 253 QuarantineCallback(*this, TSD->Cache)); 254 TSD->Cache.destroy(&Stats); 255 } 256 257 ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) { 258 if (!allocatorSupportsMemoryTagging<Params>()) 259 return Ptr; 260 auto UntaggedPtr = untagPointer(Ptr); 261 if (UntaggedPtr != Ptr) 262 return UntaggedPtr; 263 // Secondary, or pointer allocated while memory tagging is unsupported or 264 // disabled. The tag mismatch is okay in the latter case because tags will 265 // not be checked. 266 return addHeaderTag(Ptr); 267 } 268 269 ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) { 270 if (!allocatorSupportsMemoryTagging<Params>()) 271 return Ptr; 272 return addFixedTag(Ptr, 2); 273 } 274 275 ALWAYS_INLINE void *addHeaderTag(void *Ptr) { 276 return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr))); 277 } 278 279 NOINLINE u32 collectStackTrace() { 280 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE 281 // Discard collectStackTrace() frame and allocator function frame. 282 constexpr uptr DiscardFrames = 2; 283 uptr Stack[MaxTraceSize + DiscardFrames]; 284 uptr Size = 285 android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames); 286 Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames); 287 return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size); 288 #else 289 return 0; 290 #endif 291 } 292 293 uptr computeOddEvenMaskForPointerMaybe(Options Options, uptr Ptr, 294 uptr ClassId) { 295 if (!Options.get(OptionBit::UseOddEvenTags)) 296 return 0; 297 298 // If a chunk's tag is odd, we want the tags of the surrounding blocks to be 299 // even, and vice versa. Blocks are laid out Size bytes apart, and adding 300 // Size to Ptr will flip the least significant set bit of Size in Ptr, so 301 // that bit will have the pattern 010101... for consecutive blocks, which we 302 // can use to determine which tag mask to use. 303 return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1); 304 } 305 306 NOINLINE void *allocate(uptr Size, Chunk::Origin Origin, 307 uptr Alignment = MinAlignment, 308 bool ZeroContents = false) { 309 initThreadMaybe(); 310 311 const Options Options = Primary.Options.load(); 312 if (UNLIKELY(Alignment > MaxAlignment)) { 313 if (Options.get(OptionBit::MayReturnNull)) 314 return nullptr; 315 reportAlignmentTooBig(Alignment, MaxAlignment); 316 } 317 if (Alignment < MinAlignment) 318 Alignment = MinAlignment; 319 320 #ifdef GWP_ASAN_HOOKS 321 if (UNLIKELY(GuardedAlloc.shouldSample())) { 322 if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) { 323 if (UNLIKELY(&__scudo_allocate_hook)) 324 __scudo_allocate_hook(Ptr, Size); 325 Stats.lock(); 326 Stats.add(StatAllocated, GuardedAllocSlotSize); 327 Stats.sub(StatFree, GuardedAllocSlotSize); 328 Stats.unlock(); 329 return Ptr; 330 } 331 } 332 #endif // GWP_ASAN_HOOKS 333 334 const FillContentsMode FillContents = ZeroContents ? ZeroFill 335 : TSDRegistry.getDisableMemInit() 336 ? NoFill 337 : Options.getFillContentsMode(); 338 339 // If the requested size happens to be 0 (more common than you might think), 340 // allocate MinAlignment bytes on top of the header. Then add the extra 341 // bytes required to fulfill the alignment requirements: we allocate enough 342 // to be sure that there will be an address in the block that will satisfy 343 // the alignment. 344 const uptr NeededSize = 345 roundUpTo(Size, MinAlignment) + 346 ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize()); 347 348 // Takes care of extravagantly large sizes as well as integer overflows. 349 static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, ""); 350 if (UNLIKELY(Size >= MaxAllowedMallocSize)) { 351 if (Options.get(OptionBit::MayReturnNull)) 352 return nullptr; 353 reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize); 354 } 355 DCHECK_LE(Size, NeededSize); 356 357 switch (RssChecker.getRssLimitExceeded()) { 358 case RssLimitChecker::Neither: 359 break; 360 case RssLimitChecker::Soft: 361 if (Options.get(OptionBit::MayReturnNull)) 362 return nullptr; 363 reportSoftRSSLimit(RssChecker.getSoftRssLimit()); 364 break; 365 case RssLimitChecker::Hard: 366 reportHardRSSLimit(RssChecker.getHardRssLimit()); 367 break; 368 } 369 370 void *Block = nullptr; 371 uptr ClassId = 0; 372 uptr SecondaryBlockEnd = 0; 373 if (LIKELY(PrimaryT::canAllocate(NeededSize))) { 374 ClassId = SizeClassMap::getClassIdBySize(NeededSize); 375 DCHECK_NE(ClassId, 0U); 376 bool UnlockRequired; 377 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); 378 Block = TSD->Cache.allocate(ClassId); 379 // If the allocation failed, the most likely reason with a 32-bit primary 380 // is the region being full. In that event, retry in each successively 381 // larger class until it fits. If it fails to fit in the largest class, 382 // fallback to the Secondary. 383 if (UNLIKELY(!Block)) { 384 while (ClassId < SizeClassMap::LargestClassId && !Block) 385 Block = TSD->Cache.allocate(++ClassId); 386 if (!Block) 387 ClassId = 0; 388 } 389 if (UnlockRequired) 390 TSD->unlock(); 391 } 392 if (UNLIKELY(ClassId == 0)) 393 Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd, 394 FillContents); 395 396 if (UNLIKELY(!Block)) { 397 if (Options.get(OptionBit::MayReturnNull)) 398 return nullptr; 399 reportOutOfMemory(NeededSize); 400 } 401 402 const uptr BlockUptr = reinterpret_cast<uptr>(Block); 403 const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize(); 404 const uptr UserPtr = roundUpTo(UnalignedUserPtr, Alignment); 405 406 void *Ptr = reinterpret_cast<void *>(UserPtr); 407 void *TaggedPtr = Ptr; 408 if (LIKELY(ClassId)) { 409 // We only need to zero or tag the contents for Primary backed 410 // allocations. We only set tags for primary allocations in order to avoid 411 // faulting potentially large numbers of pages for large secondary 412 // allocations. We assume that guard pages are enough to protect these 413 // allocations. 414 // 415 // FIXME: When the kernel provides a way to set the background tag of a 416 // mapping, we should be able to tag secondary allocations as well. 417 // 418 // When memory tagging is enabled, zeroing the contents is done as part of 419 // setting the tag. 420 if (UNLIKELY(useMemoryTagging<Params>(Options))) { 421 uptr PrevUserPtr; 422 Chunk::UnpackedHeader Header; 423 const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId); 424 const uptr BlockEnd = BlockUptr + BlockSize; 425 // If possible, try to reuse the UAF tag that was set by deallocate(). 426 // For simplicity, only reuse tags if we have the same start address as 427 // the previous allocation. This handles the majority of cases since 428 // most allocations will not be more aligned than the minimum alignment. 429 // 430 // We need to handle situations involving reclaimed chunks, and retag 431 // the reclaimed portions if necessary. In the case where the chunk is 432 // fully reclaimed, the chunk's header will be zero, which will trigger 433 // the code path for new mappings and invalid chunks that prepares the 434 // chunk from scratch. There are three possibilities for partial 435 // reclaiming: 436 // 437 // (1) Header was reclaimed, data was partially reclaimed. 438 // (2) Header was not reclaimed, all data was reclaimed (e.g. because 439 // data started on a page boundary). 440 // (3) Header was not reclaimed, data was partially reclaimed. 441 // 442 // Case (1) will be handled in the same way as for full reclaiming, 443 // since the header will be zero. 444 // 445 // We can detect case (2) by loading the tag from the start 446 // of the chunk. If it is zero, it means that either all data was 447 // reclaimed (since we never use zero as the chunk tag), or that the 448 // previous allocation was of size zero. Either way, we need to prepare 449 // a new chunk from scratch. 450 // 451 // We can detect case (3) by moving to the next page (if covered by the 452 // chunk) and loading the tag of its first granule. If it is zero, it 453 // means that all following pages may need to be retagged. On the other 454 // hand, if it is nonzero, we can assume that all following pages are 455 // still tagged, according to the logic that if any of the pages 456 // following the next page were reclaimed, the next page would have been 457 // reclaimed as well. 458 uptr TaggedUserPtr; 459 if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) && 460 PrevUserPtr == UserPtr && 461 (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) { 462 uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes; 463 const uptr NextPage = roundUpTo(TaggedUserPtr, getPageSizeCached()); 464 if (NextPage < PrevEnd && loadTag(NextPage) != NextPage) 465 PrevEnd = NextPage; 466 TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr); 467 resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd); 468 if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) { 469 // If an allocation needs to be zeroed (i.e. calloc) we can normally 470 // avoid zeroing the memory now since we can rely on memory having 471 // been zeroed on free, as this is normally done while setting the 472 // UAF tag. But if tagging was disabled per-thread when the memory 473 // was freed, it would not have been retagged and thus zeroed, and 474 // therefore it needs to be zeroed now. 475 memset(TaggedPtr, 0, 476 Min(Size, roundUpTo(PrevEnd - TaggedUserPtr, 477 archMemoryTagGranuleSize()))); 478 } else if (Size) { 479 // Clear any stack metadata that may have previously been stored in 480 // the chunk data. 481 memset(TaggedPtr, 0, archMemoryTagGranuleSize()); 482 } 483 } else { 484 const uptr OddEvenMask = 485 computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId); 486 TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd); 487 } 488 storePrimaryAllocationStackMaybe(Options, Ptr); 489 } else { 490 Block = addHeaderTag(Block); 491 Ptr = addHeaderTag(Ptr); 492 if (UNLIKELY(FillContents != NoFill)) { 493 // This condition is not necessarily unlikely, but since memset is 494 // costly, we might as well mark it as such. 495 memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte, 496 PrimaryT::getSizeByClassId(ClassId)); 497 } 498 } 499 } else { 500 Block = addHeaderTag(Block); 501 Ptr = addHeaderTag(Ptr); 502 if (UNLIKELY(useMemoryTagging<Params>(Options))) { 503 storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr)); 504 storeSecondaryAllocationStackMaybe(Options, Ptr, Size); 505 } 506 } 507 508 Chunk::UnpackedHeader Header = {}; 509 if (UNLIKELY(UnalignedUserPtr != UserPtr)) { 510 const uptr Offset = UserPtr - UnalignedUserPtr; 511 DCHECK_GE(Offset, 2 * sizeof(u32)); 512 // The BlockMarker has no security purpose, but is specifically meant for 513 // the chunk iteration function that can be used in debugging situations. 514 // It is the only situation where we have to locate the start of a chunk 515 // based on its block address. 516 reinterpret_cast<u32 *>(Block)[0] = BlockMarker; 517 reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset); 518 Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask; 519 } 520 Header.ClassId = ClassId & Chunk::ClassIdMask; 521 Header.State = Chunk::State::Allocated; 522 Header.OriginOrWasZeroed = Origin & Chunk::OriginMask; 523 Header.SizeOrUnusedBytes = 524 (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) & 525 Chunk::SizeOrUnusedBytesMask; 526 Chunk::storeHeader(Cookie, Ptr, &Header); 527 528 if (UNLIKELY(&__scudo_allocate_hook)) 529 __scudo_allocate_hook(TaggedPtr, Size); 530 531 return TaggedPtr; 532 } 533 534 NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0, 535 UNUSED uptr Alignment = MinAlignment) { 536 // For a deallocation, we only ensure minimal initialization, meaning thread 537 // local data will be left uninitialized for now (when using ELF TLS). The 538 // fallback cache will be used instead. This is a workaround for a situation 539 // where the only heap operation performed in a thread would be a free past 540 // the TLS destructors, ending up in initialized thread specific data never 541 // being destroyed properly. Any other heap operation will do a full init. 542 initThreadMaybe(/*MinimalInit=*/true); 543 544 if (UNLIKELY(&__scudo_deallocate_hook)) 545 __scudo_deallocate_hook(Ptr); 546 547 if (UNLIKELY(!Ptr)) 548 return; 549 550 #ifdef GWP_ASAN_HOOKS 551 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) { 552 GuardedAlloc.deallocate(Ptr); 553 Stats.lock(); 554 Stats.add(StatFree, GuardedAllocSlotSize); 555 Stats.sub(StatAllocated, GuardedAllocSlotSize); 556 Stats.unlock(); 557 return; 558 } 559 #endif // GWP_ASAN_HOOKS 560 561 if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))) 562 reportMisalignedPointer(AllocatorAction::Deallocating, Ptr); 563 564 void *TaggedPtr = Ptr; 565 Ptr = getHeaderTaggedPointer(Ptr); 566 567 Chunk::UnpackedHeader Header; 568 Chunk::loadHeader(Cookie, Ptr, &Header); 569 570 if (UNLIKELY(Header.State != Chunk::State::Allocated)) 571 reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); 572 573 const Options Options = Primary.Options.load(); 574 if (Options.get(OptionBit::DeallocTypeMismatch)) { 575 if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) { 576 // With the exception of memalign'd chunks, that can be still be free'd. 577 if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign || 578 Origin != Chunk::Origin::Malloc) 579 reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr, 580 Header.OriginOrWasZeroed, Origin); 581 } 582 } 583 584 const uptr Size = getSize(Ptr, &Header); 585 if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) { 586 if (UNLIKELY(DeleteSize != Size)) 587 reportDeleteSizeMismatch(Ptr, DeleteSize, Size); 588 } 589 590 quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size); 591 } 592 593 void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) { 594 initThreadMaybe(); 595 596 const Options Options = Primary.Options.load(); 597 if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) { 598 if (Options.get(OptionBit::MayReturnNull)) 599 return nullptr; 600 reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize); 601 } 602 603 // The following cases are handled by the C wrappers. 604 DCHECK_NE(OldPtr, nullptr); 605 DCHECK_NE(NewSize, 0); 606 607 #ifdef GWP_ASAN_HOOKS 608 if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) { 609 uptr OldSize = GuardedAlloc.getSize(OldPtr); 610 void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); 611 if (NewPtr) 612 memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize); 613 GuardedAlloc.deallocate(OldPtr); 614 Stats.lock(); 615 Stats.add(StatFree, GuardedAllocSlotSize); 616 Stats.sub(StatAllocated, GuardedAllocSlotSize); 617 Stats.unlock(); 618 return NewPtr; 619 } 620 #endif // GWP_ASAN_HOOKS 621 622 void *OldTaggedPtr = OldPtr; 623 OldPtr = getHeaderTaggedPointer(OldPtr); 624 625 if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment))) 626 reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr); 627 628 Chunk::UnpackedHeader OldHeader; 629 Chunk::loadHeader(Cookie, OldPtr, &OldHeader); 630 631 if (UNLIKELY(OldHeader.State != Chunk::State::Allocated)) 632 reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr); 633 634 // Pointer has to be allocated with a malloc-type function. Some 635 // applications think that it is OK to realloc a memalign'ed pointer, which 636 // will trigger this check. It really isn't. 637 if (Options.get(OptionBit::DeallocTypeMismatch)) { 638 if (UNLIKELY(OldHeader.OriginOrWasZeroed != Chunk::Origin::Malloc)) 639 reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr, 640 OldHeader.OriginOrWasZeroed, 641 Chunk::Origin::Malloc); 642 } 643 644 void *BlockBegin = getBlockBegin(OldTaggedPtr, &OldHeader); 645 uptr BlockEnd; 646 uptr OldSize; 647 const uptr ClassId = OldHeader.ClassId; 648 if (LIKELY(ClassId)) { 649 BlockEnd = reinterpret_cast<uptr>(BlockBegin) + 650 SizeClassMap::getSizeByClassId(ClassId); 651 OldSize = OldHeader.SizeOrUnusedBytes; 652 } else { 653 BlockEnd = SecondaryT::getBlockEnd(BlockBegin); 654 OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) + 655 OldHeader.SizeOrUnusedBytes); 656 } 657 // If the new chunk still fits in the previously allocated block (with a 658 // reasonable delta), we just keep the old block, and update the chunk 659 // header to reflect the size change. 660 if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) { 661 if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) { 662 Chunk::UnpackedHeader NewHeader = OldHeader; 663 NewHeader.SizeOrUnusedBytes = 664 (ClassId ? NewSize 665 : BlockEnd - 666 (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) & 667 Chunk::SizeOrUnusedBytesMask; 668 Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader); 669 if (UNLIKELY(useMemoryTagging<Params>(Options))) { 670 if (ClassId) { 671 resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize, 672 reinterpret_cast<uptr>(OldTaggedPtr) + NewSize, 673 NewSize, untagPointer(BlockEnd)); 674 storePrimaryAllocationStackMaybe(Options, OldPtr); 675 } else { 676 storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize); 677 } 678 } 679 return OldTaggedPtr; 680 } 681 } 682 683 // Otherwise we allocate a new one, and deallocate the old one. Some 684 // allocators will allocate an even larger chunk (by a fixed factor) to 685 // allow for potential further in-place realloc. The gains of such a trick 686 // are currently unclear. 687 void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); 688 if (LIKELY(NewPtr)) { 689 memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize)); 690 quarantineOrDeallocateChunk(Options, OldTaggedPtr, &OldHeader, OldSize); 691 } 692 return NewPtr; 693 } 694 695 // TODO(kostyak): disable() is currently best-effort. There are some small 696 // windows of time when an allocation could still succeed after 697 // this function finishes. We will revisit that later. 698 void disable() { 699 initThreadMaybe(); 700 #ifdef GWP_ASAN_HOOKS 701 GuardedAlloc.disable(); 702 #endif 703 TSDRegistry.disable(); 704 Stats.disable(); 705 Quarantine.disable(); 706 Primary.disable(); 707 Secondary.disable(); 708 } 709 710 void enable() { 711 initThreadMaybe(); 712 Secondary.enable(); 713 Primary.enable(); 714 Quarantine.enable(); 715 Stats.enable(); 716 TSDRegistry.enable(); 717 #ifdef GWP_ASAN_HOOKS 718 GuardedAlloc.enable(); 719 #endif 720 } 721 722 // The function returns the amount of bytes required to store the statistics, 723 // which might be larger than the amount of bytes provided. Note that the 724 // statistics buffer is not necessarily constant between calls to this 725 // function. This can be called with a null buffer or zero size for buffer 726 // sizing purposes. 727 uptr getStats(char *Buffer, uptr Size) { 728 ScopedString Str; 729 disable(); 730 const uptr Length = getStats(&Str) + 1; 731 enable(); 732 if (Length < Size) 733 Size = Length; 734 if (Buffer && Size) { 735 memcpy(Buffer, Str.data(), Size); 736 Buffer[Size - 1] = '\0'; 737 } 738 return Length; 739 } 740 741 void printStats() { 742 ScopedString Str; 743 disable(); 744 getStats(&Str); 745 enable(); 746 Str.output(); 747 } 748 749 void releaseToOS() { 750 initThreadMaybe(); 751 Primary.releaseToOS(); 752 Secondary.releaseToOS(); 753 } 754 755 // Iterate over all chunks and call a callback for all busy chunks located 756 // within the provided memory range. Said callback must not use this allocator 757 // or a deadlock can ensue. This fits Android's malloc_iterate() needs. 758 void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback, 759 void *Arg) { 760 initThreadMaybe(); 761 if (archSupportsMemoryTagging()) 762 Base = untagPointer(Base); 763 const uptr From = Base; 764 const uptr To = Base + Size; 765 bool MayHaveTaggedPrimary = allocatorSupportsMemoryTagging<Params>() && 766 systemSupportsMemoryTagging(); 767 auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback, 768 Arg](uptr Block) { 769 if (Block < From || Block >= To) 770 return; 771 uptr Chunk; 772 Chunk::UnpackedHeader Header; 773 if (MayHaveTaggedPrimary) { 774 // A chunk header can either have a zero tag (tagged primary) or the 775 // header tag (secondary, or untagged primary). We don't know which so 776 // try both. 777 ScopedDisableMemoryTagChecks x; 778 if (!getChunkFromBlock(Block, &Chunk, &Header) && 779 !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header)) 780 return; 781 } else { 782 if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header)) 783 return; 784 } 785 if (Header.State == Chunk::State::Allocated) { 786 uptr TaggedChunk = Chunk; 787 if (allocatorSupportsMemoryTagging<Params>()) 788 TaggedChunk = untagPointer(TaggedChunk); 789 if (useMemoryTagging<Params>(Primary.Options.load())) 790 TaggedChunk = loadTag(Chunk); 791 Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header), 792 Arg); 793 } 794 }; 795 Primary.iterateOverBlocks(Lambda); 796 Secondary.iterateOverBlocks(Lambda); 797 #ifdef GWP_ASAN_HOOKS 798 GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg); 799 #endif 800 } 801 802 bool canReturnNull() { 803 initThreadMaybe(); 804 return Primary.Options.load().get(OptionBit::MayReturnNull); 805 } 806 807 bool setOption(Option O, sptr Value) { 808 initThreadMaybe(); 809 if (O == Option::MemtagTuning) { 810 // Enabling odd/even tags involves a tradeoff between use-after-free 811 // detection and buffer overflow detection. Odd/even tags make it more 812 // likely for buffer overflows to be detected by increasing the size of 813 // the guaranteed "red zone" around the allocation, but on the other hand 814 // use-after-free is less likely to be detected because the tag space for 815 // any particular chunk is cut in half. Therefore we use this tuning 816 // setting to control whether odd/even tags are enabled. 817 if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW) 818 Primary.Options.set(OptionBit::UseOddEvenTags); 819 else if (Value == M_MEMTAG_TUNING_UAF) 820 Primary.Options.clear(OptionBit::UseOddEvenTags); 821 return true; 822 } else { 823 // We leave it to the various sub-components to decide whether or not they 824 // want to handle the option, but we do not want to short-circuit 825 // execution if one of the setOption was to return false. 826 const bool PrimaryResult = Primary.setOption(O, Value); 827 const bool SecondaryResult = Secondary.setOption(O, Value); 828 const bool RegistryResult = TSDRegistry.setOption(O, Value); 829 return PrimaryResult && SecondaryResult && RegistryResult; 830 } 831 return false; 832 } 833 834 // Return the usable size for a given chunk. Technically we lie, as we just 835 // report the actual size of a chunk. This is done to counteract code actively 836 // writing past the end of a chunk (like sqlite3) when the usable size allows 837 // for it, which then forces realloc to copy the usable size of a chunk as 838 // opposed to its actual size. 839 uptr getUsableSize(const void *Ptr) { 840 initThreadMaybe(); 841 if (UNLIKELY(!Ptr)) 842 return 0; 843 844 #ifdef GWP_ASAN_HOOKS 845 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) 846 return GuardedAlloc.getSize(Ptr); 847 #endif // GWP_ASAN_HOOKS 848 849 Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr)); 850 Chunk::UnpackedHeader Header; 851 Chunk::loadHeader(Cookie, Ptr, &Header); 852 // Getting the usable size of a chunk only makes sense if it's allocated. 853 if (UNLIKELY(Header.State != Chunk::State::Allocated)) 854 reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr)); 855 return getSize(Ptr, &Header); 856 } 857 858 void getStats(StatCounters S) { 859 initThreadMaybe(); 860 Stats.get(S); 861 } 862 863 // Returns true if the pointer provided was allocated by the current 864 // allocator instance, which is compliant with tcmalloc's ownership concept. 865 // A corrupted chunk will not be reported as owned, which is WAI. 866 bool isOwned(const void *Ptr) { 867 initThreadMaybe(); 868 #ifdef GWP_ASAN_HOOKS 869 if (GuardedAlloc.pointerIsMine(Ptr)) 870 return true; 871 #endif // GWP_ASAN_HOOKS 872 if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)) 873 return false; 874 Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr)); 875 Chunk::UnpackedHeader Header; 876 return Chunk::isValid(Cookie, Ptr, &Header) && 877 Header.State == Chunk::State::Allocated; 878 } 879 880 void setRssLimitsTestOnly(int SoftRssLimitMb, int HardRssLimitMb, 881 bool MayReturnNull) { 882 RssChecker.init(SoftRssLimitMb, HardRssLimitMb); 883 if (MayReturnNull) 884 Primary.Options.set(OptionBit::MayReturnNull); 885 } 886 887 bool useMemoryTaggingTestOnly() const { 888 return useMemoryTagging<Params>(Primary.Options.load()); 889 } 890 void disableMemoryTagging() { 891 // If we haven't been initialized yet, we need to initialize now in order to 892 // prevent a future call to initThreadMaybe() from enabling memory tagging 893 // based on feature detection. But don't call initThreadMaybe() because it 894 // may end up calling the allocator (via pthread_atfork, via the post-init 895 // callback), which may cause mappings to be created with memory tagging 896 // enabled. 897 TSDRegistry.initOnceMaybe(this); 898 if (allocatorSupportsMemoryTagging<Params>()) { 899 Secondary.disableMemoryTagging(); 900 Primary.Options.clear(OptionBit::UseMemoryTagging); 901 } 902 } 903 904 void setTrackAllocationStacks(bool Track) { 905 initThreadMaybe(); 906 if (getFlags()->allocation_ring_buffer_size == 0) { 907 DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks)); 908 return; 909 } 910 if (Track) 911 Primary.Options.set(OptionBit::TrackAllocationStacks); 912 else 913 Primary.Options.clear(OptionBit::TrackAllocationStacks); 914 } 915 916 void setFillContents(FillContentsMode FillContents) { 917 initThreadMaybe(); 918 Primary.Options.setFillContentsMode(FillContents); 919 } 920 921 void setAddLargeAllocationSlack(bool AddSlack) { 922 initThreadMaybe(); 923 if (AddSlack) 924 Primary.Options.set(OptionBit::AddLargeAllocationSlack); 925 else 926 Primary.Options.clear(OptionBit::AddLargeAllocationSlack); 927 } 928 929 const char *getStackDepotAddress() const { 930 return reinterpret_cast<const char *>(&Depot); 931 } 932 933 const char *getRegionInfoArrayAddress() const { 934 return Primary.getRegionInfoArrayAddress(); 935 } 936 937 static uptr getRegionInfoArraySize() { 938 return PrimaryT::getRegionInfoArraySize(); 939 } 940 941 const char *getRingBufferAddress() { 942 initThreadMaybe(); 943 return RawRingBuffer; 944 } 945 946 uptr getRingBufferSize() { 947 initThreadMaybe(); 948 auto *RingBuffer = getRingBuffer(); 949 return RingBuffer ? ringBufferSizeInBytes(RingBuffer->Size) : 0; 950 } 951 952 static bool setRingBufferSizeForBuffer(char *Buffer, size_t Size) { 953 // Need at least one entry. 954 if (Size < sizeof(AllocationRingBuffer) + 955 sizeof(typename AllocationRingBuffer::Entry)) { 956 return false; 957 } 958 AllocationRingBuffer *RingBuffer = 959 reinterpret_cast<AllocationRingBuffer *>(Buffer); 960 RingBuffer->Size = (Size - sizeof(AllocationRingBuffer)) / 961 sizeof(typename AllocationRingBuffer::Entry); 962 return true; 963 } 964 965 static const uptr MaxTraceSize = 64; 966 967 static void collectTraceMaybe(const StackDepot *Depot, 968 uintptr_t (&Trace)[MaxTraceSize], u32 Hash) { 969 uptr RingPos, Size; 970 if (!Depot->find(Hash, &RingPos, &Size)) 971 return; 972 for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I) 973 Trace[I] = static_cast<uintptr_t>((*Depot)[RingPos + I]); 974 } 975 976 static void getErrorInfo(struct scudo_error_info *ErrorInfo, 977 uintptr_t FaultAddr, const char *DepotPtr, 978 const char *RegionInfoPtr, const char *RingBufferPtr, 979 const char *Memory, const char *MemoryTags, 980 uintptr_t MemoryAddr, size_t MemorySize) { 981 *ErrorInfo = {}; 982 if (!allocatorSupportsMemoryTagging<Params>() || 983 MemoryAddr + MemorySize < MemoryAddr) 984 return; 985 986 auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr); 987 size_t NextErrorReport = 0; 988 989 // Check for OOB in the current block and the two surrounding blocks. Beyond 990 // that, UAF is more likely. 991 if (extractTag(FaultAddr) != 0) 992 getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, 993 RegionInfoPtr, Memory, MemoryTags, MemoryAddr, 994 MemorySize, 0, 2); 995 996 // Check the ring buffer. For primary allocations this will only find UAF; 997 // for secondary allocations we can find either UAF or OOB. 998 getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, 999 RingBufferPtr); 1000 1001 // Check for OOB in the 28 blocks surrounding the 3 we checked earlier. 1002 // Beyond that we are likely to hit false positives. 1003 if (extractTag(FaultAddr) != 0) 1004 getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, 1005 RegionInfoPtr, Memory, MemoryTags, MemoryAddr, 1006 MemorySize, 2, 16); 1007 } 1008 1009 private: 1010 using SecondaryT = MapAllocator<Params>; 1011 typedef typename PrimaryT::SizeClassMap SizeClassMap; 1012 1013 static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG; 1014 static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable. 1015 static const uptr MinAlignment = 1UL << MinAlignmentLog; 1016 static const uptr MaxAlignment = 1UL << MaxAlignmentLog; 1017 static const uptr MaxAllowedMallocSize = 1018 FIRST_32_SECOND_64(1UL << 31, 1ULL << 40); 1019 1020 static_assert(MinAlignment >= sizeof(Chunk::PackedHeader), 1021 "Minimal alignment must at least cover a chunk header."); 1022 static_assert(!allocatorSupportsMemoryTagging<Params>() || 1023 MinAlignment >= archMemoryTagGranuleSize(), 1024 ""); 1025 1026 static const u32 BlockMarker = 0x44554353U; 1027 1028 // These are indexes into an "array" of 32-bit values that store information 1029 // inline with a chunk that is relevant to diagnosing memory tag faults, where 1030 // 0 corresponds to the address of the user memory. This means that only 1031 // negative indexes may be used. The smallest index that may be used is -2, 1032 // which corresponds to 8 bytes before the user memory, because the chunk 1033 // header size is 8 bytes and in allocators that support memory tagging the 1034 // minimum alignment is at least the tag granule size (16 on aarch64). 1035 static const sptr MemTagAllocationTraceIndex = -2; 1036 static const sptr MemTagAllocationTidIndex = -1; 1037 1038 u32 Cookie = 0; 1039 u32 QuarantineMaxChunkSize = 0; 1040 1041 GlobalStats Stats; 1042 PrimaryT Primary; 1043 SecondaryT Secondary; 1044 QuarantineT Quarantine; 1045 TSDRegistryT TSDRegistry; 1046 pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT; 1047 RssLimitChecker RssChecker; 1048 1049 #ifdef GWP_ASAN_HOOKS 1050 gwp_asan::GuardedPoolAllocator GuardedAlloc; 1051 uptr GuardedAllocSlotSize = 0; 1052 #endif // GWP_ASAN_HOOKS 1053 1054 StackDepot Depot; 1055 1056 struct AllocationRingBuffer { 1057 struct Entry { 1058 atomic_uptr Ptr; 1059 atomic_uptr AllocationSize; 1060 atomic_u32 AllocationTrace; 1061 atomic_u32 AllocationTid; 1062 atomic_u32 DeallocationTrace; 1063 atomic_u32 DeallocationTid; 1064 }; 1065 1066 atomic_uptr Pos; 1067 u32 Size; 1068 // An array of Size (at least one) elements of type Entry is immediately 1069 // following to this struct. 1070 }; 1071 // Pointer to memory mapped area starting with AllocationRingBuffer struct, 1072 // and immediately followed by Size elements of type Entry. 1073 char *RawRingBuffer = {}; 1074 1075 // The following might get optimized out by the compiler. 1076 NOINLINE void performSanityChecks() { 1077 // Verify that the header offset field can hold the maximum offset. In the 1078 // case of the Secondary allocator, it takes care of alignment and the 1079 // offset will always be small. In the case of the Primary, the worst case 1080 // scenario happens in the last size class, when the backend allocation 1081 // would already be aligned on the requested alignment, which would happen 1082 // to be the maximum alignment that would fit in that size class. As a 1083 // result, the maximum offset will be at most the maximum alignment for the 1084 // last size class minus the header size, in multiples of MinAlignment. 1085 Chunk::UnpackedHeader Header = {}; 1086 const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex( 1087 SizeClassMap::MaxSize - MinAlignment); 1088 const uptr MaxOffset = 1089 (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog; 1090 Header.Offset = MaxOffset & Chunk::OffsetMask; 1091 if (UNLIKELY(Header.Offset != MaxOffset)) 1092 reportSanityCheckError("offset"); 1093 1094 // Verify that we can fit the maximum size or amount of unused bytes in the 1095 // header. Given that the Secondary fits the allocation to a page, the worst 1096 // case scenario happens in the Primary. It will depend on the second to 1097 // last and last class sizes, as well as the dynamic base for the Primary. 1098 // The following is an over-approximation that works for our needs. 1099 const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1; 1100 Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes; 1101 if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)) 1102 reportSanityCheckError("size (or unused bytes)"); 1103 1104 const uptr LargestClassId = SizeClassMap::LargestClassId; 1105 Header.ClassId = LargestClassId; 1106 if (UNLIKELY(Header.ClassId != LargestClassId)) 1107 reportSanityCheckError("class ID"); 1108 } 1109 1110 static inline void *getBlockBegin(const void *Ptr, 1111 Chunk::UnpackedHeader *Header) { 1112 return reinterpret_cast<void *>( 1113 reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() - 1114 (static_cast<uptr>(Header->Offset) << MinAlignmentLog)); 1115 } 1116 1117 // Return the size of a chunk as requested during its allocation. 1118 inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) { 1119 const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes; 1120 if (LIKELY(Header->ClassId)) 1121 return SizeOrUnusedBytes; 1122 if (allocatorSupportsMemoryTagging<Params>()) 1123 Ptr = untagPointer(const_cast<void *>(Ptr)); 1124 return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) - 1125 reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes; 1126 } 1127 1128 void quarantineOrDeallocateChunk(Options Options, void *TaggedPtr, 1129 Chunk::UnpackedHeader *Header, uptr Size) { 1130 void *Ptr = getHeaderTaggedPointer(TaggedPtr); 1131 Chunk::UnpackedHeader NewHeader = *Header; 1132 // If the quarantine is disabled, the actual size of a chunk is 0 or larger 1133 // than the maximum allowed, we return a chunk directly to the backend. 1134 // This purposefully underflows for Size == 0. 1135 const bool BypassQuarantine = !Quarantine.getCacheSize() || 1136 ((Size - 1) >= QuarantineMaxChunkSize) || 1137 !NewHeader.ClassId; 1138 if (BypassQuarantine) 1139 NewHeader.State = Chunk::State::Available; 1140 else 1141 NewHeader.State = Chunk::State::Quarantined; 1142 NewHeader.OriginOrWasZeroed = useMemoryTagging<Params>(Options) && 1143 NewHeader.ClassId && 1144 !TSDRegistry.getDisableMemInit(); 1145 Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header); 1146 1147 if (UNLIKELY(useMemoryTagging<Params>(Options))) { 1148 u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr)); 1149 storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size); 1150 if (NewHeader.ClassId) { 1151 if (!TSDRegistry.getDisableMemInit()) { 1152 uptr TaggedBegin, TaggedEnd; 1153 const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe( 1154 Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, &NewHeader)), 1155 NewHeader.ClassId); 1156 // Exclude the previous tag so that immediate use after free is 1157 // detected 100% of the time. 1158 setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin, 1159 &TaggedEnd); 1160 } 1161 } 1162 } 1163 if (BypassQuarantine) { 1164 if (allocatorSupportsMemoryTagging<Params>()) 1165 Ptr = untagPointer(Ptr); 1166 void *BlockBegin = getBlockBegin(Ptr, &NewHeader); 1167 const uptr ClassId = NewHeader.ClassId; 1168 if (LIKELY(ClassId)) { 1169 bool UnlockRequired; 1170 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); 1171 TSD->Cache.deallocate(ClassId, BlockBegin); 1172 if (UnlockRequired) 1173 TSD->unlock(); 1174 } else { 1175 if (UNLIKELY(useMemoryTagging<Params>(Options))) 1176 storeTags(reinterpret_cast<uptr>(BlockBegin), 1177 reinterpret_cast<uptr>(Ptr)); 1178 Secondary.deallocate(Options, BlockBegin); 1179 } 1180 } else { 1181 bool UnlockRequired; 1182 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); 1183 Quarantine.put(&TSD->QuarantineCache, 1184 QuarantineCallback(*this, TSD->Cache), Ptr, Size); 1185 if (UnlockRequired) 1186 TSD->unlock(); 1187 } 1188 } 1189 1190 bool getChunkFromBlock(uptr Block, uptr *Chunk, 1191 Chunk::UnpackedHeader *Header) { 1192 *Chunk = 1193 Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block)); 1194 return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header); 1195 } 1196 1197 static uptr getChunkOffsetFromBlock(const char *Block) { 1198 u32 Offset = 0; 1199 if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker) 1200 Offset = reinterpret_cast<const u32 *>(Block)[1]; 1201 return Offset + Chunk::getHeaderSize(); 1202 } 1203 1204 // Set the tag of the granule past the end of the allocation to 0, to catch 1205 // linear overflows even if a previous larger allocation used the same block 1206 // and tag. Only do this if the granule past the end is in our block, because 1207 // this would otherwise lead to a SEGV if the allocation covers the entire 1208 // block and our block is at the end of a mapping. The tag of the next block's 1209 // header granule will be set to 0, so it will serve the purpose of catching 1210 // linear overflows in this case. 1211 // 1212 // For allocations of size 0 we do not end up storing the address tag to the 1213 // memory tag space, which getInlineErrorInfo() normally relies on to match 1214 // address tags against chunks. To allow matching in this case we store the 1215 // address tag in the first byte of the chunk. 1216 void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) { 1217 DCHECK_EQ(BlockEnd, untagPointer(BlockEnd)); 1218 uptr UntaggedEnd = untagPointer(End); 1219 if (UntaggedEnd != BlockEnd) { 1220 storeTag(UntaggedEnd); 1221 if (Size == 0) 1222 *reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End); 1223 } 1224 } 1225 1226 void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask, 1227 uptr BlockEnd) { 1228 // Prepare the granule before the chunk to store the chunk header by setting 1229 // its tag to 0. Normally its tag will already be 0, but in the case where a 1230 // chunk holding a low alignment allocation is reused for a higher alignment 1231 // allocation, the chunk may already have a non-zero tag from the previous 1232 // allocation. 1233 storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize()); 1234 1235 uptr TaggedBegin, TaggedEnd; 1236 setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd); 1237 1238 storeEndMarker(TaggedEnd, Size, BlockEnd); 1239 return reinterpret_cast<void *>(TaggedBegin); 1240 } 1241 1242 void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize, 1243 uptr BlockEnd) { 1244 uptr RoundOldPtr = roundUpTo(OldPtr, archMemoryTagGranuleSize()); 1245 uptr RoundNewPtr; 1246 if (RoundOldPtr >= NewPtr) { 1247 // If the allocation is shrinking we just need to set the tag past the end 1248 // of the allocation to 0. See explanation in storeEndMarker() above. 1249 RoundNewPtr = roundUpTo(NewPtr, archMemoryTagGranuleSize()); 1250 } else { 1251 // Set the memory tag of the region 1252 // [RoundOldPtr, roundUpTo(NewPtr, archMemoryTagGranuleSize())) 1253 // to the pointer tag stored in OldPtr. 1254 RoundNewPtr = storeTags(RoundOldPtr, NewPtr); 1255 } 1256 storeEndMarker(RoundNewPtr, NewSize, BlockEnd); 1257 } 1258 1259 void storePrimaryAllocationStackMaybe(Options Options, void *Ptr) { 1260 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) 1261 return; 1262 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr); 1263 Ptr32[MemTagAllocationTraceIndex] = collectStackTrace(); 1264 Ptr32[MemTagAllocationTidIndex] = getThreadID(); 1265 } 1266 1267 void storeRingBufferEntry(void *Ptr, u32 AllocationTrace, u32 AllocationTid, 1268 uptr AllocationSize, u32 DeallocationTrace, 1269 u32 DeallocationTid) { 1270 uptr Pos = atomic_fetch_add(&getRingBuffer()->Pos, 1, memory_order_relaxed); 1271 typename AllocationRingBuffer::Entry *Entry = 1272 getRingBufferEntry(RawRingBuffer, Pos % getRingBuffer()->Size); 1273 1274 // First invalidate our entry so that we don't attempt to interpret a 1275 // partially written state in getSecondaryErrorInfo(). The fences below 1276 // ensure that the compiler does not move the stores to Ptr in between the 1277 // stores to the other fields. 1278 atomic_store_relaxed(&Entry->Ptr, 0); 1279 1280 __atomic_signal_fence(__ATOMIC_SEQ_CST); 1281 atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace); 1282 atomic_store_relaxed(&Entry->AllocationTid, AllocationTid); 1283 atomic_store_relaxed(&Entry->AllocationSize, AllocationSize); 1284 atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace); 1285 atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid); 1286 __atomic_signal_fence(__ATOMIC_SEQ_CST); 1287 1288 atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr)); 1289 } 1290 1291 void storeSecondaryAllocationStackMaybe(Options Options, void *Ptr, 1292 uptr Size) { 1293 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) 1294 return; 1295 1296 u32 Trace = collectStackTrace(); 1297 u32 Tid = getThreadID(); 1298 1299 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr); 1300 Ptr32[MemTagAllocationTraceIndex] = Trace; 1301 Ptr32[MemTagAllocationTidIndex] = Tid; 1302 1303 storeRingBufferEntry(untagPointer(Ptr), Trace, Tid, Size, 0, 0); 1304 } 1305 1306 void storeDeallocationStackMaybe(Options Options, void *Ptr, u8 PrevTag, 1307 uptr Size) { 1308 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) 1309 return; 1310 1311 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr); 1312 u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex]; 1313 u32 AllocationTid = Ptr32[MemTagAllocationTidIndex]; 1314 1315 u32 DeallocationTrace = collectStackTrace(); 1316 u32 DeallocationTid = getThreadID(); 1317 1318 storeRingBufferEntry(addFixedTag(untagPointer(Ptr), PrevTag), 1319 AllocationTrace, AllocationTid, Size, 1320 DeallocationTrace, DeallocationTid); 1321 } 1322 1323 static const size_t NumErrorReports = 1324 sizeof(((scudo_error_info *)nullptr)->reports) / 1325 sizeof(((scudo_error_info *)nullptr)->reports[0]); 1326 1327 static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo, 1328 size_t &NextErrorReport, uintptr_t FaultAddr, 1329 const StackDepot *Depot, 1330 const char *RegionInfoPtr, const char *Memory, 1331 const char *MemoryTags, uintptr_t MemoryAddr, 1332 size_t MemorySize, size_t MinDistance, 1333 size_t MaxDistance) { 1334 uptr UntaggedFaultAddr = untagPointer(FaultAddr); 1335 u8 FaultAddrTag = extractTag(FaultAddr); 1336 BlockInfo Info = 1337 PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr); 1338 1339 auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool { 1340 if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr || 1341 Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize) 1342 return false; 1343 *Data = &Memory[Addr - MemoryAddr]; 1344 *Tag = static_cast<u8>( 1345 MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]); 1346 return true; 1347 }; 1348 1349 auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr, 1350 Chunk::UnpackedHeader *Header, const u32 **Data, 1351 u8 *Tag) { 1352 const char *BlockBegin; 1353 u8 BlockBeginTag; 1354 if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag)) 1355 return false; 1356 uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin); 1357 *ChunkAddr = Addr + ChunkOffset; 1358 1359 const char *ChunkBegin; 1360 if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag)) 1361 return false; 1362 *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>( 1363 ChunkBegin - Chunk::getHeaderSize()); 1364 *Data = reinterpret_cast<const u32 *>(ChunkBegin); 1365 1366 // Allocations of size 0 will have stashed the tag in the first byte of 1367 // the chunk, see storeEndMarker(). 1368 if (Header->SizeOrUnusedBytes == 0) 1369 *Tag = static_cast<u8>(*ChunkBegin); 1370 1371 return true; 1372 }; 1373 1374 if (NextErrorReport == NumErrorReports) 1375 return; 1376 1377 auto CheckOOB = [&](uptr BlockAddr) { 1378 if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd) 1379 return false; 1380 1381 uptr ChunkAddr; 1382 Chunk::UnpackedHeader Header; 1383 const u32 *Data; 1384 uint8_t Tag; 1385 if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) || 1386 Header.State != Chunk::State::Allocated || Tag != FaultAddrTag) 1387 return false; 1388 1389 auto *R = &ErrorInfo->reports[NextErrorReport++]; 1390 R->error_type = 1391 UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW; 1392 R->allocation_address = ChunkAddr; 1393 R->allocation_size = Header.SizeOrUnusedBytes; 1394 collectTraceMaybe(Depot, R->allocation_trace, 1395 Data[MemTagAllocationTraceIndex]); 1396 R->allocation_tid = Data[MemTagAllocationTidIndex]; 1397 return NextErrorReport == NumErrorReports; 1398 }; 1399 1400 if (MinDistance == 0 && CheckOOB(Info.BlockBegin)) 1401 return; 1402 1403 for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I) 1404 if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) || 1405 CheckOOB(Info.BlockBegin - I * Info.BlockSize)) 1406 return; 1407 } 1408 1409 static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo, 1410 size_t &NextErrorReport, 1411 uintptr_t FaultAddr, 1412 const StackDepot *Depot, 1413 const char *RingBufferPtr) { 1414 auto *RingBuffer = 1415 reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr); 1416 if (!RingBuffer || RingBuffer->Size == 0) 1417 return; 1418 uptr Pos = atomic_load_relaxed(&RingBuffer->Pos); 1419 1420 for (uptr I = Pos - 1; 1421 I != Pos - 1 - RingBuffer->Size && NextErrorReport != NumErrorReports; 1422 --I) { 1423 auto *Entry = getRingBufferEntry(RingBufferPtr, I % RingBuffer->Size); 1424 uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr); 1425 if (!EntryPtr) 1426 continue; 1427 1428 uptr UntaggedEntryPtr = untagPointer(EntryPtr); 1429 uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize); 1430 u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace); 1431 u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid); 1432 u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace); 1433 u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid); 1434 1435 if (DeallocationTid) { 1436 // For UAF we only consider in-bounds fault addresses because 1437 // out-of-bounds UAF is rare and attempting to detect it is very likely 1438 // to result in false positives. 1439 if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize) 1440 continue; 1441 } else { 1442 // Ring buffer OOB is only possible with secondary allocations. In this 1443 // case we are guaranteed a guard region of at least a page on either 1444 // side of the allocation (guard page on the right, guard page + tagged 1445 // region on the left), so ignore any faults outside of that range. 1446 if (FaultAddr < EntryPtr - getPageSizeCached() || 1447 FaultAddr >= EntryPtr + EntrySize + getPageSizeCached()) 1448 continue; 1449 1450 // For UAF the ring buffer will contain two entries, one for the 1451 // allocation and another for the deallocation. Don't report buffer 1452 // overflow/underflow using the allocation entry if we have already 1453 // collected a report from the deallocation entry. 1454 bool Found = false; 1455 for (uptr J = 0; J != NextErrorReport; ++J) { 1456 if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) { 1457 Found = true; 1458 break; 1459 } 1460 } 1461 if (Found) 1462 continue; 1463 } 1464 1465 auto *R = &ErrorInfo->reports[NextErrorReport++]; 1466 if (DeallocationTid) 1467 R->error_type = USE_AFTER_FREE; 1468 else if (FaultAddr < EntryPtr) 1469 R->error_type = BUFFER_UNDERFLOW; 1470 else 1471 R->error_type = BUFFER_OVERFLOW; 1472 1473 R->allocation_address = UntaggedEntryPtr; 1474 R->allocation_size = EntrySize; 1475 collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace); 1476 R->allocation_tid = AllocationTid; 1477 collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace); 1478 R->deallocation_tid = DeallocationTid; 1479 } 1480 } 1481 1482 uptr getStats(ScopedString *Str) { 1483 Primary.getStats(Str); 1484 Secondary.getStats(Str); 1485 Quarantine.getStats(Str); 1486 return Str->length(); 1487 } 1488 1489 static typename AllocationRingBuffer::Entry * 1490 getRingBufferEntry(char *RawRingBuffer, uptr N) { 1491 return &reinterpret_cast<typename AllocationRingBuffer::Entry *>( 1492 &RawRingBuffer[sizeof(AllocationRingBuffer)])[N]; 1493 } 1494 static const typename AllocationRingBuffer::Entry * 1495 getRingBufferEntry(const char *RawRingBuffer, uptr N) { 1496 return &reinterpret_cast<const typename AllocationRingBuffer::Entry *>( 1497 &RawRingBuffer[sizeof(AllocationRingBuffer)])[N]; 1498 } 1499 1500 void initRingBuffer() { 1501 u32 AllocationRingBufferSize = 1502 static_cast<u32>(getFlags()->allocation_ring_buffer_size); 1503 if (AllocationRingBufferSize < 1) 1504 return; 1505 MapPlatformData Data = {}; 1506 RawRingBuffer = static_cast<char *>( 1507 map(/*Addr=*/nullptr, 1508 roundUpTo(ringBufferSizeInBytes(AllocationRingBufferSize), getPageSizeCached()), 1509 "AllocatorRingBuffer", /*Flags=*/0, &Data)); 1510 auto *RingBuffer = reinterpret_cast<AllocationRingBuffer *>(RawRingBuffer); 1511 RingBuffer->Size = AllocationRingBufferSize; 1512 static_assert(sizeof(AllocationRingBuffer) % 1513 alignof(typename AllocationRingBuffer::Entry) == 1514 0, 1515 "invalid alignment"); 1516 } 1517 1518 static constexpr size_t ringBufferSizeInBytes(u32 AllocationRingBufferSize) { 1519 return sizeof(AllocationRingBuffer) + 1520 AllocationRingBufferSize * 1521 sizeof(typename AllocationRingBuffer::Entry); 1522 } 1523 1524 inline AllocationRingBuffer *getRingBuffer() { 1525 return reinterpret_cast<AllocationRingBuffer *>(RawRingBuffer); 1526 } 1527 }; 1528 1529 } // namespace scudo 1530 1531 #endif // SCUDO_COMBINED_H_ 1532