xref: /freebsd/contrib/llvm-project/compiler-rt/lib/scudo/standalone/combined.h (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 //===-- combined.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef SCUDO_COMBINED_H_
10 #define SCUDO_COMBINED_H_
11 
12 #include "chunk.h"
13 #include "common.h"
14 #include "flags.h"
15 #include "flags_parser.h"
16 #include "local_cache.h"
17 #include "memtag.h"
18 #include "options.h"
19 #include "quarantine.h"
20 #include "report.h"
21 #include "rss_limit_checker.h"
22 #include "secondary.h"
23 #include "stack_depot.h"
24 #include "string_utils.h"
25 #include "tsd.h"
26 
27 #include "scudo/interface.h"
28 
29 #ifdef GWP_ASAN_HOOKS
30 #include "gwp_asan/guarded_pool_allocator.h"
31 #include "gwp_asan/optional/backtrace.h"
32 #include "gwp_asan/optional/segv_handler.h"
33 #endif // GWP_ASAN_HOOKS
34 
35 extern "C" inline void EmptyCallback() {}
36 
37 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
38 // This function is not part of the NDK so it does not appear in any public
39 // header files. We only declare/use it when targeting the platform.
40 extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
41                                                      size_t num_entries);
42 #endif
43 
44 namespace scudo {
45 
46 template <class Params, void (*PostInitCallback)(void) = EmptyCallback>
47 class Allocator {
48 public:
49   using PrimaryT = typename Params::Primary;
50   using CacheT = typename PrimaryT::CacheT;
51   typedef Allocator<Params, PostInitCallback> ThisT;
52   typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT;
53 
54   void callPostInitCallback() {
55     pthread_once(&PostInitNonce, PostInitCallback);
56   }
57 
58   struct QuarantineCallback {
59     explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
60         : Allocator(Instance), Cache(LocalCache) {}
61 
62     // Chunk recycling function, returns a quarantined chunk to the backend,
63     // first making sure it hasn't been tampered with.
64     void recycle(void *Ptr) {
65       Chunk::UnpackedHeader Header;
66       Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
67       if (UNLIKELY(Header.State != Chunk::State::Quarantined))
68         reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
69 
70       Chunk::UnpackedHeader NewHeader = Header;
71       NewHeader.State = Chunk::State::Available;
72       Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
73 
74       if (allocatorSupportsMemoryTagging<Params>())
75         Ptr = untagPointer(Ptr);
76       void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader);
77       Cache.deallocate(NewHeader.ClassId, BlockBegin);
78     }
79 
80     // We take a shortcut when allocating a quarantine batch by working with the
81     // appropriate class ID instead of using Size. The compiler should optimize
82     // the class ID computation and work with the associated cache directly.
83     void *allocate(UNUSED uptr Size) {
84       const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
85           sizeof(QuarantineBatch) + Chunk::getHeaderSize());
86       void *Ptr = Cache.allocate(QuarantineClassId);
87       // Quarantine batch allocation failure is fatal.
88       if (UNLIKELY(!Ptr))
89         reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
90 
91       Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
92                                      Chunk::getHeaderSize());
93       Chunk::UnpackedHeader Header = {};
94       Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
95       Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
96       Header.State = Chunk::State::Allocated;
97       Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
98 
99       // Reset tag to 0 as this chunk may have been previously used for a tagged
100       // user allocation.
101       if (UNLIKELY(useMemoryTagging<Params>(Allocator.Primary.Options.load())))
102         storeTags(reinterpret_cast<uptr>(Ptr),
103                   reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch));
104 
105       return Ptr;
106     }
107 
108     void deallocate(void *Ptr) {
109       const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
110           sizeof(QuarantineBatch) + Chunk::getHeaderSize());
111       Chunk::UnpackedHeader Header;
112       Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
113 
114       if (UNLIKELY(Header.State != Chunk::State::Allocated))
115         reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
116       DCHECK_EQ(Header.ClassId, QuarantineClassId);
117       DCHECK_EQ(Header.Offset, 0);
118       DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
119 
120       Chunk::UnpackedHeader NewHeader = Header;
121       NewHeader.State = Chunk::State::Available;
122       Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
123       Cache.deallocate(QuarantineClassId,
124                        reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
125                                                 Chunk::getHeaderSize()));
126     }
127 
128   private:
129     ThisT &Allocator;
130     CacheT &Cache;
131   };
132 
133   typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
134   typedef typename QuarantineT::CacheT QuarantineCacheT;
135 
136   void init() {
137     performSanityChecks();
138 
139     // Check if hardware CRC32 is supported in the binary and by the platform,
140     // if so, opt for the CRC32 hardware version of the checksum.
141     if (&computeHardwareCRC32 && hasHardwareCRC32())
142       HashAlgorithm = Checksum::HardwareCRC32;
143 
144     if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
145       Cookie = static_cast<u32>(getMonotonicTime() ^
146                                 (reinterpret_cast<uptr>(this) >> 4));
147 
148     initFlags();
149     reportUnrecognizedFlags();
150 
151     RssChecker.init(scudo::getFlags()->soft_rss_limit_mb,
152                     scudo::getFlags()->hard_rss_limit_mb);
153 
154     // Store some flags locally.
155     if (getFlags()->may_return_null)
156       Primary.Options.set(OptionBit::MayReturnNull);
157     if (getFlags()->zero_contents)
158       Primary.Options.setFillContentsMode(ZeroFill);
159     else if (getFlags()->pattern_fill_contents)
160       Primary.Options.setFillContentsMode(PatternOrZeroFill);
161     if (getFlags()->dealloc_type_mismatch)
162       Primary.Options.set(OptionBit::DeallocTypeMismatch);
163     if (getFlags()->delete_size_mismatch)
164       Primary.Options.set(OptionBit::DeleteSizeMismatch);
165     if (allocatorSupportsMemoryTagging<Params>() &&
166         systemSupportsMemoryTagging())
167       Primary.Options.set(OptionBit::UseMemoryTagging);
168     Primary.Options.set(OptionBit::UseOddEvenTags);
169 
170     QuarantineMaxChunkSize =
171         static_cast<u32>(getFlags()->quarantine_max_chunk_size);
172 
173     Stats.init();
174     const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
175     Primary.init(ReleaseToOsIntervalMs);
176     Secondary.init(&Stats, ReleaseToOsIntervalMs);
177     Quarantine.init(
178         static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
179         static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
180 
181     initRingBuffer();
182   }
183 
184   // Initialize the embedded GWP-ASan instance. Requires the main allocator to
185   // be functional, best called from PostInitCallback.
186   void initGwpAsan() {
187 #ifdef GWP_ASAN_HOOKS
188     gwp_asan::options::Options Opt;
189     Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
190     Opt.MaxSimultaneousAllocations =
191         getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
192     Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
193     Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
194     Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable;
195     // Embedded GWP-ASan is locked through the Scudo atfork handler (via
196     // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
197     // handler.
198     Opt.InstallForkHandlers = false;
199     Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction();
200     GuardedAlloc.init(Opt);
201 
202     if (Opt.InstallSignalHandlers)
203       gwp_asan::segv_handler::installSignalHandlers(
204           &GuardedAlloc, Printf,
205           gwp_asan::backtrace::getPrintBacktraceFunction(),
206           gwp_asan::backtrace::getSegvBacktraceFunction(),
207           Opt.Recoverable);
208 
209     GuardedAllocSlotSize =
210         GuardedAlloc.getAllocatorState()->maximumAllocationSize();
211     Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) *
212                             GuardedAllocSlotSize);
213 #endif // GWP_ASAN_HOOKS
214   }
215 
216 #ifdef GWP_ASAN_HOOKS
217   const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() {
218     return GuardedAlloc.getMetadataRegion();
219   }
220 
221   const gwp_asan::AllocatorState *getGwpAsanAllocatorState() {
222     return GuardedAlloc.getAllocatorState();
223   }
224 #endif // GWP_ASAN_HOOKS
225 
226   ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
227     TSDRegistry.initThreadMaybe(this, MinimalInit);
228   }
229 
230   void unmapTestOnly() {
231     TSDRegistry.unmapTestOnly(this);
232     Primary.unmapTestOnly();
233     Secondary.unmapTestOnly();
234 #ifdef GWP_ASAN_HOOKS
235     if (getFlags()->GWP_ASAN_InstallSignalHandlers)
236       gwp_asan::segv_handler::uninstallSignalHandlers();
237     GuardedAlloc.uninitTestOnly();
238 #endif // GWP_ASAN_HOOKS
239   }
240 
241   TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
242 
243   // The Cache must be provided zero-initialized.
244   void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); }
245 
246   // Release the resources used by a TSD, which involves:
247   // - draining the local quarantine cache to the global quarantine;
248   // - releasing the cached pointers back to the Primary;
249   // - unlinking the local stats from the global ones (destroying the cache does
250   //   the last two items).
251   void commitBack(TSD<ThisT> *TSD) {
252     Quarantine.drain(&TSD->QuarantineCache,
253                      QuarantineCallback(*this, TSD->Cache));
254     TSD->Cache.destroy(&Stats);
255   }
256 
257   ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) {
258     if (!allocatorSupportsMemoryTagging<Params>())
259       return Ptr;
260     auto UntaggedPtr = untagPointer(Ptr);
261     if (UntaggedPtr != Ptr)
262       return UntaggedPtr;
263     // Secondary, or pointer allocated while memory tagging is unsupported or
264     // disabled. The tag mismatch is okay in the latter case because tags will
265     // not be checked.
266     return addHeaderTag(Ptr);
267   }
268 
269   ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) {
270     if (!allocatorSupportsMemoryTagging<Params>())
271       return Ptr;
272     return addFixedTag(Ptr, 2);
273   }
274 
275   ALWAYS_INLINE void *addHeaderTag(void *Ptr) {
276     return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr)));
277   }
278 
279   NOINLINE u32 collectStackTrace() {
280 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
281     // Discard collectStackTrace() frame and allocator function frame.
282     constexpr uptr DiscardFrames = 2;
283     uptr Stack[MaxTraceSize + DiscardFrames];
284     uptr Size =
285         android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
286     Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
287     return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
288 #else
289     return 0;
290 #endif
291   }
292 
293   uptr computeOddEvenMaskForPointerMaybe(Options Options, uptr Ptr,
294                                          uptr ClassId) {
295     if (!Options.get(OptionBit::UseOddEvenTags))
296       return 0;
297 
298     // If a chunk's tag is odd, we want the tags of the surrounding blocks to be
299     // even, and vice versa. Blocks are laid out Size bytes apart, and adding
300     // Size to Ptr will flip the least significant set bit of Size in Ptr, so
301     // that bit will have the pattern 010101... for consecutive blocks, which we
302     // can use to determine which tag mask to use.
303     return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1);
304   }
305 
306   NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
307                           uptr Alignment = MinAlignment,
308                           bool ZeroContents = false) {
309     initThreadMaybe();
310 
311     const Options Options = Primary.Options.load();
312     if (UNLIKELY(Alignment > MaxAlignment)) {
313       if (Options.get(OptionBit::MayReturnNull))
314         return nullptr;
315       reportAlignmentTooBig(Alignment, MaxAlignment);
316     }
317     if (Alignment < MinAlignment)
318       Alignment = MinAlignment;
319 
320 #ifdef GWP_ASAN_HOOKS
321     if (UNLIKELY(GuardedAlloc.shouldSample())) {
322       if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) {
323         if (UNLIKELY(&__scudo_allocate_hook))
324           __scudo_allocate_hook(Ptr, Size);
325         Stats.lock();
326         Stats.add(StatAllocated, GuardedAllocSlotSize);
327         Stats.sub(StatFree, GuardedAllocSlotSize);
328         Stats.unlock();
329         return Ptr;
330       }
331     }
332 #endif // GWP_ASAN_HOOKS
333 
334     const FillContentsMode FillContents = ZeroContents ? ZeroFill
335                                           : TSDRegistry.getDisableMemInit()
336                                               ? NoFill
337                                               : Options.getFillContentsMode();
338 
339     // If the requested size happens to be 0 (more common than you might think),
340     // allocate MinAlignment bytes on top of the header. Then add the extra
341     // bytes required to fulfill the alignment requirements: we allocate enough
342     // to be sure that there will be an address in the block that will satisfy
343     // the alignment.
344     const uptr NeededSize =
345         roundUpTo(Size, MinAlignment) +
346         ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());
347 
348     // Takes care of extravagantly large sizes as well as integer overflows.
349     static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
350     if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
351       if (Options.get(OptionBit::MayReturnNull))
352         return nullptr;
353       reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
354     }
355     DCHECK_LE(Size, NeededSize);
356 
357     switch (RssChecker.getRssLimitExceeded()) {
358     case RssLimitChecker::Neither:
359       break;
360     case RssLimitChecker::Soft:
361       if (Options.get(OptionBit::MayReturnNull))
362         return nullptr;
363       reportSoftRSSLimit(RssChecker.getSoftRssLimit());
364       break;
365     case RssLimitChecker::Hard:
366       reportHardRSSLimit(RssChecker.getHardRssLimit());
367       break;
368     }
369 
370     void *Block = nullptr;
371     uptr ClassId = 0;
372     uptr SecondaryBlockEnd = 0;
373     if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
374       ClassId = SizeClassMap::getClassIdBySize(NeededSize);
375       DCHECK_NE(ClassId, 0U);
376       bool UnlockRequired;
377       auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
378       Block = TSD->Cache.allocate(ClassId);
379       // If the allocation failed, the most likely reason with a 32-bit primary
380       // is the region being full. In that event, retry in each successively
381       // larger class until it fits. If it fails to fit in the largest class,
382       // fallback to the Secondary.
383       if (UNLIKELY(!Block)) {
384         while (ClassId < SizeClassMap::LargestClassId && !Block)
385           Block = TSD->Cache.allocate(++ClassId);
386         if (!Block)
387           ClassId = 0;
388       }
389       if (UnlockRequired)
390         TSD->unlock();
391     }
392     if (UNLIKELY(ClassId == 0))
393       Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd,
394                                  FillContents);
395 
396     if (UNLIKELY(!Block)) {
397       if (Options.get(OptionBit::MayReturnNull))
398         return nullptr;
399       reportOutOfMemory(NeededSize);
400     }
401 
402     const uptr BlockUptr = reinterpret_cast<uptr>(Block);
403     const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize();
404     const uptr UserPtr = roundUpTo(UnalignedUserPtr, Alignment);
405 
406     void *Ptr = reinterpret_cast<void *>(UserPtr);
407     void *TaggedPtr = Ptr;
408     if (LIKELY(ClassId)) {
409       // We only need to zero or tag the contents for Primary backed
410       // allocations. We only set tags for primary allocations in order to avoid
411       // faulting potentially large numbers of pages for large secondary
412       // allocations. We assume that guard pages are enough to protect these
413       // allocations.
414       //
415       // FIXME: When the kernel provides a way to set the background tag of a
416       // mapping, we should be able to tag secondary allocations as well.
417       //
418       // When memory tagging is enabled, zeroing the contents is done as part of
419       // setting the tag.
420       if (UNLIKELY(useMemoryTagging<Params>(Options))) {
421         uptr PrevUserPtr;
422         Chunk::UnpackedHeader Header;
423         const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId);
424         const uptr BlockEnd = BlockUptr + BlockSize;
425         // If possible, try to reuse the UAF tag that was set by deallocate().
426         // For simplicity, only reuse tags if we have the same start address as
427         // the previous allocation. This handles the majority of cases since
428         // most allocations will not be more aligned than the minimum alignment.
429         //
430         // We need to handle situations involving reclaimed chunks, and retag
431         // the reclaimed portions if necessary. In the case where the chunk is
432         // fully reclaimed, the chunk's header will be zero, which will trigger
433         // the code path for new mappings and invalid chunks that prepares the
434         // chunk from scratch. There are three possibilities for partial
435         // reclaiming:
436         //
437         // (1) Header was reclaimed, data was partially reclaimed.
438         // (2) Header was not reclaimed, all data was reclaimed (e.g. because
439         //     data started on a page boundary).
440         // (3) Header was not reclaimed, data was partially reclaimed.
441         //
442         // Case (1) will be handled in the same way as for full reclaiming,
443         // since the header will be zero.
444         //
445         // We can detect case (2) by loading the tag from the start
446         // of the chunk. If it is zero, it means that either all data was
447         // reclaimed (since we never use zero as the chunk tag), or that the
448         // previous allocation was of size zero. Either way, we need to prepare
449         // a new chunk from scratch.
450         //
451         // We can detect case (3) by moving to the next page (if covered by the
452         // chunk) and loading the tag of its first granule. If it is zero, it
453         // means that all following pages may need to be retagged. On the other
454         // hand, if it is nonzero, we can assume that all following pages are
455         // still tagged, according to the logic that if any of the pages
456         // following the next page were reclaimed, the next page would have been
457         // reclaimed as well.
458         uptr TaggedUserPtr;
459         if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
460             PrevUserPtr == UserPtr &&
461             (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
462           uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
463           const uptr NextPage = roundUpTo(TaggedUserPtr, getPageSizeCached());
464           if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
465             PrevEnd = NextPage;
466           TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
467           resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd);
468           if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) {
469             // If an allocation needs to be zeroed (i.e. calloc) we can normally
470             // avoid zeroing the memory now since we can rely on memory having
471             // been zeroed on free, as this is normally done while setting the
472             // UAF tag. But if tagging was disabled per-thread when the memory
473             // was freed, it would not have been retagged and thus zeroed, and
474             // therefore it needs to be zeroed now.
475             memset(TaggedPtr, 0,
476                    Min(Size, roundUpTo(PrevEnd - TaggedUserPtr,
477                                        archMemoryTagGranuleSize())));
478           } else if (Size) {
479             // Clear any stack metadata that may have previously been stored in
480             // the chunk data.
481             memset(TaggedPtr, 0, archMemoryTagGranuleSize());
482           }
483         } else {
484           const uptr OddEvenMask =
485               computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId);
486           TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd);
487         }
488         storePrimaryAllocationStackMaybe(Options, Ptr);
489       } else {
490         Block = addHeaderTag(Block);
491         Ptr = addHeaderTag(Ptr);
492         if (UNLIKELY(FillContents != NoFill)) {
493           // This condition is not necessarily unlikely, but since memset is
494           // costly, we might as well mark it as such.
495           memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
496                  PrimaryT::getSizeByClassId(ClassId));
497         }
498       }
499     } else {
500       Block = addHeaderTag(Block);
501       Ptr = addHeaderTag(Ptr);
502       if (UNLIKELY(useMemoryTagging<Params>(Options))) {
503         storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr));
504         storeSecondaryAllocationStackMaybe(Options, Ptr, Size);
505       }
506     }
507 
508     Chunk::UnpackedHeader Header = {};
509     if (UNLIKELY(UnalignedUserPtr != UserPtr)) {
510       const uptr Offset = UserPtr - UnalignedUserPtr;
511       DCHECK_GE(Offset, 2 * sizeof(u32));
512       // The BlockMarker has no security purpose, but is specifically meant for
513       // the chunk iteration function that can be used in debugging situations.
514       // It is the only situation where we have to locate the start of a chunk
515       // based on its block address.
516       reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
517       reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
518       Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
519     }
520     Header.ClassId = ClassId & Chunk::ClassIdMask;
521     Header.State = Chunk::State::Allocated;
522     Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
523     Header.SizeOrUnusedBytes =
524         (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) &
525         Chunk::SizeOrUnusedBytesMask;
526     Chunk::storeHeader(Cookie, Ptr, &Header);
527 
528     if (UNLIKELY(&__scudo_allocate_hook))
529       __scudo_allocate_hook(TaggedPtr, Size);
530 
531     return TaggedPtr;
532   }
533 
534   NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
535                            UNUSED uptr Alignment = MinAlignment) {
536     // For a deallocation, we only ensure minimal initialization, meaning thread
537     // local data will be left uninitialized for now (when using ELF TLS). The
538     // fallback cache will be used instead. This is a workaround for a situation
539     // where the only heap operation performed in a thread would be a free past
540     // the TLS destructors, ending up in initialized thread specific data never
541     // being destroyed properly. Any other heap operation will do a full init.
542     initThreadMaybe(/*MinimalInit=*/true);
543 
544     if (UNLIKELY(&__scudo_deallocate_hook))
545       __scudo_deallocate_hook(Ptr);
546 
547     if (UNLIKELY(!Ptr))
548       return;
549 
550 #ifdef GWP_ASAN_HOOKS
551     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
552       GuardedAlloc.deallocate(Ptr);
553       Stats.lock();
554       Stats.add(StatFree, GuardedAllocSlotSize);
555       Stats.sub(StatAllocated, GuardedAllocSlotSize);
556       Stats.unlock();
557       return;
558     }
559 #endif // GWP_ASAN_HOOKS
560 
561     if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
562       reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
563 
564     void *TaggedPtr = Ptr;
565     Ptr = getHeaderTaggedPointer(Ptr);
566 
567     Chunk::UnpackedHeader Header;
568     Chunk::loadHeader(Cookie, Ptr, &Header);
569 
570     if (UNLIKELY(Header.State != Chunk::State::Allocated))
571       reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
572 
573     const Options Options = Primary.Options.load();
574     if (Options.get(OptionBit::DeallocTypeMismatch)) {
575       if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) {
576         // With the exception of memalign'd chunks, that can be still be free'd.
577         if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign ||
578             Origin != Chunk::Origin::Malloc)
579           reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
580                                     Header.OriginOrWasZeroed, Origin);
581       }
582     }
583 
584     const uptr Size = getSize(Ptr, &Header);
585     if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) {
586       if (UNLIKELY(DeleteSize != Size))
587         reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
588     }
589 
590     quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size);
591   }
592 
593   void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
594     initThreadMaybe();
595 
596     const Options Options = Primary.Options.load();
597     if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
598       if (Options.get(OptionBit::MayReturnNull))
599         return nullptr;
600       reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
601     }
602 
603     // The following cases are handled by the C wrappers.
604     DCHECK_NE(OldPtr, nullptr);
605     DCHECK_NE(NewSize, 0);
606 
607 #ifdef GWP_ASAN_HOOKS
608     if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
609       uptr OldSize = GuardedAlloc.getSize(OldPtr);
610       void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
611       if (NewPtr)
612         memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
613       GuardedAlloc.deallocate(OldPtr);
614       Stats.lock();
615       Stats.add(StatFree, GuardedAllocSlotSize);
616       Stats.sub(StatAllocated, GuardedAllocSlotSize);
617       Stats.unlock();
618       return NewPtr;
619     }
620 #endif // GWP_ASAN_HOOKS
621 
622     void *OldTaggedPtr = OldPtr;
623     OldPtr = getHeaderTaggedPointer(OldPtr);
624 
625     if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
626       reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
627 
628     Chunk::UnpackedHeader OldHeader;
629     Chunk::loadHeader(Cookie, OldPtr, &OldHeader);
630 
631     if (UNLIKELY(OldHeader.State != Chunk::State::Allocated))
632       reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
633 
634     // Pointer has to be allocated with a malloc-type function. Some
635     // applications think that it is OK to realloc a memalign'ed pointer, which
636     // will trigger this check. It really isn't.
637     if (Options.get(OptionBit::DeallocTypeMismatch)) {
638       if (UNLIKELY(OldHeader.OriginOrWasZeroed != Chunk::Origin::Malloc))
639         reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
640                                   OldHeader.OriginOrWasZeroed,
641                                   Chunk::Origin::Malloc);
642     }
643 
644     void *BlockBegin = getBlockBegin(OldTaggedPtr, &OldHeader);
645     uptr BlockEnd;
646     uptr OldSize;
647     const uptr ClassId = OldHeader.ClassId;
648     if (LIKELY(ClassId)) {
649       BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
650                  SizeClassMap::getSizeByClassId(ClassId);
651       OldSize = OldHeader.SizeOrUnusedBytes;
652     } else {
653       BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
654       OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) +
655                             OldHeader.SizeOrUnusedBytes);
656     }
657     // If the new chunk still fits in the previously allocated block (with a
658     // reasonable delta), we just keep the old block, and update the chunk
659     // header to reflect the size change.
660     if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) {
661       if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
662         Chunk::UnpackedHeader NewHeader = OldHeader;
663         NewHeader.SizeOrUnusedBytes =
664             (ClassId ? NewSize
665                      : BlockEnd -
666                            (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) &
667             Chunk::SizeOrUnusedBytesMask;
668         Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader);
669         if (UNLIKELY(useMemoryTagging<Params>(Options))) {
670           if (ClassId) {
671             resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
672                               reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
673                               NewSize, untagPointer(BlockEnd));
674             storePrimaryAllocationStackMaybe(Options, OldPtr);
675           } else {
676             storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize);
677           }
678         }
679         return OldTaggedPtr;
680       }
681     }
682 
683     // Otherwise we allocate a new one, and deallocate the old one. Some
684     // allocators will allocate an even larger chunk (by a fixed factor) to
685     // allow for potential further in-place realloc. The gains of such a trick
686     // are currently unclear.
687     void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
688     if (LIKELY(NewPtr)) {
689       memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
690       quarantineOrDeallocateChunk(Options, OldTaggedPtr, &OldHeader, OldSize);
691     }
692     return NewPtr;
693   }
694 
695   // TODO(kostyak): disable() is currently best-effort. There are some small
696   //                windows of time when an allocation could still succeed after
697   //                this function finishes. We will revisit that later.
698   void disable() {
699     initThreadMaybe();
700 #ifdef GWP_ASAN_HOOKS
701     GuardedAlloc.disable();
702 #endif
703     TSDRegistry.disable();
704     Stats.disable();
705     Quarantine.disable();
706     Primary.disable();
707     Secondary.disable();
708   }
709 
710   void enable() {
711     initThreadMaybe();
712     Secondary.enable();
713     Primary.enable();
714     Quarantine.enable();
715     Stats.enable();
716     TSDRegistry.enable();
717 #ifdef GWP_ASAN_HOOKS
718     GuardedAlloc.enable();
719 #endif
720   }
721 
722   // The function returns the amount of bytes required to store the statistics,
723   // which might be larger than the amount of bytes provided. Note that the
724   // statistics buffer is not necessarily constant between calls to this
725   // function. This can be called with a null buffer or zero size for buffer
726   // sizing purposes.
727   uptr getStats(char *Buffer, uptr Size) {
728     ScopedString Str;
729     disable();
730     const uptr Length = getStats(&Str) + 1;
731     enable();
732     if (Length < Size)
733       Size = Length;
734     if (Buffer && Size) {
735       memcpy(Buffer, Str.data(), Size);
736       Buffer[Size - 1] = '\0';
737     }
738     return Length;
739   }
740 
741   void printStats() {
742     ScopedString Str;
743     disable();
744     getStats(&Str);
745     enable();
746     Str.output();
747   }
748 
749   void releaseToOS() {
750     initThreadMaybe();
751     Primary.releaseToOS();
752     Secondary.releaseToOS();
753   }
754 
755   // Iterate over all chunks and call a callback for all busy chunks located
756   // within the provided memory range. Said callback must not use this allocator
757   // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
758   void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
759                          void *Arg) {
760     initThreadMaybe();
761     if (archSupportsMemoryTagging())
762       Base = untagPointer(Base);
763     const uptr From = Base;
764     const uptr To = Base + Size;
765     bool MayHaveTaggedPrimary = allocatorSupportsMemoryTagging<Params>() &&
766                                 systemSupportsMemoryTagging();
767     auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback,
768                    Arg](uptr Block) {
769       if (Block < From || Block >= To)
770         return;
771       uptr Chunk;
772       Chunk::UnpackedHeader Header;
773       if (MayHaveTaggedPrimary) {
774         // A chunk header can either have a zero tag (tagged primary) or the
775         // header tag (secondary, or untagged primary). We don't know which so
776         // try both.
777         ScopedDisableMemoryTagChecks x;
778         if (!getChunkFromBlock(Block, &Chunk, &Header) &&
779             !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
780           return;
781       } else {
782         if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
783           return;
784       }
785       if (Header.State == Chunk::State::Allocated) {
786         uptr TaggedChunk = Chunk;
787         if (allocatorSupportsMemoryTagging<Params>())
788           TaggedChunk = untagPointer(TaggedChunk);
789         if (useMemoryTagging<Params>(Primary.Options.load()))
790           TaggedChunk = loadTag(Chunk);
791         Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
792                  Arg);
793       }
794     };
795     Primary.iterateOverBlocks(Lambda);
796     Secondary.iterateOverBlocks(Lambda);
797 #ifdef GWP_ASAN_HOOKS
798     GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
799 #endif
800   }
801 
802   bool canReturnNull() {
803     initThreadMaybe();
804     return Primary.Options.load().get(OptionBit::MayReturnNull);
805   }
806 
807   bool setOption(Option O, sptr Value) {
808     initThreadMaybe();
809     if (O == Option::MemtagTuning) {
810       // Enabling odd/even tags involves a tradeoff between use-after-free
811       // detection and buffer overflow detection. Odd/even tags make it more
812       // likely for buffer overflows to be detected by increasing the size of
813       // the guaranteed "red zone" around the allocation, but on the other hand
814       // use-after-free is less likely to be detected because the tag space for
815       // any particular chunk is cut in half. Therefore we use this tuning
816       // setting to control whether odd/even tags are enabled.
817       if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW)
818         Primary.Options.set(OptionBit::UseOddEvenTags);
819       else if (Value == M_MEMTAG_TUNING_UAF)
820         Primary.Options.clear(OptionBit::UseOddEvenTags);
821       return true;
822     } else {
823       // We leave it to the various sub-components to decide whether or not they
824       // want to handle the option, but we do not want to short-circuit
825       // execution if one of the setOption was to return false.
826       const bool PrimaryResult = Primary.setOption(O, Value);
827       const bool SecondaryResult = Secondary.setOption(O, Value);
828       const bool RegistryResult = TSDRegistry.setOption(O, Value);
829       return PrimaryResult && SecondaryResult && RegistryResult;
830     }
831     return false;
832   }
833 
834   // Return the usable size for a given chunk. Technically we lie, as we just
835   // report the actual size of a chunk. This is done to counteract code actively
836   // writing past the end of a chunk (like sqlite3) when the usable size allows
837   // for it, which then forces realloc to copy the usable size of a chunk as
838   // opposed to its actual size.
839   uptr getUsableSize(const void *Ptr) {
840     initThreadMaybe();
841     if (UNLIKELY(!Ptr))
842       return 0;
843 
844 #ifdef GWP_ASAN_HOOKS
845     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
846       return GuardedAlloc.getSize(Ptr);
847 #endif // GWP_ASAN_HOOKS
848 
849     Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
850     Chunk::UnpackedHeader Header;
851     Chunk::loadHeader(Cookie, Ptr, &Header);
852     // Getting the usable size of a chunk only makes sense if it's allocated.
853     if (UNLIKELY(Header.State != Chunk::State::Allocated))
854       reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
855     return getSize(Ptr, &Header);
856   }
857 
858   void getStats(StatCounters S) {
859     initThreadMaybe();
860     Stats.get(S);
861   }
862 
863   // Returns true if the pointer provided was allocated by the current
864   // allocator instance, which is compliant with tcmalloc's ownership concept.
865   // A corrupted chunk will not be reported as owned, which is WAI.
866   bool isOwned(const void *Ptr) {
867     initThreadMaybe();
868 #ifdef GWP_ASAN_HOOKS
869     if (GuardedAlloc.pointerIsMine(Ptr))
870       return true;
871 #endif // GWP_ASAN_HOOKS
872     if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
873       return false;
874     Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
875     Chunk::UnpackedHeader Header;
876     return Chunk::isValid(Cookie, Ptr, &Header) &&
877            Header.State == Chunk::State::Allocated;
878   }
879 
880   void setRssLimitsTestOnly(int SoftRssLimitMb, int HardRssLimitMb,
881                             bool MayReturnNull) {
882     RssChecker.init(SoftRssLimitMb, HardRssLimitMb);
883     if (MayReturnNull)
884       Primary.Options.set(OptionBit::MayReturnNull);
885   }
886 
887   bool useMemoryTaggingTestOnly() const {
888     return useMemoryTagging<Params>(Primary.Options.load());
889   }
890   void disableMemoryTagging() {
891     // If we haven't been initialized yet, we need to initialize now in order to
892     // prevent a future call to initThreadMaybe() from enabling memory tagging
893     // based on feature detection. But don't call initThreadMaybe() because it
894     // may end up calling the allocator (via pthread_atfork, via the post-init
895     // callback), which may cause mappings to be created with memory tagging
896     // enabled.
897     TSDRegistry.initOnceMaybe(this);
898     if (allocatorSupportsMemoryTagging<Params>()) {
899       Secondary.disableMemoryTagging();
900       Primary.Options.clear(OptionBit::UseMemoryTagging);
901     }
902   }
903 
904   void setTrackAllocationStacks(bool Track) {
905     initThreadMaybe();
906     if (getFlags()->allocation_ring_buffer_size == 0) {
907       DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks));
908       return;
909     }
910     if (Track)
911       Primary.Options.set(OptionBit::TrackAllocationStacks);
912     else
913       Primary.Options.clear(OptionBit::TrackAllocationStacks);
914   }
915 
916   void setFillContents(FillContentsMode FillContents) {
917     initThreadMaybe();
918     Primary.Options.setFillContentsMode(FillContents);
919   }
920 
921   void setAddLargeAllocationSlack(bool AddSlack) {
922     initThreadMaybe();
923     if (AddSlack)
924       Primary.Options.set(OptionBit::AddLargeAllocationSlack);
925     else
926       Primary.Options.clear(OptionBit::AddLargeAllocationSlack);
927   }
928 
929   const char *getStackDepotAddress() const {
930     return reinterpret_cast<const char *>(&Depot);
931   }
932 
933   const char *getRegionInfoArrayAddress() const {
934     return Primary.getRegionInfoArrayAddress();
935   }
936 
937   static uptr getRegionInfoArraySize() {
938     return PrimaryT::getRegionInfoArraySize();
939   }
940 
941   const char *getRingBufferAddress() {
942     initThreadMaybe();
943     return RawRingBuffer;
944   }
945 
946   uptr getRingBufferSize() {
947     initThreadMaybe();
948     auto *RingBuffer = getRingBuffer();
949     return RingBuffer ? ringBufferSizeInBytes(RingBuffer->Size) : 0;
950   }
951 
952   static bool setRingBufferSizeForBuffer(char *Buffer, size_t Size) {
953     // Need at least one entry.
954     if (Size < sizeof(AllocationRingBuffer) +
955                    sizeof(typename AllocationRingBuffer::Entry)) {
956       return false;
957     }
958     AllocationRingBuffer *RingBuffer =
959         reinterpret_cast<AllocationRingBuffer *>(Buffer);
960     RingBuffer->Size = (Size - sizeof(AllocationRingBuffer)) /
961                        sizeof(typename AllocationRingBuffer::Entry);
962     return true;
963   }
964 
965   static const uptr MaxTraceSize = 64;
966 
967   static void collectTraceMaybe(const StackDepot *Depot,
968                                 uintptr_t (&Trace)[MaxTraceSize], u32 Hash) {
969     uptr RingPos, Size;
970     if (!Depot->find(Hash, &RingPos, &Size))
971       return;
972     for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
973       Trace[I] = static_cast<uintptr_t>((*Depot)[RingPos + I]);
974   }
975 
976   static void getErrorInfo(struct scudo_error_info *ErrorInfo,
977                            uintptr_t FaultAddr, const char *DepotPtr,
978                            const char *RegionInfoPtr, const char *RingBufferPtr,
979                            const char *Memory, const char *MemoryTags,
980                            uintptr_t MemoryAddr, size_t MemorySize) {
981     *ErrorInfo = {};
982     if (!allocatorSupportsMemoryTagging<Params>() ||
983         MemoryAddr + MemorySize < MemoryAddr)
984       return;
985 
986     auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr);
987     size_t NextErrorReport = 0;
988 
989     // Check for OOB in the current block and the two surrounding blocks. Beyond
990     // that, UAF is more likely.
991     if (extractTag(FaultAddr) != 0)
992       getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
993                          RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
994                          MemorySize, 0, 2);
995 
996     // Check the ring buffer. For primary allocations this will only find UAF;
997     // for secondary allocations we can find either UAF or OOB.
998     getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
999                            RingBufferPtr);
1000 
1001     // Check for OOB in the 28 blocks surrounding the 3 we checked earlier.
1002     // Beyond that we are likely to hit false positives.
1003     if (extractTag(FaultAddr) != 0)
1004       getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
1005                          RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
1006                          MemorySize, 2, 16);
1007   }
1008 
1009 private:
1010   using SecondaryT = MapAllocator<Params>;
1011   typedef typename PrimaryT::SizeClassMap SizeClassMap;
1012 
1013   static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
1014   static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
1015   static const uptr MinAlignment = 1UL << MinAlignmentLog;
1016   static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
1017   static const uptr MaxAllowedMallocSize =
1018       FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
1019 
1020   static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
1021                 "Minimal alignment must at least cover a chunk header.");
1022   static_assert(!allocatorSupportsMemoryTagging<Params>() ||
1023                     MinAlignment >= archMemoryTagGranuleSize(),
1024                 "");
1025 
1026   static const u32 BlockMarker = 0x44554353U;
1027 
1028   // These are indexes into an "array" of 32-bit values that store information
1029   // inline with a chunk that is relevant to diagnosing memory tag faults, where
1030   // 0 corresponds to the address of the user memory. This means that only
1031   // negative indexes may be used. The smallest index that may be used is -2,
1032   // which corresponds to 8 bytes before the user memory, because the chunk
1033   // header size is 8 bytes and in allocators that support memory tagging the
1034   // minimum alignment is at least the tag granule size (16 on aarch64).
1035   static const sptr MemTagAllocationTraceIndex = -2;
1036   static const sptr MemTagAllocationTidIndex = -1;
1037 
1038   u32 Cookie = 0;
1039   u32 QuarantineMaxChunkSize = 0;
1040 
1041   GlobalStats Stats;
1042   PrimaryT Primary;
1043   SecondaryT Secondary;
1044   QuarantineT Quarantine;
1045   TSDRegistryT TSDRegistry;
1046   pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT;
1047   RssLimitChecker RssChecker;
1048 
1049 #ifdef GWP_ASAN_HOOKS
1050   gwp_asan::GuardedPoolAllocator GuardedAlloc;
1051   uptr GuardedAllocSlotSize = 0;
1052 #endif // GWP_ASAN_HOOKS
1053 
1054   StackDepot Depot;
1055 
1056   struct AllocationRingBuffer {
1057     struct Entry {
1058       atomic_uptr Ptr;
1059       atomic_uptr AllocationSize;
1060       atomic_u32 AllocationTrace;
1061       atomic_u32 AllocationTid;
1062       atomic_u32 DeallocationTrace;
1063       atomic_u32 DeallocationTid;
1064     };
1065 
1066     atomic_uptr Pos;
1067     u32 Size;
1068     // An array of Size (at least one) elements of type Entry is immediately
1069     // following to this struct.
1070   };
1071   // Pointer to memory mapped area starting with AllocationRingBuffer struct,
1072   // and immediately followed by Size elements of type Entry.
1073   char *RawRingBuffer = {};
1074 
1075   // The following might get optimized out by the compiler.
1076   NOINLINE void performSanityChecks() {
1077     // Verify that the header offset field can hold the maximum offset. In the
1078     // case of the Secondary allocator, it takes care of alignment and the
1079     // offset will always be small. In the case of the Primary, the worst case
1080     // scenario happens in the last size class, when the backend allocation
1081     // would already be aligned on the requested alignment, which would happen
1082     // to be the maximum alignment that would fit in that size class. As a
1083     // result, the maximum offset will be at most the maximum alignment for the
1084     // last size class minus the header size, in multiples of MinAlignment.
1085     Chunk::UnpackedHeader Header = {};
1086     const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
1087                                          SizeClassMap::MaxSize - MinAlignment);
1088     const uptr MaxOffset =
1089         (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
1090     Header.Offset = MaxOffset & Chunk::OffsetMask;
1091     if (UNLIKELY(Header.Offset != MaxOffset))
1092       reportSanityCheckError("offset");
1093 
1094     // Verify that we can fit the maximum size or amount of unused bytes in the
1095     // header. Given that the Secondary fits the allocation to a page, the worst
1096     // case scenario happens in the Primary. It will depend on the second to
1097     // last and last class sizes, as well as the dynamic base for the Primary.
1098     // The following is an over-approximation that works for our needs.
1099     const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
1100     Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
1101     if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
1102       reportSanityCheckError("size (or unused bytes)");
1103 
1104     const uptr LargestClassId = SizeClassMap::LargestClassId;
1105     Header.ClassId = LargestClassId;
1106     if (UNLIKELY(Header.ClassId != LargestClassId))
1107       reportSanityCheckError("class ID");
1108   }
1109 
1110   static inline void *getBlockBegin(const void *Ptr,
1111                                     Chunk::UnpackedHeader *Header) {
1112     return reinterpret_cast<void *>(
1113         reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
1114         (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
1115   }
1116 
1117   // Return the size of a chunk as requested during its allocation.
1118   inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
1119     const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
1120     if (LIKELY(Header->ClassId))
1121       return SizeOrUnusedBytes;
1122     if (allocatorSupportsMemoryTagging<Params>())
1123       Ptr = untagPointer(const_cast<void *>(Ptr));
1124     return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
1125            reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
1126   }
1127 
1128   void quarantineOrDeallocateChunk(Options Options, void *TaggedPtr,
1129                                    Chunk::UnpackedHeader *Header, uptr Size) {
1130     void *Ptr = getHeaderTaggedPointer(TaggedPtr);
1131     Chunk::UnpackedHeader NewHeader = *Header;
1132     // If the quarantine is disabled, the actual size of a chunk is 0 or larger
1133     // than the maximum allowed, we return a chunk directly to the backend.
1134     // This purposefully underflows for Size == 0.
1135     const bool BypassQuarantine = !Quarantine.getCacheSize() ||
1136                                   ((Size - 1) >= QuarantineMaxChunkSize) ||
1137                                   !NewHeader.ClassId;
1138     if (BypassQuarantine)
1139       NewHeader.State = Chunk::State::Available;
1140     else
1141       NewHeader.State = Chunk::State::Quarantined;
1142     NewHeader.OriginOrWasZeroed = useMemoryTagging<Params>(Options) &&
1143                                   NewHeader.ClassId &&
1144                                   !TSDRegistry.getDisableMemInit();
1145     Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
1146 
1147     if (UNLIKELY(useMemoryTagging<Params>(Options))) {
1148       u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr));
1149       storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size);
1150       if (NewHeader.ClassId) {
1151         if (!TSDRegistry.getDisableMemInit()) {
1152           uptr TaggedBegin, TaggedEnd;
1153           const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(
1154               Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, &NewHeader)),
1155               NewHeader.ClassId);
1156           // Exclude the previous tag so that immediate use after free is
1157           // detected 100% of the time.
1158           setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin,
1159                        &TaggedEnd);
1160         }
1161       }
1162     }
1163     if (BypassQuarantine) {
1164       if (allocatorSupportsMemoryTagging<Params>())
1165         Ptr = untagPointer(Ptr);
1166       void *BlockBegin = getBlockBegin(Ptr, &NewHeader);
1167       const uptr ClassId = NewHeader.ClassId;
1168       if (LIKELY(ClassId)) {
1169         bool UnlockRequired;
1170         auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1171         TSD->Cache.deallocate(ClassId, BlockBegin);
1172         if (UnlockRequired)
1173           TSD->unlock();
1174       } else {
1175         if (UNLIKELY(useMemoryTagging<Params>(Options)))
1176           storeTags(reinterpret_cast<uptr>(BlockBegin),
1177                     reinterpret_cast<uptr>(Ptr));
1178         Secondary.deallocate(Options, BlockBegin);
1179       }
1180     } else {
1181       bool UnlockRequired;
1182       auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1183       Quarantine.put(&TSD->QuarantineCache,
1184                      QuarantineCallback(*this, TSD->Cache), Ptr, Size);
1185       if (UnlockRequired)
1186         TSD->unlock();
1187     }
1188   }
1189 
1190   bool getChunkFromBlock(uptr Block, uptr *Chunk,
1191                          Chunk::UnpackedHeader *Header) {
1192     *Chunk =
1193         Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
1194     return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
1195   }
1196 
1197   static uptr getChunkOffsetFromBlock(const char *Block) {
1198     u32 Offset = 0;
1199     if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
1200       Offset = reinterpret_cast<const u32 *>(Block)[1];
1201     return Offset + Chunk::getHeaderSize();
1202   }
1203 
1204   // Set the tag of the granule past the end of the allocation to 0, to catch
1205   // linear overflows even if a previous larger allocation used the same block
1206   // and tag. Only do this if the granule past the end is in our block, because
1207   // this would otherwise lead to a SEGV if the allocation covers the entire
1208   // block and our block is at the end of a mapping. The tag of the next block's
1209   // header granule will be set to 0, so it will serve the purpose of catching
1210   // linear overflows in this case.
1211   //
1212   // For allocations of size 0 we do not end up storing the address tag to the
1213   // memory tag space, which getInlineErrorInfo() normally relies on to match
1214   // address tags against chunks. To allow matching in this case we store the
1215   // address tag in the first byte of the chunk.
1216   void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) {
1217     DCHECK_EQ(BlockEnd, untagPointer(BlockEnd));
1218     uptr UntaggedEnd = untagPointer(End);
1219     if (UntaggedEnd != BlockEnd) {
1220       storeTag(UntaggedEnd);
1221       if (Size == 0)
1222         *reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End);
1223     }
1224   }
1225 
1226   void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask,
1227                            uptr BlockEnd) {
1228     // Prepare the granule before the chunk to store the chunk header by setting
1229     // its tag to 0. Normally its tag will already be 0, but in the case where a
1230     // chunk holding a low alignment allocation is reused for a higher alignment
1231     // allocation, the chunk may already have a non-zero tag from the previous
1232     // allocation.
1233     storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize());
1234 
1235     uptr TaggedBegin, TaggedEnd;
1236     setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd);
1237 
1238     storeEndMarker(TaggedEnd, Size, BlockEnd);
1239     return reinterpret_cast<void *>(TaggedBegin);
1240   }
1241 
1242   void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize,
1243                          uptr BlockEnd) {
1244     uptr RoundOldPtr = roundUpTo(OldPtr, archMemoryTagGranuleSize());
1245     uptr RoundNewPtr;
1246     if (RoundOldPtr >= NewPtr) {
1247       // If the allocation is shrinking we just need to set the tag past the end
1248       // of the allocation to 0. See explanation in storeEndMarker() above.
1249       RoundNewPtr = roundUpTo(NewPtr, archMemoryTagGranuleSize());
1250     } else {
1251       // Set the memory tag of the region
1252       // [RoundOldPtr, roundUpTo(NewPtr, archMemoryTagGranuleSize()))
1253       // to the pointer tag stored in OldPtr.
1254       RoundNewPtr = storeTags(RoundOldPtr, NewPtr);
1255     }
1256     storeEndMarker(RoundNewPtr, NewSize, BlockEnd);
1257   }
1258 
1259   void storePrimaryAllocationStackMaybe(Options Options, void *Ptr) {
1260     if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1261       return;
1262     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1263     Ptr32[MemTagAllocationTraceIndex] = collectStackTrace();
1264     Ptr32[MemTagAllocationTidIndex] = getThreadID();
1265   }
1266 
1267   void storeRingBufferEntry(void *Ptr, u32 AllocationTrace, u32 AllocationTid,
1268                             uptr AllocationSize, u32 DeallocationTrace,
1269                             u32 DeallocationTid) {
1270     uptr Pos = atomic_fetch_add(&getRingBuffer()->Pos, 1, memory_order_relaxed);
1271     typename AllocationRingBuffer::Entry *Entry =
1272         getRingBufferEntry(RawRingBuffer, Pos % getRingBuffer()->Size);
1273 
1274     // First invalidate our entry so that we don't attempt to interpret a
1275     // partially written state in getSecondaryErrorInfo(). The fences below
1276     // ensure that the compiler does not move the stores to Ptr in between the
1277     // stores to the other fields.
1278     atomic_store_relaxed(&Entry->Ptr, 0);
1279 
1280     __atomic_signal_fence(__ATOMIC_SEQ_CST);
1281     atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace);
1282     atomic_store_relaxed(&Entry->AllocationTid, AllocationTid);
1283     atomic_store_relaxed(&Entry->AllocationSize, AllocationSize);
1284     atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace);
1285     atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid);
1286     __atomic_signal_fence(__ATOMIC_SEQ_CST);
1287 
1288     atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr));
1289   }
1290 
1291   void storeSecondaryAllocationStackMaybe(Options Options, void *Ptr,
1292                                           uptr Size) {
1293     if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1294       return;
1295 
1296     u32 Trace = collectStackTrace();
1297     u32 Tid = getThreadID();
1298 
1299     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1300     Ptr32[MemTagAllocationTraceIndex] = Trace;
1301     Ptr32[MemTagAllocationTidIndex] = Tid;
1302 
1303     storeRingBufferEntry(untagPointer(Ptr), Trace, Tid, Size, 0, 0);
1304   }
1305 
1306   void storeDeallocationStackMaybe(Options Options, void *Ptr, u8 PrevTag,
1307                                    uptr Size) {
1308     if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1309       return;
1310 
1311     auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1312     u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex];
1313     u32 AllocationTid = Ptr32[MemTagAllocationTidIndex];
1314 
1315     u32 DeallocationTrace = collectStackTrace();
1316     u32 DeallocationTid = getThreadID();
1317 
1318     storeRingBufferEntry(addFixedTag(untagPointer(Ptr), PrevTag),
1319                          AllocationTrace, AllocationTid, Size,
1320                          DeallocationTrace, DeallocationTid);
1321   }
1322 
1323   static const size_t NumErrorReports =
1324       sizeof(((scudo_error_info *)nullptr)->reports) /
1325       sizeof(((scudo_error_info *)nullptr)->reports[0]);
1326 
1327   static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo,
1328                                  size_t &NextErrorReport, uintptr_t FaultAddr,
1329                                  const StackDepot *Depot,
1330                                  const char *RegionInfoPtr, const char *Memory,
1331                                  const char *MemoryTags, uintptr_t MemoryAddr,
1332                                  size_t MemorySize, size_t MinDistance,
1333                                  size_t MaxDistance) {
1334     uptr UntaggedFaultAddr = untagPointer(FaultAddr);
1335     u8 FaultAddrTag = extractTag(FaultAddr);
1336     BlockInfo Info =
1337         PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);
1338 
1339     auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
1340       if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr ||
1341           Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
1342         return false;
1343       *Data = &Memory[Addr - MemoryAddr];
1344       *Tag = static_cast<u8>(
1345           MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
1346       return true;
1347     };
1348 
1349     auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
1350                          Chunk::UnpackedHeader *Header, const u32 **Data,
1351                          u8 *Tag) {
1352       const char *BlockBegin;
1353       u8 BlockBeginTag;
1354       if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
1355         return false;
1356       uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
1357       *ChunkAddr = Addr + ChunkOffset;
1358 
1359       const char *ChunkBegin;
1360       if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
1361         return false;
1362       *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
1363           ChunkBegin - Chunk::getHeaderSize());
1364       *Data = reinterpret_cast<const u32 *>(ChunkBegin);
1365 
1366       // Allocations of size 0 will have stashed the tag in the first byte of
1367       // the chunk, see storeEndMarker().
1368       if (Header->SizeOrUnusedBytes == 0)
1369         *Tag = static_cast<u8>(*ChunkBegin);
1370 
1371       return true;
1372     };
1373 
1374     if (NextErrorReport == NumErrorReports)
1375       return;
1376 
1377     auto CheckOOB = [&](uptr BlockAddr) {
1378       if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
1379         return false;
1380 
1381       uptr ChunkAddr;
1382       Chunk::UnpackedHeader Header;
1383       const u32 *Data;
1384       uint8_t Tag;
1385       if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
1386           Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
1387         return false;
1388 
1389       auto *R = &ErrorInfo->reports[NextErrorReport++];
1390       R->error_type =
1391           UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
1392       R->allocation_address = ChunkAddr;
1393       R->allocation_size = Header.SizeOrUnusedBytes;
1394       collectTraceMaybe(Depot, R->allocation_trace,
1395                         Data[MemTagAllocationTraceIndex]);
1396       R->allocation_tid = Data[MemTagAllocationTidIndex];
1397       return NextErrorReport == NumErrorReports;
1398     };
1399 
1400     if (MinDistance == 0 && CheckOOB(Info.BlockBegin))
1401       return;
1402 
1403     for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I)
1404       if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
1405           CheckOOB(Info.BlockBegin - I * Info.BlockSize))
1406         return;
1407   }
1408 
1409   static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo,
1410                                      size_t &NextErrorReport,
1411                                      uintptr_t FaultAddr,
1412                                      const StackDepot *Depot,
1413                                      const char *RingBufferPtr) {
1414     auto *RingBuffer =
1415         reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr);
1416     if (!RingBuffer || RingBuffer->Size == 0)
1417       return;
1418     uptr Pos = atomic_load_relaxed(&RingBuffer->Pos);
1419 
1420     for (uptr I = Pos - 1;
1421          I != Pos - 1 - RingBuffer->Size && NextErrorReport != NumErrorReports;
1422          --I) {
1423       auto *Entry = getRingBufferEntry(RingBufferPtr, I % RingBuffer->Size);
1424       uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr);
1425       if (!EntryPtr)
1426         continue;
1427 
1428       uptr UntaggedEntryPtr = untagPointer(EntryPtr);
1429       uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize);
1430       u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace);
1431       u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid);
1432       u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace);
1433       u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid);
1434 
1435       if (DeallocationTid) {
1436         // For UAF we only consider in-bounds fault addresses because
1437         // out-of-bounds UAF is rare and attempting to detect it is very likely
1438         // to result in false positives.
1439         if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize)
1440           continue;
1441       } else {
1442         // Ring buffer OOB is only possible with secondary allocations. In this
1443         // case we are guaranteed a guard region of at least a page on either
1444         // side of the allocation (guard page on the right, guard page + tagged
1445         // region on the left), so ignore any faults outside of that range.
1446         if (FaultAddr < EntryPtr - getPageSizeCached() ||
1447             FaultAddr >= EntryPtr + EntrySize + getPageSizeCached())
1448           continue;
1449 
1450         // For UAF the ring buffer will contain two entries, one for the
1451         // allocation and another for the deallocation. Don't report buffer
1452         // overflow/underflow using the allocation entry if we have already
1453         // collected a report from the deallocation entry.
1454         bool Found = false;
1455         for (uptr J = 0; J != NextErrorReport; ++J) {
1456           if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) {
1457             Found = true;
1458             break;
1459           }
1460         }
1461         if (Found)
1462           continue;
1463       }
1464 
1465       auto *R = &ErrorInfo->reports[NextErrorReport++];
1466       if (DeallocationTid)
1467         R->error_type = USE_AFTER_FREE;
1468       else if (FaultAddr < EntryPtr)
1469         R->error_type = BUFFER_UNDERFLOW;
1470       else
1471         R->error_type = BUFFER_OVERFLOW;
1472 
1473       R->allocation_address = UntaggedEntryPtr;
1474       R->allocation_size = EntrySize;
1475       collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace);
1476       R->allocation_tid = AllocationTid;
1477       collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace);
1478       R->deallocation_tid = DeallocationTid;
1479     }
1480   }
1481 
1482   uptr getStats(ScopedString *Str) {
1483     Primary.getStats(Str);
1484     Secondary.getStats(Str);
1485     Quarantine.getStats(Str);
1486     return Str->length();
1487   }
1488 
1489   static typename AllocationRingBuffer::Entry *
1490   getRingBufferEntry(char *RawRingBuffer, uptr N) {
1491     return &reinterpret_cast<typename AllocationRingBuffer::Entry *>(
1492         &RawRingBuffer[sizeof(AllocationRingBuffer)])[N];
1493   }
1494   static const typename AllocationRingBuffer::Entry *
1495   getRingBufferEntry(const char *RawRingBuffer, uptr N) {
1496     return &reinterpret_cast<const typename AllocationRingBuffer::Entry *>(
1497         &RawRingBuffer[sizeof(AllocationRingBuffer)])[N];
1498   }
1499 
1500   void initRingBuffer() {
1501     u32 AllocationRingBufferSize =
1502         static_cast<u32>(getFlags()->allocation_ring_buffer_size);
1503     if (AllocationRingBufferSize < 1)
1504       return;
1505     MapPlatformData Data = {};
1506     RawRingBuffer = static_cast<char *>(
1507         map(/*Addr=*/nullptr,
1508             roundUpTo(ringBufferSizeInBytes(AllocationRingBufferSize), getPageSizeCached()),
1509             "AllocatorRingBuffer", /*Flags=*/0, &Data));
1510     auto *RingBuffer = reinterpret_cast<AllocationRingBuffer *>(RawRingBuffer);
1511     RingBuffer->Size = AllocationRingBufferSize;
1512     static_assert(sizeof(AllocationRingBuffer) %
1513                           alignof(typename AllocationRingBuffer::Entry) ==
1514                       0,
1515                   "invalid alignment");
1516   }
1517 
1518   static constexpr size_t ringBufferSizeInBytes(u32 AllocationRingBufferSize) {
1519     return sizeof(AllocationRingBuffer) +
1520            AllocationRingBufferSize *
1521                sizeof(typename AllocationRingBuffer::Entry);
1522   }
1523 
1524   inline AllocationRingBuffer *getRingBuffer() {
1525     return reinterpret_cast<AllocationRingBuffer *>(RawRingBuffer);
1526   }
1527 };
1528 
1529 } // namespace scudo
1530 
1531 #endif // SCUDO_COMBINED_H_
1532