xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_win.cpp (revision e9b261f297cac146f0c9f895c16debe1c4cf8978)
1 //===-- sanitizer_win.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements windows-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_platform.h"
15 #if SANITIZER_WINDOWS
16 
17 #define WIN32_LEAN_AND_MEAN
18 #define NOGDI
19 #include <windows.h>
20 #include <io.h>
21 #include <psapi.h>
22 #include <stdlib.h>
23 
24 #include "sanitizer_common.h"
25 #include "sanitizer_file.h"
26 #include "sanitizer_libc.h"
27 #include "sanitizer_mutex.h"
28 #include "sanitizer_placement_new.h"
29 #include "sanitizer_win_defs.h"
30 
31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32 #pragma comment(lib, "psapi")
33 #endif
34 #if SANITIZER_WIN_TRACE
35 #include <traceloggingprovider.h>
36 //  Windows trace logging provider init
37 #pragma comment(lib, "advapi32.lib")
38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41                              (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42                               0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43 #else
44 #define TraceLoggingUnregister(x)
45 #endif
46 
47 // For WaitOnAddress
48 #  pragma comment(lib, "synchronization.lib")
49 
50 // A macro to tell the compiler that this part of the code cannot be reached,
51 // if the compiler supports this feature. Since we're using this in
52 // code that is called when terminating the process, the expansion of the
53 // macro should not terminate the process to avoid infinite recursion.
54 #if defined(__clang__)
55 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
56 #elif defined(__GNUC__) && \
57     (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
58 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
59 #elif defined(_MSC_VER)
60 # define BUILTIN_UNREACHABLE() __assume(0)
61 #else
62 # define BUILTIN_UNREACHABLE()
63 #endif
64 
65 namespace __sanitizer {
66 
67 #include "sanitizer_syscall_generic.inc"
68 
69 // --------------------- sanitizer_common.h
70 uptr GetPageSize() {
71   SYSTEM_INFO si;
72   GetSystemInfo(&si);
73   return si.dwPageSize;
74 }
75 
76 uptr GetMmapGranularity() {
77   SYSTEM_INFO si;
78   GetSystemInfo(&si);
79   return si.dwAllocationGranularity;
80 }
81 
82 uptr GetMaxUserVirtualAddress() {
83   SYSTEM_INFO si;
84   GetSystemInfo(&si);
85   return (uptr)si.lpMaximumApplicationAddress;
86 }
87 
88 uptr GetMaxVirtualAddress() {
89   return GetMaxUserVirtualAddress();
90 }
91 
92 bool FileExists(const char *filename) {
93   return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
94 }
95 
96 bool DirExists(const char *path) {
97   auto attr = ::GetFileAttributesA(path);
98   return (attr != INVALID_FILE_ATTRIBUTES) && (attr & FILE_ATTRIBUTE_DIRECTORY);
99 }
100 
101 uptr internal_getpid() {
102   return GetProcessId(GetCurrentProcess());
103 }
104 
105 int internal_dlinfo(void *handle, int request, void *p) {
106   UNIMPLEMENTED();
107 }
108 
109 // In contrast to POSIX, on Windows GetCurrentThreadId()
110 // returns a system-unique identifier.
111 tid_t GetTid() {
112   return GetCurrentThreadId();
113 }
114 
115 uptr GetThreadSelf() {
116   return GetTid();
117 }
118 
119 #if !SANITIZER_GO
120 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
121                                 uptr *stack_bottom) {
122   CHECK(stack_top);
123   CHECK(stack_bottom);
124   MEMORY_BASIC_INFORMATION mbi;
125   CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
126   // FIXME: is it possible for the stack to not be a single allocation?
127   // Are these values what ASan expects to get (reserved, not committed;
128   // including stack guard page) ?
129   *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
130   *stack_bottom = (uptr)mbi.AllocationBase;
131 }
132 #endif  // #if !SANITIZER_GO
133 
134 bool ErrorIsOOM(error_t err) {
135   // TODO: This should check which `err`s correspond to OOM.
136   return false;
137 }
138 
139 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
140   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
141   if (rv == 0)
142     ReportMmapFailureAndDie(size, mem_type, "allocate",
143                             GetLastError(), raw_report);
144   return rv;
145 }
146 
147 void UnmapOrDie(void *addr, uptr size) {
148   if (!size || !addr)
149     return;
150 
151   MEMORY_BASIC_INFORMATION mbi;
152   CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
153 
154   // MEM_RELEASE can only be used to unmap whole regions previously mapped with
155   // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
156   // fails try MEM_DECOMMIT.
157   if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
158     if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
159       Report("ERROR: %s failed to "
160              "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
161              SanitizerToolName, size, size, addr, GetLastError());
162       CHECK("unable to unmap" && 0);
163     }
164   }
165 }
166 
167 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
168                                      const char *mmap_type) {
169   error_t last_error = GetLastError();
170   if (last_error == ERROR_NOT_ENOUGH_MEMORY)
171     return nullptr;
172   ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
173 }
174 
175 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
176   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
177   if (rv == 0)
178     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
179   return rv;
180 }
181 
182 // We want to map a chunk of address space aligned to 'alignment'.
183 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
184                                    const char *mem_type) {
185   CHECK(IsPowerOfTwo(size));
186   CHECK(IsPowerOfTwo(alignment));
187 
188   // Windows will align our allocations to at least 64K.
189   alignment = Max(alignment, GetMmapGranularity());
190 
191   uptr mapped_addr =
192       (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
193   if (!mapped_addr)
194     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
195 
196   // If we got it right on the first try, return. Otherwise, unmap it and go to
197   // the slow path.
198   if (IsAligned(mapped_addr, alignment))
199     return (void*)mapped_addr;
200   if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
201     ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
202 
203   // If we didn't get an aligned address, overallocate, find an aligned address,
204   // unmap, and try to allocate at that aligned address.
205   int retries = 0;
206   const int kMaxRetries = 10;
207   for (; retries < kMaxRetries &&
208          (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
209        retries++) {
210     // Overallocate size + alignment bytes.
211     mapped_addr =
212         (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
213     if (!mapped_addr)
214       return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
215 
216     // Find the aligned address.
217     uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
218 
219     // Free the overallocation.
220     if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
221       ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
222 
223     // Attempt to allocate exactly the number of bytes we need at the aligned
224     // address. This may fail for a number of reasons, in which case we continue
225     // the loop.
226     mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
227                                      MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
228   }
229 
230   // Fail if we can't make this work quickly.
231   if (retries == kMaxRetries && mapped_addr == 0)
232     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
233 
234   return (void *)mapped_addr;
235 }
236 
237 // ZeroMmapFixedRegion zero's out a region of memory previously returned from a
238 // call to one of the MmapFixed* helpers. On non-windows systems this would be
239 // done with another mmap, but on windows remapping is not an option.
240 // VirtualFree(DECOMMIT)+VirtualAlloc(RECOMMIT) would also be a way to zero the
241 // memory, but we can't do this atomically, so instead we fall back to using
242 // internal_memset.
243 bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) {
244   internal_memset((void*) fixed_addr, 0, size);
245   return true;
246 }
247 
248 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
249   // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
250   // but on Win64 it does.
251   (void)name;  // unsupported
252 #if !SANITIZER_GO && SANITIZER_WINDOWS64
253   // On asan/Windows64, use MEM_COMMIT would result in error
254   // 1455:ERROR_COMMITMENT_LIMIT.
255   // Asan uses exception handler to commit page on demand.
256   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
257 #else
258   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
259                          PAGE_READWRITE);
260 #endif
261   if (p == 0) {
262     Report("ERROR: %s failed to "
263            "allocate %p (%zd) bytes at %p (error code: %d)\n",
264            SanitizerToolName, size, size, fixed_addr, GetLastError());
265     return false;
266   }
267   return true;
268 }
269 
270 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
271   // FIXME: Windows support large pages too. Might be worth checking
272   return MmapFixedNoReserve(fixed_addr, size, name);
273 }
274 
275 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
276 // 'MmapFixedNoAccess'.
277 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
278   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
279       MEM_COMMIT, PAGE_READWRITE);
280   if (p == 0) {
281     char mem_type[30];
282     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
283                       fixed_addr);
284     ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
285   }
286   return p;
287 }
288 
289 // Uses fixed_addr for now.
290 // Will use offset instead once we've implemented this function for real.
291 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
292   return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
293 }
294 
295 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
296                                     const char *name) {
297   return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
298 }
299 
300 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
301   // Only unmap if it covers the entire range.
302   CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
303   // We unmap the whole range, just null out the base.
304   base_ = nullptr;
305   size_ = 0;
306   UnmapOrDie(reinterpret_cast<void*>(addr), size);
307 }
308 
309 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
310   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
311       MEM_COMMIT, PAGE_READWRITE);
312   if (p == 0) {
313     char mem_type[30];
314     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
315                       fixed_addr);
316     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
317   }
318   return p;
319 }
320 
321 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
322   // FIXME: make this really NoReserve?
323   return MmapOrDie(size, mem_type);
324 }
325 
326 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
327   base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
328   size_ = size;
329   name_ = name;
330   (void)os_handle_;  // unsupported
331   return reinterpret_cast<uptr>(base_);
332 }
333 
334 
335 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
336   (void)name; // unsupported
337   void *res = VirtualAlloc((LPVOID)fixed_addr, size,
338                            MEM_RESERVE, PAGE_NOACCESS);
339   if (res == 0)
340     Report("WARNING: %s failed to "
341            "mprotect %p (%zd) bytes at %p (error code: %d)\n",
342            SanitizerToolName, size, size, fixed_addr, GetLastError());
343   return res;
344 }
345 
346 void *MmapNoAccess(uptr size) {
347   void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
348   if (res == 0)
349     Report("WARNING: %s failed to "
350            "mprotect %p (%zd) bytes (error code: %d)\n",
351            SanitizerToolName, size, size, GetLastError());
352   return res;
353 }
354 
355 bool MprotectNoAccess(uptr addr, uptr size) {
356   DWORD old_protection;
357   return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
358 }
359 
360 bool MprotectReadOnly(uptr addr, uptr size) {
361   DWORD old_protection;
362   return VirtualProtect((LPVOID)addr, size, PAGE_READONLY, &old_protection);
363 }
364 
365 bool MprotectReadWrite(uptr addr, uptr size) {
366   DWORD old_protection;
367   return VirtualProtect((LPVOID)addr, size, PAGE_READWRITE, &old_protection);
368 }
369 
370 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
371   uptr beg_aligned = RoundDownTo(beg, GetPageSizeCached()),
372        end_aligned = RoundDownTo(end, GetPageSizeCached());
373   CHECK(beg < end);                // make sure the region is sane
374   if (beg_aligned == end_aligned)  // make sure we're freeing at least 1 page;
375     return;
376   UnmapOrDie((void *)beg, end_aligned - beg_aligned);
377 }
378 
379 void SetShadowRegionHugePageMode(uptr addr, uptr size) {
380   // FIXME: probably similar to ReleaseMemoryToOS.
381 }
382 
383 bool DontDumpShadowMemory(uptr addr, uptr length) {
384   // This is almost useless on 32-bits.
385   // FIXME: add madvise-analog when we move to 64-bits.
386   return true;
387 }
388 
389 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
390                       uptr min_shadow_base_alignment,
391                       UNUSED uptr &high_mem_end) {
392   const uptr granularity = GetMmapGranularity();
393   const uptr alignment =
394       Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
395   const uptr left_padding =
396       Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
397   uptr space_size = shadow_size_bytes + left_padding;
398   uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
399                                                granularity, nullptr, nullptr);
400   CHECK_NE((uptr)0, shadow_start);
401   CHECK(IsAligned(shadow_start, alignment));
402   return shadow_start;
403 }
404 
405 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
406                               uptr *largest_gap_found,
407                               uptr *max_occupied_addr) {
408   uptr address = 0;
409   while (true) {
410     MEMORY_BASIC_INFORMATION info;
411     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
412       return 0;
413 
414     if (info.State == MEM_FREE) {
415       uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
416                                       alignment);
417       if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
418         return shadow_address;
419     }
420 
421     // Move to the next region.
422     address = (uptr)info.BaseAddress + info.RegionSize;
423   }
424   return 0;
425 }
426 
427 uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
428                                 uptr num_aliases, uptr ring_buffer_size) {
429   CHECK(false && "HWASan aliasing is unimplemented on Windows");
430   return 0;
431 }
432 
433 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
434   MEMORY_BASIC_INFORMATION mbi;
435   CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
436   return mbi.Protect == PAGE_NOACCESS &&
437          (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
438 }
439 
440 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
441   UNIMPLEMENTED();
442 }
443 
444 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
445   UNIMPLEMENTED();
446 }
447 
448 static const int kMaxEnvNameLength = 128;
449 static const DWORD kMaxEnvValueLength = 32767;
450 
451 namespace {
452 
453 struct EnvVariable {
454   char name[kMaxEnvNameLength];
455   char value[kMaxEnvValueLength];
456 };
457 
458 }  // namespace
459 
460 static const int kEnvVariables = 5;
461 static EnvVariable env_vars[kEnvVariables];
462 static int num_env_vars;
463 
464 const char *GetEnv(const char *name) {
465   // Note: this implementation caches the values of the environment variables
466   // and limits their quantity.
467   for (int i = 0; i < num_env_vars; i++) {
468     if (0 == internal_strcmp(name, env_vars[i].name))
469       return env_vars[i].value;
470   }
471   CHECK_LT(num_env_vars, kEnvVariables);
472   DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
473                                      kMaxEnvValueLength);
474   if (rv > 0 && rv < kMaxEnvValueLength) {
475     CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
476     internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
477     num_env_vars++;
478     return env_vars[num_env_vars - 1].value;
479   }
480   return 0;
481 }
482 
483 const char *GetPwd() {
484   UNIMPLEMENTED();
485 }
486 
487 u32 GetUid() {
488   UNIMPLEMENTED();
489 }
490 
491 namespace {
492 struct ModuleInfo {
493   const char *filepath;
494   uptr base_address;
495   uptr end_address;
496 };
497 
498 #if !SANITIZER_GO
499 int CompareModulesBase(const void *pl, const void *pr) {
500   const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
501   if (l->base_address < r->base_address)
502     return -1;
503   return l->base_address > r->base_address;
504 }
505 #endif
506 }  // namespace
507 
508 #if !SANITIZER_GO
509 void DumpProcessMap() {
510   Report("Dumping process modules:\n");
511   ListOfModules modules;
512   modules.init();
513   uptr num_modules = modules.size();
514 
515   InternalMmapVector<ModuleInfo> module_infos(num_modules);
516   for (size_t i = 0; i < num_modules; ++i) {
517     module_infos[i].filepath = modules[i].full_name();
518     module_infos[i].base_address = modules[i].ranges().front()->beg;
519     module_infos[i].end_address = modules[i].ranges().back()->end;
520   }
521   qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
522         CompareModulesBase);
523 
524   for (size_t i = 0; i < num_modules; ++i) {
525     const ModuleInfo &mi = module_infos[i];
526     if (mi.end_address != 0) {
527       Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
528              mi.filepath[0] ? mi.filepath : "[no name]");
529     } else if (mi.filepath[0]) {
530       Printf("\t??\?-??? %s\n", mi.filepath);
531     } else {
532       Printf("\t???\n");
533     }
534   }
535 }
536 #endif
537 
538 void DisableCoreDumperIfNecessary() {
539   // Do nothing.
540 }
541 
542 void ReExec() {
543   UNIMPLEMENTED();
544 }
545 
546 void PlatformPrepareForSandboxing(void *args) {}
547 
548 bool StackSizeIsUnlimited() {
549   UNIMPLEMENTED();
550 }
551 
552 void SetStackSizeLimitInBytes(uptr limit) {
553   UNIMPLEMENTED();
554 }
555 
556 bool AddressSpaceIsUnlimited() {
557   UNIMPLEMENTED();
558 }
559 
560 void SetAddressSpaceUnlimited() {
561   UNIMPLEMENTED();
562 }
563 
564 bool IsPathSeparator(const char c) {
565   return c == '\\' || c == '/';
566 }
567 
568 static bool IsAlpha(char c) {
569   c = ToLower(c);
570   return c >= 'a' && c <= 'z';
571 }
572 
573 bool IsAbsolutePath(const char *path) {
574   return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
575          IsPathSeparator(path[2]);
576 }
577 
578 void internal_usleep(u64 useconds) { Sleep(useconds / 1000); }
579 
580 u64 NanoTime() {
581   static LARGE_INTEGER frequency = {};
582   LARGE_INTEGER counter;
583   if (UNLIKELY(frequency.QuadPart == 0)) {
584     QueryPerformanceFrequency(&frequency);
585     CHECK_NE(frequency.QuadPart, 0);
586   }
587   QueryPerformanceCounter(&counter);
588   counter.QuadPart *= 1000ULL * 1000000ULL;
589   counter.QuadPart /= frequency.QuadPart;
590   return counter.QuadPart;
591 }
592 
593 u64 MonotonicNanoTime() { return NanoTime(); }
594 
595 void Abort() {
596   internal__exit(3);
597 }
598 
599 bool CreateDir(const char *pathname) {
600   return CreateDirectoryA(pathname, nullptr) != 0;
601 }
602 
603 #if !SANITIZER_GO
604 // Read the file to extract the ImageBase field from the PE header. If ASLR is
605 // disabled and this virtual address is available, the loader will typically
606 // load the image at this address. Therefore, we call it the preferred base. Any
607 // addresses in the DWARF typically assume that the object has been loaded at
608 // this address.
609 static uptr GetPreferredBase(const char *modname, char *buf, size_t buf_size) {
610   fd_t fd = OpenFile(modname, RdOnly, nullptr);
611   if (fd == kInvalidFd)
612     return 0;
613   FileCloser closer(fd);
614 
615   // Read just the DOS header.
616   IMAGE_DOS_HEADER dos_header;
617   uptr bytes_read;
618   if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
619       bytes_read != sizeof(dos_header))
620     return 0;
621 
622   // The file should start with the right signature.
623   if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
624     return 0;
625 
626   // The layout at e_lfanew is:
627   // "PE\0\0"
628   // IMAGE_FILE_HEADER
629   // IMAGE_OPTIONAL_HEADER
630   // Seek to e_lfanew and read all that data.
631   if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
632       INVALID_SET_FILE_POINTER)
633     return 0;
634   if (!ReadFromFile(fd, buf, buf_size, &bytes_read) || bytes_read != buf_size)
635     return 0;
636 
637   // Check for "PE\0\0" before the PE header.
638   char *pe_sig = &buf[0];
639   if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
640     return 0;
641 
642   // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
643   IMAGE_OPTIONAL_HEADER *pe_header =
644       (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
645 
646   // Check for more magic in the PE header.
647   if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
648     return 0;
649 
650   // Finally, return the ImageBase.
651   return (uptr)pe_header->ImageBase;
652 }
653 
654 void ListOfModules::init() {
655   clearOrInit();
656   HANDLE cur_process = GetCurrentProcess();
657 
658   // Query the list of modules.  Start by assuming there are no more than 256
659   // modules and retry if that's not sufficient.
660   HMODULE *hmodules = 0;
661   uptr modules_buffer_size = sizeof(HMODULE) * 256;
662   DWORD bytes_required;
663   while (!hmodules) {
664     hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
665     CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
666                              &bytes_required));
667     if (bytes_required > modules_buffer_size) {
668       // Either there turned out to be more than 256 hmodules, or new hmodules
669       // could have loaded since the last try.  Retry.
670       UnmapOrDie(hmodules, modules_buffer_size);
671       hmodules = 0;
672       modules_buffer_size = bytes_required;
673     }
674   }
675 
676   InternalMmapVector<char> buf(4 + sizeof(IMAGE_FILE_HEADER) +
677                                sizeof(IMAGE_OPTIONAL_HEADER));
678   InternalMmapVector<wchar_t> modname_utf16(kMaxPathLength);
679   InternalMmapVector<char> module_name(kMaxPathLength);
680   // |num_modules| is the number of modules actually present,
681   size_t num_modules = bytes_required / sizeof(HMODULE);
682   for (size_t i = 0; i < num_modules; ++i) {
683     HMODULE handle = hmodules[i];
684     MODULEINFO mi;
685     if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
686       continue;
687 
688     // Get the UTF-16 path and convert to UTF-8.
689     int modname_utf16_len =
690         GetModuleFileNameW(handle, &modname_utf16[0], kMaxPathLength);
691     if (modname_utf16_len == 0)
692       modname_utf16[0] = '\0';
693     int module_name_len = ::WideCharToMultiByte(
694         CP_UTF8, 0, &modname_utf16[0], modname_utf16_len + 1, &module_name[0],
695         kMaxPathLength, NULL, NULL);
696     module_name[module_name_len] = '\0';
697 
698     uptr base_address = (uptr)mi.lpBaseOfDll;
699     uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
700 
701     // Adjust the base address of the module so that we get a VA instead of an
702     // RVA when computing the module offset. This helps llvm-symbolizer find the
703     // right DWARF CU. In the common case that the image is loaded at it's
704     // preferred address, we will now print normal virtual addresses.
705     uptr preferred_base =
706         GetPreferredBase(&module_name[0], &buf[0], buf.size());
707     uptr adjusted_base = base_address - preferred_base;
708 
709     modules_.push_back(LoadedModule());
710     LoadedModule &cur_module = modules_.back();
711     cur_module.set(&module_name[0], adjusted_base);
712     // We add the whole module as one single address range.
713     cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
714                                /*writable*/ true);
715   }
716   UnmapOrDie(hmodules, modules_buffer_size);
717 }
718 
719 void ListOfModules::fallbackInit() { clear(); }
720 
721 // We can't use atexit() directly at __asan_init time as the CRT is not fully
722 // initialized at this point.  Place the functions into a vector and use
723 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
724 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
725 
726 static int queueAtexit(void (*function)(void)) {
727   atexit_functions.push_back(function);
728   return 0;
729 }
730 
731 // If Atexit() is being called after RunAtexit() has already been run, it needs
732 // to be able to call atexit() directly. Here we use a function ponter to
733 // switch out its behaviour.
734 // An example of where this is needed is the asan_dynamic runtime on MinGW-w64.
735 // On this environment, __asan_init is called during global constructor phase,
736 // way after calling the .CRT$XID initializer.
737 static int (*volatile queueOrCallAtExit)(void (*)(void)) = &queueAtexit;
738 
739 int Atexit(void (*function)(void)) { return queueOrCallAtExit(function); }
740 
741 static int RunAtexit() {
742   TraceLoggingUnregister(g_asan_provider);
743   queueOrCallAtExit = &atexit;
744   int ret = 0;
745   for (uptr i = 0; i < atexit_functions.size(); ++i) {
746     ret |= atexit(atexit_functions[i]);
747   }
748   return ret;
749 }
750 
751 #pragma section(".CRT$XID", long, read)
752 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
753 #endif
754 
755 // ------------------ sanitizer_libc.h
756 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
757   // FIXME: Use the wide variants to handle Unicode filenames.
758   fd_t res;
759   if (mode == RdOnly) {
760     res = CreateFileA(filename, GENERIC_READ,
761                       FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
762                       nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
763   } else if (mode == WrOnly) {
764     res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
765                       FILE_ATTRIBUTE_NORMAL, nullptr);
766   } else {
767     UNIMPLEMENTED();
768   }
769   CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
770   CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
771   if (res == kInvalidFd && last_error)
772     *last_error = GetLastError();
773   return res;
774 }
775 
776 void CloseFile(fd_t fd) {
777   CloseHandle(fd);
778 }
779 
780 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
781                   error_t *error_p) {
782   CHECK(fd != kInvalidFd);
783 
784   // bytes_read can't be passed directly to ReadFile:
785   // uptr is unsigned long long on 64-bit Windows.
786   unsigned long num_read_long;
787 
788   bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
789   if (!success && error_p)
790     *error_p = GetLastError();
791   if (bytes_read)
792     *bytes_read = num_read_long;
793   return success;
794 }
795 
796 bool SupportsColoredOutput(fd_t fd) {
797   // FIXME: support colored output.
798   return false;
799 }
800 
801 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
802                  error_t *error_p) {
803   CHECK(fd != kInvalidFd);
804 
805   // Handle null optional parameters.
806   error_t dummy_error;
807   error_p = error_p ? error_p : &dummy_error;
808   uptr dummy_bytes_written;
809   bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
810 
811   // Initialize output parameters in case we fail.
812   *error_p = 0;
813   *bytes_written = 0;
814 
815   // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
816   // closed, in which case this will fail.
817   if (fd == kStdoutFd || fd == kStderrFd) {
818     fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
819     if (fd == 0) {
820       *error_p = ERROR_INVALID_HANDLE;
821       return false;
822     }
823   }
824 
825   DWORD bytes_written_32;
826   if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
827     *error_p = GetLastError();
828     return false;
829   } else {
830     *bytes_written = bytes_written_32;
831     return true;
832   }
833 }
834 
835 uptr internal_sched_yield() {
836   Sleep(0);
837   return 0;
838 }
839 
840 void internal__exit(int exitcode) {
841   TraceLoggingUnregister(g_asan_provider);
842   // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
843   // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
844   // so add our own breakpoint here.
845   if (::IsDebuggerPresent())
846     __debugbreak();
847   TerminateProcess(GetCurrentProcess(), exitcode);
848   BUILTIN_UNREACHABLE();
849 }
850 
851 uptr internal_ftruncate(fd_t fd, uptr size) {
852   UNIMPLEMENTED();
853 }
854 
855 uptr GetRSS() {
856   PROCESS_MEMORY_COUNTERS counters;
857   if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
858     return 0;
859   return counters.WorkingSetSize;
860 }
861 
862 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
863 void internal_join_thread(void *th) { }
864 
865 void FutexWait(atomic_uint32_t *p, u32 cmp) {
866   WaitOnAddress(p, &cmp, sizeof(cmp), INFINITE);
867 }
868 
869 void FutexWake(atomic_uint32_t *p, u32 count) {
870   if (count == 1)
871     WakeByAddressSingle(p);
872   else
873     WakeByAddressAll(p);
874 }
875 
876 uptr GetTlsSize() {
877   return 0;
878 }
879 
880 void InitTlsSize() {
881 }
882 
883 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
884                           uptr *tls_addr, uptr *tls_size) {
885 #if SANITIZER_GO
886   *stk_addr = 0;
887   *stk_size = 0;
888   *tls_addr = 0;
889   *tls_size = 0;
890 #else
891   uptr stack_top, stack_bottom;
892   GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
893   *stk_addr = stack_bottom;
894   *stk_size = stack_top - stack_bottom;
895   *tls_addr = 0;
896   *tls_size = 0;
897 #endif
898 }
899 
900 void ReportFile::Write(const char *buffer, uptr length) {
901   SpinMutexLock l(mu);
902   ReopenIfNecessary();
903   if (!WriteToFile(fd, buffer, length)) {
904     // stderr may be closed, but we may be able to print to the debugger
905     // instead.  This is the case when launching a program from Visual Studio,
906     // and the following routine should write to its console.
907     OutputDebugStringA(buffer);
908   }
909 }
910 
911 void SetAlternateSignalStack() {
912   // FIXME: Decide what to do on Windows.
913 }
914 
915 void UnsetAlternateSignalStack() {
916   // FIXME: Decide what to do on Windows.
917 }
918 
919 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
920   (void)handler;
921   // FIXME: Decide what to do on Windows.
922 }
923 
924 HandleSignalMode GetHandleSignalMode(int signum) {
925   // FIXME: Decide what to do on Windows.
926   return kHandleSignalNo;
927 }
928 
929 // Check based on flags if we should handle this exception.
930 bool IsHandledDeadlyException(DWORD exceptionCode) {
931   switch (exceptionCode) {
932     case EXCEPTION_ACCESS_VIOLATION:
933     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
934     case EXCEPTION_STACK_OVERFLOW:
935     case EXCEPTION_DATATYPE_MISALIGNMENT:
936     case EXCEPTION_IN_PAGE_ERROR:
937       return common_flags()->handle_segv;
938     case EXCEPTION_ILLEGAL_INSTRUCTION:
939     case EXCEPTION_PRIV_INSTRUCTION:
940     case EXCEPTION_BREAKPOINT:
941       return common_flags()->handle_sigill;
942     case EXCEPTION_FLT_DENORMAL_OPERAND:
943     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
944     case EXCEPTION_FLT_INEXACT_RESULT:
945     case EXCEPTION_FLT_INVALID_OPERATION:
946     case EXCEPTION_FLT_OVERFLOW:
947     case EXCEPTION_FLT_STACK_CHECK:
948     case EXCEPTION_FLT_UNDERFLOW:
949     case EXCEPTION_INT_DIVIDE_BY_ZERO:
950     case EXCEPTION_INT_OVERFLOW:
951       return common_flags()->handle_sigfpe;
952   }
953   return false;
954 }
955 
956 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
957   SYSTEM_INFO si;
958   GetNativeSystemInfo(&si);
959   uptr page_size = si.dwPageSize;
960   uptr page_mask = ~(page_size - 1);
961 
962   for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
963        page <= end;) {
964     MEMORY_BASIC_INFORMATION info;
965     if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
966       return false;
967 
968     if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
969         info.Protect == PAGE_EXECUTE)
970       return false;
971 
972     if (info.RegionSize == 0)
973       return false;
974 
975     page += info.RegionSize;
976   }
977 
978   return true;
979 }
980 
981 bool SignalContext::IsStackOverflow() const {
982   return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
983 }
984 
985 void SignalContext::InitPcSpBp() {
986   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
987   CONTEXT *context_record = (CONTEXT *)context;
988 
989   pc = (uptr)exception_record->ExceptionAddress;
990 #  if SANITIZER_WINDOWS64
991 #    if SANITIZER_ARM64
992   bp = (uptr)context_record->Fp;
993   sp = (uptr)context_record->Sp;
994 #    else
995   bp = (uptr)context_record->Rbp;
996   sp = (uptr)context_record->Rsp;
997 #    endif
998 #  else
999   bp = (uptr)context_record->Ebp;
1000   sp = (uptr)context_record->Esp;
1001 #  endif
1002 }
1003 
1004 uptr SignalContext::GetAddress() const {
1005   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1006   if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
1007     return exception_record->ExceptionInformation[1];
1008   return (uptr)exception_record->ExceptionAddress;
1009 }
1010 
1011 bool SignalContext::IsMemoryAccess() const {
1012   return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
1013          EXCEPTION_ACCESS_VIOLATION;
1014 }
1015 
1016 bool SignalContext::IsTrueFaultingAddress() const { return true; }
1017 
1018 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
1019   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1020 
1021   // The write flag is only available for access violation exceptions.
1022   if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
1023     return SignalContext::Unknown;
1024 
1025   // The contents of this array are documented at
1026   // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
1027   // The first element indicates read as 0, write as 1, or execute as 8.  The
1028   // second element is the faulting address.
1029   switch (exception_record->ExceptionInformation[0]) {
1030     case 0:
1031       return SignalContext::Read;
1032     case 1:
1033       return SignalContext::Write;
1034     case 8:
1035       return SignalContext::Unknown;
1036   }
1037   return SignalContext::Unknown;
1038 }
1039 
1040 void SignalContext::DumpAllRegisters(void *context) {
1041   // FIXME: Implement this.
1042 }
1043 
1044 int SignalContext::GetType() const {
1045   return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
1046 }
1047 
1048 const char *SignalContext::Describe() const {
1049   unsigned code = GetType();
1050   // Get the string description of the exception if this is a known deadly
1051   // exception.
1052   switch (code) {
1053     case EXCEPTION_ACCESS_VIOLATION:
1054       return "access-violation";
1055     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1056       return "array-bounds-exceeded";
1057     case EXCEPTION_STACK_OVERFLOW:
1058       return "stack-overflow";
1059     case EXCEPTION_DATATYPE_MISALIGNMENT:
1060       return "datatype-misalignment";
1061     case EXCEPTION_IN_PAGE_ERROR:
1062       return "in-page-error";
1063     case EXCEPTION_ILLEGAL_INSTRUCTION:
1064       return "illegal-instruction";
1065     case EXCEPTION_PRIV_INSTRUCTION:
1066       return "priv-instruction";
1067     case EXCEPTION_BREAKPOINT:
1068       return "breakpoint";
1069     case EXCEPTION_FLT_DENORMAL_OPERAND:
1070       return "flt-denormal-operand";
1071     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1072       return "flt-divide-by-zero";
1073     case EXCEPTION_FLT_INEXACT_RESULT:
1074       return "flt-inexact-result";
1075     case EXCEPTION_FLT_INVALID_OPERATION:
1076       return "flt-invalid-operation";
1077     case EXCEPTION_FLT_OVERFLOW:
1078       return "flt-overflow";
1079     case EXCEPTION_FLT_STACK_CHECK:
1080       return "flt-stack-check";
1081     case EXCEPTION_FLT_UNDERFLOW:
1082       return "flt-underflow";
1083     case EXCEPTION_INT_DIVIDE_BY_ZERO:
1084       return "int-divide-by-zero";
1085     case EXCEPTION_INT_OVERFLOW:
1086       return "int-overflow";
1087   }
1088   return "unknown exception";
1089 }
1090 
1091 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1092   if (buf_len == 0)
1093     return 0;
1094 
1095   // Get the UTF-16 path and convert to UTF-8.
1096   InternalMmapVector<wchar_t> binname_utf16(kMaxPathLength);
1097   int binname_utf16_len =
1098       GetModuleFileNameW(NULL, &binname_utf16[0], kMaxPathLength);
1099   if (binname_utf16_len == 0) {
1100     buf[0] = '\0';
1101     return 0;
1102   }
1103   int binary_name_len =
1104       ::WideCharToMultiByte(CP_UTF8, 0, &binname_utf16[0], binname_utf16_len,
1105                             buf, buf_len, NULL, NULL);
1106   if ((unsigned)binary_name_len == buf_len)
1107     --binary_name_len;
1108   buf[binary_name_len] = '\0';
1109   return binary_name_len;
1110 }
1111 
1112 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1113   return ReadBinaryName(buf, buf_len);
1114 }
1115 
1116 void CheckVMASize() {
1117   // Do nothing.
1118 }
1119 
1120 void InitializePlatformEarly() {
1121   // Do nothing.
1122 }
1123 
1124 void CheckASLR() {
1125   // Do nothing
1126 }
1127 
1128 void CheckMPROTECT() {
1129   // Do nothing
1130 }
1131 
1132 char **GetArgv() {
1133   // FIXME: Actually implement this function.
1134   return 0;
1135 }
1136 
1137 char **GetEnviron() {
1138   // FIXME: Actually implement this function.
1139   return 0;
1140 }
1141 
1142 pid_t StartSubprocess(const char *program, const char *const argv[],
1143                       const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1144                       fd_t stderr_fd) {
1145   // FIXME: implement on this platform
1146   // Should be implemented based on
1147   // SymbolizerProcess::StarAtSymbolizerSubprocess
1148   // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1149   return -1;
1150 }
1151 
1152 bool IsProcessRunning(pid_t pid) {
1153   // FIXME: implement on this platform.
1154   return false;
1155 }
1156 
1157 int WaitForProcess(pid_t pid) { return -1; }
1158 
1159 // FIXME implement on this platform.
1160 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
1161 
1162 void CheckNoDeepBind(const char *filename, int flag) {
1163   // Do nothing.
1164 }
1165 
1166 // FIXME: implement on this platform.
1167 bool GetRandom(void *buffer, uptr length, bool blocking) {
1168   UNIMPLEMENTED();
1169 }
1170 
1171 u32 GetNumberOfCPUs() {
1172   SYSTEM_INFO sysinfo = {};
1173   GetNativeSystemInfo(&sysinfo);
1174   return sysinfo.dwNumberOfProcessors;
1175 }
1176 
1177 #if SANITIZER_WIN_TRACE
1178 // TODO(mcgov): Rename this project-wide to PlatformLogInit
1179 void AndroidLogInit(void) {
1180   HRESULT hr = TraceLoggingRegister(g_asan_provider);
1181   if (!SUCCEEDED(hr))
1182     return;
1183 }
1184 
1185 void SetAbortMessage(const char *) {}
1186 
1187 void LogFullErrorReport(const char *buffer) {
1188   if (common_flags()->log_to_syslog) {
1189     InternalMmapVector<wchar_t> filename;
1190     DWORD filename_length = 0;
1191     do {
1192       filename.resize(filename.size() + 0x100);
1193       filename_length =
1194           GetModuleFileNameW(NULL, filename.begin(), filename.size());
1195     } while (filename_length >= filename.size());
1196     TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1197                       TraceLoggingValue(filename.begin(), "ExecutableName"),
1198                       TraceLoggingValue(buffer, "AsanReportContents"));
1199   }
1200 }
1201 #endif // SANITIZER_WIN_TRACE
1202 
1203 void InitializePlatformCommonFlags(CommonFlags *cf) {}
1204 
1205 }  // namespace __sanitizer
1206 
1207 #endif  // _WIN32
1208