xref: /freebsd/contrib/llvm-project/compiler-rt/lib/scudo/standalone/combined.h (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 //===-- combined.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef SCUDO_COMBINED_H_
10 #define SCUDO_COMBINED_H_
11 
12 #include "chunk.h"
13 #include "common.h"
14 #include "flags.h"
15 #include "flags_parser.h"
16 #include "local_cache.h"
17 #include "memtag.h"
18 #include "quarantine.h"
19 #include "report.h"
20 #include "secondary.h"
21 #include "stack_depot.h"
22 #include "string_utils.h"
23 #include "tsd.h"
24 
25 #include "scudo/interface.h"
26 
27 #ifdef GWP_ASAN_HOOKS
28 #include "gwp_asan/guarded_pool_allocator.h"
29 #include "gwp_asan/optional/backtrace.h"
30 #include "gwp_asan/optional/segv_handler.h"
31 #endif // GWP_ASAN_HOOKS
32 
33 extern "C" inline void EmptyCallback() {}
34 
35 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
36 // This function is not part of the NDK so it does not appear in any public
37 // header files. We only declare/use it when targeting the platform.
38 extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
39                                                      size_t num_entries);
40 #endif
41 
42 namespace scudo {
43 
44 enum class Option { ReleaseInterval };
45 
46 template <class Params, void (*PostInitCallback)(void) = EmptyCallback>
47 class Allocator {
48 public:
49   using PrimaryT = typename Params::Primary;
50   using CacheT = typename PrimaryT::CacheT;
51   typedef Allocator<Params, PostInitCallback> ThisT;
52   typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT;
53 
54   void callPostInitCallback() {
55     static pthread_once_t OnceControl = PTHREAD_ONCE_INIT;
56     pthread_once(&OnceControl, PostInitCallback);
57   }
58 
59   struct QuarantineCallback {
60     explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
61         : Allocator(Instance), Cache(LocalCache) {}
62 
63     // Chunk recycling function, returns a quarantined chunk to the backend,
64     // first making sure it hasn't been tampered with.
65     void recycle(void *Ptr) {
66       Chunk::UnpackedHeader Header;
67       Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
68       if (UNLIKELY(Header.State != Chunk::State::Quarantined))
69         reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
70 
71       Chunk::UnpackedHeader NewHeader = Header;
72       NewHeader.State = Chunk::State::Available;
73       Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
74 
75       void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader);
76       const uptr ClassId = NewHeader.ClassId;
77       if (LIKELY(ClassId))
78         Cache.deallocate(ClassId, BlockBegin);
79       else
80         Allocator.Secondary.deallocate(BlockBegin);
81     }
82 
83     // We take a shortcut when allocating a quarantine batch by working with the
84     // appropriate class ID instead of using Size. The compiler should optimize
85     // the class ID computation and work with the associated cache directly.
86     void *allocate(UNUSED uptr Size) {
87       const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
88           sizeof(QuarantineBatch) + Chunk::getHeaderSize());
89       void *Ptr = Cache.allocate(QuarantineClassId);
90       // Quarantine batch allocation failure is fatal.
91       if (UNLIKELY(!Ptr))
92         reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
93 
94       Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
95                                      Chunk::getHeaderSize());
96       Chunk::UnpackedHeader Header = {};
97       Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
98       Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
99       Header.State = Chunk::State::Allocated;
100       Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
101 
102       return Ptr;
103     }
104 
105     void deallocate(void *Ptr) {
106       const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
107           sizeof(QuarantineBatch) + Chunk::getHeaderSize());
108       Chunk::UnpackedHeader Header;
109       Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
110 
111       if (UNLIKELY(Header.State != Chunk::State::Allocated))
112         reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
113       DCHECK_EQ(Header.ClassId, QuarantineClassId);
114       DCHECK_EQ(Header.Offset, 0);
115       DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
116 
117       Chunk::UnpackedHeader NewHeader = Header;
118       NewHeader.State = Chunk::State::Available;
119       Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
120       Cache.deallocate(QuarantineClassId,
121                        reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
122                                                 Chunk::getHeaderSize()));
123     }
124 
125   private:
126     ThisT &Allocator;
127     CacheT &Cache;
128   };
129 
130   typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
131   typedef typename QuarantineT::CacheT QuarantineCacheT;
132 
133   void initLinkerInitialized() {
134     performSanityChecks();
135 
136     // Check if hardware CRC32 is supported in the binary and by the platform,
137     // if so, opt for the CRC32 hardware version of the checksum.
138     if (&computeHardwareCRC32 && hasHardwareCRC32())
139       HashAlgorithm = Checksum::HardwareCRC32;
140 
141     if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
142       Cookie = static_cast<u32>(getMonotonicTime() ^
143                                 (reinterpret_cast<uptr>(this) >> 4));
144 
145     initFlags();
146     reportUnrecognizedFlags();
147 
148     // Store some flags locally.
149     Options.MayReturnNull = getFlags()->may_return_null;
150     Options.FillContents =
151         getFlags()->zero_contents
152             ? ZeroFill
153             : (getFlags()->pattern_fill_contents ? PatternOrZeroFill : NoFill);
154     Options.DeallocTypeMismatch = getFlags()->dealloc_type_mismatch;
155     Options.DeleteSizeMismatch = getFlags()->delete_size_mismatch;
156     Options.TrackAllocationStacks = false;
157     Options.QuarantineMaxChunkSize =
158         static_cast<u32>(getFlags()->quarantine_max_chunk_size);
159 
160     Stats.initLinkerInitialized();
161     const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
162     Primary.initLinkerInitialized(ReleaseToOsIntervalMs);
163     Secondary.initLinkerInitialized(&Stats, ReleaseToOsIntervalMs);
164 
165     Quarantine.init(
166         static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
167         static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
168   }
169 
170   // Initialize the embedded GWP-ASan instance. Requires the main allocator to
171   // be functional, best called from PostInitCallback.
172   void initGwpAsan() {
173 #ifdef GWP_ASAN_HOOKS
174     gwp_asan::options::Options Opt;
175     Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
176     // Bear in mind - Scudo has its own alignment guarantees that are strictly
177     // enforced. Scudo exposes the same allocation function for everything from
178     // malloc() to posix_memalign, so in general this flag goes unused, as Scudo
179     // will always ask GWP-ASan for an aligned amount of bytes.
180     Opt.PerfectlyRightAlign = getFlags()->GWP_ASAN_PerfectlyRightAlign;
181     Opt.MaxSimultaneousAllocations =
182         getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
183     Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
184     Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
185     // Embedded GWP-ASan is locked through the Scudo atfork handler (via
186     // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
187     // handler.
188     Opt.InstallForkHandlers = false;
189     Opt.Backtrace = gwp_asan::options::getBacktraceFunction();
190     GuardedAlloc.init(Opt);
191 
192     if (Opt.InstallSignalHandlers)
193       gwp_asan::crash_handler::installSignalHandlers(
194           &GuardedAlloc, Printf, gwp_asan::options::getPrintBacktraceFunction(),
195           Opt.Backtrace);
196 #endif // GWP_ASAN_HOOKS
197   }
198 
199   void reset() { memset(this, 0, sizeof(*this)); }
200 
201   void unmapTestOnly() {
202     TSDRegistry.unmapTestOnly();
203     Primary.unmapTestOnly();
204 #ifdef GWP_ASAN_HOOKS
205     if (getFlags()->GWP_ASAN_InstallSignalHandlers)
206       gwp_asan::crash_handler::uninstallSignalHandlers();
207     GuardedAlloc.uninitTestOnly();
208 #endif // GWP_ASAN_HOOKS
209   }
210 
211   TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
212 
213   // The Cache must be provided zero-initialized.
214   void initCache(CacheT *Cache) {
215     Cache->initLinkerInitialized(&Stats, &Primary);
216   }
217 
218   // Release the resources used by a TSD, which involves:
219   // - draining the local quarantine cache to the global quarantine;
220   // - releasing the cached pointers back to the Primary;
221   // - unlinking the local stats from the global ones (destroying the cache does
222   //   the last two items).
223   void commitBack(TSD<ThisT> *TSD) {
224     Quarantine.drain(&TSD->QuarantineCache,
225                      QuarantineCallback(*this, TSD->Cache));
226     TSD->Cache.destroy(&Stats);
227   }
228 
229   ALWAYS_INLINE void *untagPointerMaybe(void *Ptr) {
230     if (Primary.SupportsMemoryTagging)
231       return reinterpret_cast<void *>(
232           untagPointer(reinterpret_cast<uptr>(Ptr)));
233     return Ptr;
234   }
235 
236   NOINLINE u32 collectStackTrace() {
237 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
238     // Discard collectStackTrace() frame and allocator function frame.
239     constexpr uptr DiscardFrames = 2;
240     uptr Stack[MaxTraceSize + DiscardFrames];
241     uptr Size =
242         android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
243     Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
244     return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
245 #else
246     return 0;
247 #endif
248   }
249 
250   NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
251                           uptr Alignment = MinAlignment,
252                           bool ZeroContents = false) {
253     initThreadMaybe();
254 
255 #ifdef GWP_ASAN_HOOKS
256     if (UNLIKELY(GuardedAlloc.shouldSample())) {
257       if (void *Ptr = GuardedAlloc.allocate(roundUpTo(Size, Alignment)))
258         return Ptr;
259     }
260 #endif // GWP_ASAN_HOOKS
261 
262     FillContentsMode FillContents =
263         ZeroContents ? ZeroFill : Options.FillContents;
264 
265     if (UNLIKELY(Alignment > MaxAlignment)) {
266       if (Options.MayReturnNull)
267         return nullptr;
268       reportAlignmentTooBig(Alignment, MaxAlignment);
269     }
270     if (Alignment < MinAlignment)
271       Alignment = MinAlignment;
272 
273     // If the requested size happens to be 0 (more common than you might think),
274     // allocate MinAlignment bytes on top of the header. Then add the extra
275     // bytes required to fulfill the alignment requirements: we allocate enough
276     // to be sure that there will be an address in the block that will satisfy
277     // the alignment.
278     const uptr NeededSize =
279         roundUpTo(Size, MinAlignment) +
280         ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());
281 
282     // Takes care of extravagantly large sizes as well as integer overflows.
283     static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
284     if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
285       if (Options.MayReturnNull)
286         return nullptr;
287       reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
288     }
289     DCHECK_LE(Size, NeededSize);
290 
291     void *Block = nullptr;
292     uptr ClassId = 0;
293     uptr SecondaryBlockEnd;
294     if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
295       ClassId = SizeClassMap::getClassIdBySize(NeededSize);
296       DCHECK_NE(ClassId, 0U);
297       bool UnlockRequired;
298       auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
299       Block = TSD->Cache.allocate(ClassId);
300       // If the allocation failed, the most likely reason with a 32-bit primary
301       // is the region being full. In that event, retry in each successively
302       // larger class until it fits. If it fails to fit in the largest class,
303       // fallback to the Secondary.
304       if (UNLIKELY(!Block)) {
305         while (ClassId < SizeClassMap::LargestClassId) {
306           Block = TSD->Cache.allocate(++ClassId);
307           if (LIKELY(Block)) {
308             break;
309           }
310         }
311         if (UNLIKELY(!Block)) {
312           ClassId = 0;
313         }
314       }
315       if (UnlockRequired)
316         TSD->unlock();
317     }
318     if (UNLIKELY(ClassId == 0))
319       Block = Secondary.allocate(NeededSize, Alignment, &SecondaryBlockEnd,
320                                  FillContents);
321 
322     if (UNLIKELY(!Block)) {
323       if (Options.MayReturnNull)
324         return nullptr;
325       reportOutOfMemory(NeededSize);
326     }
327 
328     const uptr BlockUptr = reinterpret_cast<uptr>(Block);
329     const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize();
330     const uptr UserPtr = roundUpTo(UnalignedUserPtr, Alignment);
331 
332     void *Ptr = reinterpret_cast<void *>(UserPtr);
333     void *TaggedPtr = Ptr;
334     if (ClassId) {
335       // We only need to zero or tag the contents for Primary backed
336       // allocations. We only set tags for primary allocations in order to avoid
337       // faulting potentially large numbers of pages for large secondary
338       // allocations. We assume that guard pages are enough to protect these
339       // allocations.
340       //
341       // FIXME: When the kernel provides a way to set the background tag of a
342       // mapping, we should be able to tag secondary allocations as well.
343       //
344       // When memory tagging is enabled, zeroing the contents is done as part of
345       // setting the tag.
346       if (UNLIKELY(useMemoryTagging())) {
347         uptr PrevUserPtr;
348         Chunk::UnpackedHeader Header;
349         const uptr BlockEnd = BlockUptr + PrimaryT::getSizeByClassId(ClassId);
350         // If possible, try to reuse the UAF tag that was set by deallocate().
351         // For simplicity, only reuse tags if we have the same start address as
352         // the previous allocation. This handles the majority of cases since
353         // most allocations will not be more aligned than the minimum alignment.
354         //
355         // We need to handle situations involving reclaimed chunks, and retag
356         // the reclaimed portions if necessary. In the case where the chunk is
357         // fully reclaimed, the chunk's header will be zero, which will trigger
358         // the code path for new mappings and invalid chunks that prepares the
359         // chunk from scratch. There are three possibilities for partial
360         // reclaiming:
361         //
362         // (1) Header was reclaimed, data was partially reclaimed.
363         // (2) Header was not reclaimed, all data was reclaimed (e.g. because
364         //     data started on a page boundary).
365         // (3) Header was not reclaimed, data was partially reclaimed.
366         //
367         // Case (1) will be handled in the same way as for full reclaiming,
368         // since the header will be zero.
369         //
370         // We can detect case (2) by loading the tag from the start
371         // of the chunk. If it is zero, it means that either all data was
372         // reclaimed (since we never use zero as the chunk tag), or that the
373         // previous allocation was of size zero. Either way, we need to prepare
374         // a new chunk from scratch.
375         //
376         // We can detect case (3) by moving to the next page (if covered by the
377         // chunk) and loading the tag of its first granule. If it is zero, it
378         // means that all following pages may need to be retagged. On the other
379         // hand, if it is nonzero, we can assume that all following pages are
380         // still tagged, according to the logic that if any of the pages
381         // following the next page were reclaimed, the next page would have been
382         // reclaimed as well.
383         uptr TaggedUserPtr;
384         if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
385             PrevUserPtr == UserPtr &&
386             (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
387           uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
388           const uptr NextPage = roundUpTo(TaggedUserPtr, getPageSizeCached());
389           if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
390             PrevEnd = NextPage;
391           TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
392           resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, BlockEnd);
393           if (Size) {
394             // Clear any stack metadata that may have previously been stored in
395             // the chunk data.
396             memset(TaggedPtr, 0, archMemoryTagGranuleSize());
397           }
398         } else {
399           TaggedPtr = prepareTaggedChunk(Ptr, Size, BlockEnd);
400         }
401         storeAllocationStackMaybe(Ptr);
402       } else if (UNLIKELY(FillContents != NoFill)) {
403         // This condition is not necessarily unlikely, but since memset is
404         // costly, we might as well mark it as such.
405         memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
406                PrimaryT::getSizeByClassId(ClassId));
407       }
408     }
409 
410     Chunk::UnpackedHeader Header = {};
411     if (UNLIKELY(UnalignedUserPtr != UserPtr)) {
412       const uptr Offset = UserPtr - UnalignedUserPtr;
413       DCHECK_GE(Offset, 2 * sizeof(u32));
414       // The BlockMarker has no security purpose, but is specifically meant for
415       // the chunk iteration function that can be used in debugging situations.
416       // It is the only situation where we have to locate the start of a chunk
417       // based on its block address.
418       reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
419       reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
420       Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
421     }
422     Header.ClassId = ClassId & Chunk::ClassIdMask;
423     Header.State = Chunk::State::Allocated;
424     Header.Origin = Origin & Chunk::OriginMask;
425     Header.SizeOrUnusedBytes =
426         (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) &
427         Chunk::SizeOrUnusedBytesMask;
428     Chunk::storeHeader(Cookie, Ptr, &Header);
429 
430     if (&__scudo_allocate_hook)
431       __scudo_allocate_hook(TaggedPtr, Size);
432 
433     return TaggedPtr;
434   }
435 
436   NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
437                            UNUSED uptr Alignment = MinAlignment) {
438     // For a deallocation, we only ensure minimal initialization, meaning thread
439     // local data will be left uninitialized for now (when using ELF TLS). The
440     // fallback cache will be used instead. This is a workaround for a situation
441     // where the only heap operation performed in a thread would be a free past
442     // the TLS destructors, ending up in initialized thread specific data never
443     // being destroyed properly. Any other heap operation will do a full init.
444     initThreadMaybe(/*MinimalInit=*/true);
445 
446 #ifdef GWP_ASAN_HOOKS
447     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
448       GuardedAlloc.deallocate(Ptr);
449       return;
450     }
451 #endif // GWP_ASAN_HOOKS
452 
453     if (&__scudo_deallocate_hook)
454       __scudo_deallocate_hook(Ptr);
455 
456     if (UNLIKELY(!Ptr))
457       return;
458     if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
459       reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
460 
461     Ptr = untagPointerMaybe(Ptr);
462 
463     Chunk::UnpackedHeader Header;
464     Chunk::loadHeader(Cookie, Ptr, &Header);
465 
466     if (UNLIKELY(Header.State != Chunk::State::Allocated))
467       reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
468     if (Options.DeallocTypeMismatch) {
469       if (Header.Origin != Origin) {
470         // With the exception of memalign'd chunks, that can be still be free'd.
471         if (UNLIKELY(Header.Origin != Chunk::Origin::Memalign ||
472                      Origin != Chunk::Origin::Malloc))
473           reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
474                                     Header.Origin, Origin);
475       }
476     }
477 
478     const uptr Size = getSize(Ptr, &Header);
479     if (DeleteSize && Options.DeleteSizeMismatch) {
480       if (UNLIKELY(DeleteSize != Size))
481         reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
482     }
483 
484     quarantineOrDeallocateChunk(Ptr, &Header, Size);
485   }
486 
487   void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
488     initThreadMaybe();
489 
490     if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
491       if (Options.MayReturnNull)
492         return nullptr;
493       reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
494     }
495 
496     void *OldTaggedPtr = OldPtr;
497     OldPtr = untagPointerMaybe(OldPtr);
498 
499     // The following cases are handled by the C wrappers.
500     DCHECK_NE(OldPtr, nullptr);
501     DCHECK_NE(NewSize, 0);
502 
503 #ifdef GWP_ASAN_HOOKS
504     if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
505       uptr OldSize = GuardedAlloc.getSize(OldPtr);
506       void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
507       if (NewPtr)
508         memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
509       GuardedAlloc.deallocate(OldPtr);
510       return NewPtr;
511     }
512 #endif // GWP_ASAN_HOOKS
513 
514     if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
515       reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
516 
517     Chunk::UnpackedHeader OldHeader;
518     Chunk::loadHeader(Cookie, OldPtr, &OldHeader);
519 
520     if (UNLIKELY(OldHeader.State != Chunk::State::Allocated))
521       reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
522 
523     // Pointer has to be allocated with a malloc-type function. Some
524     // applications think that it is OK to realloc a memalign'ed pointer, which
525     // will trigger this check. It really isn't.
526     if (Options.DeallocTypeMismatch) {
527       if (UNLIKELY(OldHeader.Origin != Chunk::Origin::Malloc))
528         reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
529                                   OldHeader.Origin, Chunk::Origin::Malloc);
530     }
531 
532     void *BlockBegin = getBlockBegin(OldPtr, &OldHeader);
533     uptr BlockEnd;
534     uptr OldSize;
535     const uptr ClassId = OldHeader.ClassId;
536     if (LIKELY(ClassId)) {
537       BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
538                  SizeClassMap::getSizeByClassId(ClassId);
539       OldSize = OldHeader.SizeOrUnusedBytes;
540     } else {
541       BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
542       OldSize = BlockEnd -
543                 (reinterpret_cast<uptr>(OldPtr) + OldHeader.SizeOrUnusedBytes);
544     }
545     // If the new chunk still fits in the previously allocated block (with a
546     // reasonable delta), we just keep the old block, and update the chunk
547     // header to reflect the size change.
548     if (reinterpret_cast<uptr>(OldPtr) + NewSize <= BlockEnd) {
549       if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
550         Chunk::UnpackedHeader NewHeader = OldHeader;
551         NewHeader.SizeOrUnusedBytes =
552             (ClassId ? NewSize
553                      : BlockEnd - (reinterpret_cast<uptr>(OldPtr) + NewSize)) &
554             Chunk::SizeOrUnusedBytesMask;
555         Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader);
556         if (UNLIKELY(ClassId && useMemoryTagging())) {
557           resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
558                             reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
559                             BlockEnd);
560           storeAllocationStackMaybe(OldPtr);
561         }
562         return OldTaggedPtr;
563       }
564     }
565 
566     // Otherwise we allocate a new one, and deallocate the old one. Some
567     // allocators will allocate an even larger chunk (by a fixed factor) to
568     // allow for potential further in-place realloc. The gains of such a trick
569     // are currently unclear.
570     void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
571     if (NewPtr) {
572       const uptr OldSize = getSize(OldPtr, &OldHeader);
573       memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
574       quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
575     }
576     return NewPtr;
577   }
578 
579   // TODO(kostyak): disable() is currently best-effort. There are some small
580   //                windows of time when an allocation could still succeed after
581   //                this function finishes. We will revisit that later.
582   void disable() {
583     initThreadMaybe();
584 #ifdef GWP_ASAN_HOOKS
585     GuardedAlloc.disable();
586 #endif
587     TSDRegistry.disable();
588     Stats.disable();
589     Quarantine.disable();
590     Primary.disable();
591     Secondary.disable();
592   }
593 
594   void enable() {
595     initThreadMaybe();
596     Secondary.enable();
597     Primary.enable();
598     Quarantine.enable();
599     Stats.enable();
600     TSDRegistry.enable();
601 #ifdef GWP_ASAN_HOOKS
602     GuardedAlloc.enable();
603 #endif
604   }
605 
606   // The function returns the amount of bytes required to store the statistics,
607   // which might be larger than the amount of bytes provided. Note that the
608   // statistics buffer is not necessarily constant between calls to this
609   // function. This can be called with a null buffer or zero size for buffer
610   // sizing purposes.
611   uptr getStats(char *Buffer, uptr Size) {
612     ScopedString Str(1024);
613     disable();
614     const uptr Length = getStats(&Str) + 1;
615     enable();
616     if (Length < Size)
617       Size = Length;
618     if (Buffer && Size) {
619       memcpy(Buffer, Str.data(), Size);
620       Buffer[Size - 1] = '\0';
621     }
622     return Length;
623   }
624 
625   void printStats() {
626     ScopedString Str(1024);
627     disable();
628     getStats(&Str);
629     enable();
630     Str.output();
631   }
632 
633   void releaseToOS() {
634     initThreadMaybe();
635     Primary.releaseToOS();
636     Secondary.releaseToOS();
637   }
638 
639   // Iterate over all chunks and call a callback for all busy chunks located
640   // within the provided memory range. Said callback must not use this allocator
641   // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
642   void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
643                          void *Arg) {
644     initThreadMaybe();
645     const uptr From = Base;
646     const uptr To = Base + Size;
647     auto Lambda = [this, From, To, Callback, Arg](uptr Block) {
648       if (Block < From || Block >= To)
649         return;
650       uptr Chunk;
651       Chunk::UnpackedHeader Header;
652       if (getChunkFromBlock(Block, &Chunk, &Header) &&
653           Header.State == Chunk::State::Allocated) {
654         uptr TaggedChunk = Chunk;
655         if (useMemoryTagging())
656           TaggedChunk = loadTag(Chunk);
657         Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
658                  Arg);
659       }
660     };
661     Primary.iterateOverBlocks(Lambda);
662     Secondary.iterateOverBlocks(Lambda);
663 #ifdef GWP_ASAN_HOOKS
664     GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
665 #endif
666   }
667 
668   bool canReturnNull() {
669     initThreadMaybe();
670     return Options.MayReturnNull;
671   }
672 
673   bool setOption(Option O, sptr Value) {
674     if (O == Option::ReleaseInterval) {
675       Primary.setReleaseToOsIntervalMs(static_cast<s32>(Value));
676       Secondary.setReleaseToOsIntervalMs(static_cast<s32>(Value));
677       return true;
678     }
679     return false;
680   }
681 
682   // Return the usable size for a given chunk. Technically we lie, as we just
683   // report the actual size of a chunk. This is done to counteract code actively
684   // writing past the end of a chunk (like sqlite3) when the usable size allows
685   // for it, which then forces realloc to copy the usable size of a chunk as
686   // opposed to its actual size.
687   uptr getUsableSize(const void *Ptr) {
688     initThreadMaybe();
689     if (UNLIKELY(!Ptr))
690       return 0;
691 
692 #ifdef GWP_ASAN_HOOKS
693     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
694       return GuardedAlloc.getSize(Ptr);
695 #endif // GWP_ASAN_HOOKS
696 
697     Ptr = untagPointerMaybe(const_cast<void *>(Ptr));
698     Chunk::UnpackedHeader Header;
699     Chunk::loadHeader(Cookie, Ptr, &Header);
700     // Getting the usable size of a chunk only makes sense if it's allocated.
701     if (UNLIKELY(Header.State != Chunk::State::Allocated))
702       reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
703     return getSize(Ptr, &Header);
704   }
705 
706   void getStats(StatCounters S) {
707     initThreadMaybe();
708     Stats.get(S);
709   }
710 
711   // Returns true if the pointer provided was allocated by the current
712   // allocator instance, which is compliant with tcmalloc's ownership concept.
713   // A corrupted chunk will not be reported as owned, which is WAI.
714   bool isOwned(const void *Ptr) {
715     initThreadMaybe();
716 #ifdef GWP_ASAN_HOOKS
717     if (GuardedAlloc.pointerIsMine(Ptr))
718       return true;
719 #endif // GWP_ASAN_HOOKS
720     if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
721       return false;
722     Ptr = untagPointerMaybe(const_cast<void *>(Ptr));
723     Chunk::UnpackedHeader Header;
724     return Chunk::isValid(Cookie, Ptr, &Header) &&
725            Header.State == Chunk::State::Allocated;
726   }
727 
728   bool useMemoryTagging() { return Primary.useMemoryTagging(); }
729 
730   void disableMemoryTagging() { Primary.disableMemoryTagging(); }
731 
732   void setTrackAllocationStacks(bool Track) {
733     initThreadMaybe();
734     Options.TrackAllocationStacks = Track;
735   }
736 
737   void setFillContents(FillContentsMode FillContents) {
738     initThreadMaybe();
739     Options.FillContents = FillContents;
740   }
741 
742   const char *getStackDepotAddress() const {
743     return reinterpret_cast<const char *>(&Depot);
744   }
745 
746   const char *getRegionInfoArrayAddress() const {
747     return Primary.getRegionInfoArrayAddress();
748   }
749 
750   static uptr getRegionInfoArraySize() {
751     return PrimaryT::getRegionInfoArraySize();
752   }
753 
754   static void getErrorInfo(struct scudo_error_info *ErrorInfo,
755                            uintptr_t FaultAddr, const char *DepotPtr,
756                            const char *RegionInfoPtr, const char *Memory,
757                            const char *MemoryTags, uintptr_t MemoryAddr,
758                            size_t MemorySize) {
759     *ErrorInfo = {};
760     if (!PrimaryT::SupportsMemoryTagging ||
761         MemoryAddr + MemorySize < MemoryAddr)
762       return;
763 
764     uptr UntaggedFaultAddr = untagPointer(FaultAddr);
765     u8 FaultAddrTag = extractTag(FaultAddr);
766     BlockInfo Info =
767         PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);
768 
769     auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
770       if (Addr < MemoryAddr ||
771           Addr + archMemoryTagGranuleSize() < Addr ||
772           Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
773         return false;
774       *Data = &Memory[Addr - MemoryAddr];
775       *Tag = static_cast<u8>(
776           MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
777       return true;
778     };
779 
780     auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
781                          Chunk::UnpackedHeader *Header, const u32 **Data,
782                          u8 *Tag) {
783       const char *BlockBegin;
784       u8 BlockBeginTag;
785       if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
786         return false;
787       uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
788       *ChunkAddr = Addr + ChunkOffset;
789 
790       const char *ChunkBegin;
791       if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
792         return false;
793       *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
794           ChunkBegin - Chunk::getHeaderSize());
795       *Data = reinterpret_cast<const u32 *>(ChunkBegin);
796       return true;
797     };
798 
799     auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr);
800 
801     auto MaybeCollectTrace = [&](uintptr_t(&Trace)[MaxTraceSize], u32 Hash) {
802       uptr RingPos, Size;
803       if (!Depot->find(Hash, &RingPos, &Size))
804         return;
805       for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
806         Trace[I] = (*Depot)[RingPos + I];
807     };
808 
809     size_t NextErrorReport = 0;
810 
811     // First, check for UAF.
812     {
813       uptr ChunkAddr;
814       Chunk::UnpackedHeader Header;
815       const u32 *Data;
816       uint8_t Tag;
817       if (ReadBlock(Info.BlockBegin, &ChunkAddr, &Header, &Data, &Tag) &&
818           Header.State != Chunk::State::Allocated &&
819           Data[MemTagPrevTagIndex] == FaultAddrTag) {
820         auto *R = &ErrorInfo->reports[NextErrorReport++];
821         R->error_type = USE_AFTER_FREE;
822         R->allocation_address = ChunkAddr;
823         R->allocation_size = Header.SizeOrUnusedBytes;
824         MaybeCollectTrace(R->allocation_trace,
825                           Data[MemTagAllocationTraceIndex]);
826         R->allocation_tid = Data[MemTagAllocationTidIndex];
827         MaybeCollectTrace(R->deallocation_trace,
828                           Data[MemTagDeallocationTraceIndex]);
829         R->deallocation_tid = Data[MemTagDeallocationTidIndex];
830       }
831     }
832 
833     auto CheckOOB = [&](uptr BlockAddr) {
834       if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
835         return false;
836 
837       uptr ChunkAddr;
838       Chunk::UnpackedHeader Header;
839       const u32 *Data;
840       uint8_t Tag;
841       if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
842           Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
843         return false;
844 
845       auto *R = &ErrorInfo->reports[NextErrorReport++];
846       R->error_type =
847           UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
848       R->allocation_address = ChunkAddr;
849       R->allocation_size = Header.SizeOrUnusedBytes;
850       MaybeCollectTrace(R->allocation_trace, Data[MemTagAllocationTraceIndex]);
851       R->allocation_tid = Data[MemTagAllocationTidIndex];
852       return NextErrorReport ==
853              sizeof(ErrorInfo->reports) / sizeof(ErrorInfo->reports[0]);
854     };
855 
856     if (CheckOOB(Info.BlockBegin))
857       return;
858 
859     // Check for OOB in the 30 surrounding blocks. Beyond that we are likely to
860     // hit false positives.
861     for (int I = 1; I != 16; ++I)
862       if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
863           CheckOOB(Info.BlockBegin - I * Info.BlockSize))
864         return;
865   }
866 
867 private:
868   using SecondaryT = typename Params::Secondary;
869   typedef typename PrimaryT::SizeClassMap SizeClassMap;
870 
871   static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
872   static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
873   static const uptr MinAlignment = 1UL << MinAlignmentLog;
874   static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
875   static const uptr MaxAllowedMallocSize =
876       FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
877 
878   static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
879                 "Minimal alignment must at least cover a chunk header.");
880   static_assert(!PrimaryT::SupportsMemoryTagging ||
881                     MinAlignment >= archMemoryTagGranuleSize(),
882                 "");
883 
884   static const u32 BlockMarker = 0x44554353U;
885 
886   // These are indexes into an "array" of 32-bit values that store information
887   // inline with a chunk that is relevant to diagnosing memory tag faults, where
888   // 0 corresponds to the address of the user memory. This means that negative
889   // indexes may be used to store information about allocations, while positive
890   // indexes may only be used to store information about deallocations, because
891   // the user memory is in use until it has been deallocated. The smallest index
892   // that may be used is -2, which corresponds to 8 bytes before the user
893   // memory, because the chunk header size is 8 bytes and in allocators that
894   // support memory tagging the minimum alignment is at least the tag granule
895   // size (16 on aarch64), and the largest index that may be used is 3 because
896   // we are only guaranteed to have at least a granule's worth of space in the
897   // user memory.
898   static const sptr MemTagAllocationTraceIndex = -2;
899   static const sptr MemTagAllocationTidIndex = -1;
900   static const sptr MemTagDeallocationTraceIndex = 0;
901   static const sptr MemTagDeallocationTidIndex = 1;
902   static const sptr MemTagPrevTagIndex = 2;
903 
904   static const uptr MaxTraceSize = 64;
905 
906   GlobalStats Stats;
907   TSDRegistryT TSDRegistry;
908   PrimaryT Primary;
909   SecondaryT Secondary;
910   QuarantineT Quarantine;
911 
912   u32 Cookie;
913 
914   struct {
915     u8 MayReturnNull : 1;       // may_return_null
916     FillContentsMode FillContents : 2; // zero_contents, pattern_fill_contents
917     u8 DeallocTypeMismatch : 1; // dealloc_type_mismatch
918     u8 DeleteSizeMismatch : 1;  // delete_size_mismatch
919     u8 TrackAllocationStacks : 1;
920     u32 QuarantineMaxChunkSize; // quarantine_max_chunk_size
921   } Options;
922 
923 #ifdef GWP_ASAN_HOOKS
924   gwp_asan::GuardedPoolAllocator GuardedAlloc;
925 #endif // GWP_ASAN_HOOKS
926 
927   StackDepot Depot;
928 
929   // The following might get optimized out by the compiler.
930   NOINLINE void performSanityChecks() {
931     // Verify that the header offset field can hold the maximum offset. In the
932     // case of the Secondary allocator, it takes care of alignment and the
933     // offset will always be small. In the case of the Primary, the worst case
934     // scenario happens in the last size class, when the backend allocation
935     // would already be aligned on the requested alignment, which would happen
936     // to be the maximum alignment that would fit in that size class. As a
937     // result, the maximum offset will be at most the maximum alignment for the
938     // last size class minus the header size, in multiples of MinAlignment.
939     Chunk::UnpackedHeader Header = {};
940     const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
941                                          SizeClassMap::MaxSize - MinAlignment);
942     const uptr MaxOffset =
943         (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
944     Header.Offset = MaxOffset & Chunk::OffsetMask;
945     if (UNLIKELY(Header.Offset != MaxOffset))
946       reportSanityCheckError("offset");
947 
948     // Verify that we can fit the maximum size or amount of unused bytes in the
949     // header. Given that the Secondary fits the allocation to a page, the worst
950     // case scenario happens in the Primary. It will depend on the second to
951     // last and last class sizes, as well as the dynamic base for the Primary.
952     // The following is an over-approximation that works for our needs.
953     const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
954     Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
955     if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
956       reportSanityCheckError("size (or unused bytes)");
957 
958     const uptr LargestClassId = SizeClassMap::LargestClassId;
959     Header.ClassId = LargestClassId;
960     if (UNLIKELY(Header.ClassId != LargestClassId))
961       reportSanityCheckError("class ID");
962   }
963 
964   static inline void *getBlockBegin(const void *Ptr,
965                                     Chunk::UnpackedHeader *Header) {
966     return reinterpret_cast<void *>(
967         reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
968         (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
969   }
970 
971   // Return the size of a chunk as requested during its allocation.
972   inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
973     const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
974     if (LIKELY(Header->ClassId))
975       return SizeOrUnusedBytes;
976     return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
977            reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
978   }
979 
980   ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
981     TSDRegistry.initThreadMaybe(this, MinimalInit);
982   }
983 
984   void quarantineOrDeallocateChunk(void *Ptr, Chunk::UnpackedHeader *Header,
985                                    uptr Size) {
986     Chunk::UnpackedHeader NewHeader = *Header;
987     if (UNLIKELY(NewHeader.ClassId && useMemoryTagging())) {
988       u8 PrevTag = extractTag(loadTag(reinterpret_cast<uptr>(Ptr)));
989       uptr TaggedBegin, TaggedEnd;
990       // Exclude the previous tag so that immediate use after free is detected
991       // 100% of the time.
992       setRandomTag(Ptr, Size, 1UL << PrevTag, &TaggedBegin, &TaggedEnd);
993       storeDeallocationStackMaybe(Ptr, PrevTag);
994     }
995     // If the quarantine is disabled, the actual size of a chunk is 0 or larger
996     // than the maximum allowed, we return a chunk directly to the backend.
997     // Logical Or can be short-circuited, which introduces unnecessary
998     // conditional jumps, so use bitwise Or and let the compiler be clever.
999     const bool BypassQuarantine = !Quarantine.getCacheSize() | !Size |
1000                                   (Size > Options.QuarantineMaxChunkSize);
1001     if (BypassQuarantine) {
1002       NewHeader.State = Chunk::State::Available;
1003       Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
1004       void *BlockBegin = getBlockBegin(Ptr, &NewHeader);
1005       const uptr ClassId = NewHeader.ClassId;
1006       if (LIKELY(ClassId)) {
1007         bool UnlockRequired;
1008         auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1009         TSD->Cache.deallocate(ClassId, BlockBegin);
1010         if (UnlockRequired)
1011           TSD->unlock();
1012       } else {
1013         Secondary.deallocate(BlockBegin);
1014       }
1015     } else {
1016       NewHeader.State = Chunk::State::Quarantined;
1017       Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
1018       bool UnlockRequired;
1019       auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1020       Quarantine.put(&TSD->QuarantineCache,
1021                      QuarantineCallback(*this, TSD->Cache), Ptr, Size);
1022       if (UnlockRequired)
1023         TSD->unlock();
1024     }
1025   }
1026 
1027   bool getChunkFromBlock(uptr Block, uptr *Chunk,
1028                          Chunk::UnpackedHeader *Header) {
1029     *Chunk =
1030         Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
1031     return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
1032   }
1033 
1034   static uptr getChunkOffsetFromBlock(const char *Block) {
1035     u32 Offset = 0;
1036     if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
1037       Offset = reinterpret_cast<const u32 *>(Block)[1];
1038     return Offset + Chunk::getHeaderSize();
1039   }
1040 
1041   void storeAllocationStackMaybe(void *Ptr) {
1042     if (!UNLIKELY(Options.TrackAllocationStacks))
1043       return;
1044     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1045     Ptr32[MemTagAllocationTraceIndex] = collectStackTrace();
1046     Ptr32[MemTagAllocationTidIndex] = getThreadID();
1047   }
1048 
1049   void storeDeallocationStackMaybe(void *Ptr, uint8_t PrevTag) {
1050     if (!UNLIKELY(Options.TrackAllocationStacks))
1051       return;
1052 
1053     // Disable tag checks here so that we don't need to worry about zero sized
1054     // allocations.
1055     ScopedDisableMemoryTagChecks x;
1056     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1057     Ptr32[MemTagDeallocationTraceIndex] = collectStackTrace();
1058     Ptr32[MemTagDeallocationTidIndex] = getThreadID();
1059     Ptr32[MemTagPrevTagIndex] = PrevTag;
1060   }
1061 
1062   uptr getStats(ScopedString *Str) {
1063     Primary.getStats(Str);
1064     Secondary.getStats(Str);
1065     Quarantine.getStats(Str);
1066     return Str->length();
1067   }
1068 };
1069 
1070 } // namespace scudo
1071 
1072 #endif // SCUDO_COMBINED_H_
1073