1 //===-- sanitizer_win.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between AddressSanitizer and ThreadSanitizer 10 // run-time libraries and implements windows-specific functions from 11 // sanitizer_libc.h. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_platform.h" 15 #if SANITIZER_WINDOWS 16 17 #define WIN32_LEAN_AND_MEAN 18 #define NOGDI 19 #include <windows.h> 20 #include <io.h> 21 #include <psapi.h> 22 #include <stdlib.h> 23 24 #include "sanitizer_common.h" 25 #include "sanitizer_file.h" 26 #include "sanitizer_libc.h" 27 #include "sanitizer_mutex.h" 28 #include "sanitizer_placement_new.h" 29 #include "sanitizer_win_defs.h" 30 31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1 32 #pragma comment(lib, "psapi") 33 #endif 34 #if SANITIZER_WIN_TRACE 35 #include <traceloggingprovider.h> 36 // Windows trace logging provider init 37 #pragma comment(lib, "advapi32.lib") 38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider); 39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp 40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider", 41 (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b, 42 0x53, 0x0b, 0xd0, 0xf3, 0xfa)); 43 #else 44 #define TraceLoggingUnregister(x) 45 #endif 46 47 // A macro to tell the compiler that this part of the code cannot be reached, 48 // if the compiler supports this feature. Since we're using this in 49 // code that is called when terminating the process, the expansion of the 50 // macro should not terminate the process to avoid infinite recursion. 51 #if defined(__clang__) 52 # define BUILTIN_UNREACHABLE() __builtin_unreachable() 53 #elif defined(__GNUC__) && \ 54 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)) 55 # define BUILTIN_UNREACHABLE() __builtin_unreachable() 56 #elif defined(_MSC_VER) 57 # define BUILTIN_UNREACHABLE() __assume(0) 58 #else 59 # define BUILTIN_UNREACHABLE() 60 #endif 61 62 namespace __sanitizer { 63 64 #include "sanitizer_syscall_generic.inc" 65 66 // --------------------- sanitizer_common.h 67 uptr GetPageSize() { 68 SYSTEM_INFO si; 69 GetSystemInfo(&si); 70 return si.dwPageSize; 71 } 72 73 uptr GetMmapGranularity() { 74 SYSTEM_INFO si; 75 GetSystemInfo(&si); 76 return si.dwAllocationGranularity; 77 } 78 79 uptr GetMaxUserVirtualAddress() { 80 SYSTEM_INFO si; 81 GetSystemInfo(&si); 82 return (uptr)si.lpMaximumApplicationAddress; 83 } 84 85 uptr GetMaxVirtualAddress() { 86 return GetMaxUserVirtualAddress(); 87 } 88 89 bool FileExists(const char *filename) { 90 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES; 91 } 92 93 uptr internal_getpid() { 94 return GetProcessId(GetCurrentProcess()); 95 } 96 97 int internal_dlinfo(void *handle, int request, void *p) { 98 UNIMPLEMENTED(); 99 } 100 101 // In contrast to POSIX, on Windows GetCurrentThreadId() 102 // returns a system-unique identifier. 103 tid_t GetTid() { 104 return GetCurrentThreadId(); 105 } 106 107 uptr GetThreadSelf() { 108 return GetTid(); 109 } 110 111 #if !SANITIZER_GO 112 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, 113 uptr *stack_bottom) { 114 CHECK(stack_top); 115 CHECK(stack_bottom); 116 MEMORY_BASIC_INFORMATION mbi; 117 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0); 118 // FIXME: is it possible for the stack to not be a single allocation? 119 // Are these values what ASan expects to get (reserved, not committed; 120 // including stack guard page) ? 121 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize; 122 *stack_bottom = (uptr)mbi.AllocationBase; 123 } 124 #endif // #if !SANITIZER_GO 125 126 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { 127 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 128 if (rv == 0) 129 ReportMmapFailureAndDie(size, mem_type, "allocate", 130 GetLastError(), raw_report); 131 return rv; 132 } 133 134 void UnmapOrDie(void *addr, uptr size) { 135 if (!size || !addr) 136 return; 137 138 MEMORY_BASIC_INFORMATION mbi; 139 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi))); 140 141 // MEM_RELEASE can only be used to unmap whole regions previously mapped with 142 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that 143 // fails try MEM_DECOMMIT. 144 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) { 145 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) { 146 Report("ERROR: %s failed to " 147 "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n", 148 SanitizerToolName, size, size, addr, GetLastError()); 149 CHECK("unable to unmap" && 0); 150 } 151 } 152 } 153 154 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type, 155 const char *mmap_type) { 156 error_t last_error = GetLastError(); 157 if (last_error == ERROR_NOT_ENOUGH_MEMORY) 158 return nullptr; 159 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error); 160 } 161 162 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { 163 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 164 if (rv == 0) 165 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate"); 166 return rv; 167 } 168 169 // We want to map a chunk of address space aligned to 'alignment'. 170 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 171 const char *mem_type) { 172 CHECK(IsPowerOfTwo(size)); 173 CHECK(IsPowerOfTwo(alignment)); 174 175 // Windows will align our allocations to at least 64K. 176 alignment = Max(alignment, GetMmapGranularity()); 177 178 uptr mapped_addr = 179 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 180 if (!mapped_addr) 181 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 182 183 // If we got it right on the first try, return. Otherwise, unmap it and go to 184 // the slow path. 185 if (IsAligned(mapped_addr, alignment)) 186 return (void*)mapped_addr; 187 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) 188 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); 189 190 // If we didn't get an aligned address, overallocate, find an aligned address, 191 // unmap, and try to allocate at that aligned address. 192 int retries = 0; 193 const int kMaxRetries = 10; 194 for (; retries < kMaxRetries && 195 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment)); 196 retries++) { 197 // Overallocate size + alignment bytes. 198 mapped_addr = 199 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS); 200 if (!mapped_addr) 201 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 202 203 // Find the aligned address. 204 uptr aligned_addr = RoundUpTo(mapped_addr, alignment); 205 206 // Free the overallocation. 207 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) 208 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); 209 210 // Attempt to allocate exactly the number of bytes we need at the aligned 211 // address. This may fail for a number of reasons, in which case we continue 212 // the loop. 213 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size, 214 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 215 } 216 217 // Fail if we can't make this work quickly. 218 if (retries == kMaxRetries && mapped_addr == 0) 219 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 220 221 return (void *)mapped_addr; 222 } 223 224 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) { 225 // FIXME: is this really "NoReserve"? On Win32 this does not matter much, 226 // but on Win64 it does. 227 (void)name; // unsupported 228 #if !SANITIZER_GO && SANITIZER_WINDOWS64 229 // On asan/Windows64, use MEM_COMMIT would result in error 230 // 1455:ERROR_COMMITMENT_LIMIT. 231 // Asan uses exception handler to commit page on demand. 232 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE); 233 #else 234 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT, 235 PAGE_READWRITE); 236 #endif 237 if (p == 0) { 238 Report("ERROR: %s failed to " 239 "allocate %p (%zd) bytes at %p (error code: %d)\n", 240 SanitizerToolName, size, size, fixed_addr, GetLastError()); 241 return false; 242 } 243 return true; 244 } 245 246 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) { 247 // FIXME: Windows support large pages too. Might be worth checking 248 return MmapFixedNoReserve(fixed_addr, size, name); 249 } 250 251 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by 252 // 'MmapFixedNoAccess'. 253 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) { 254 void *p = VirtualAlloc((LPVOID)fixed_addr, size, 255 MEM_COMMIT, PAGE_READWRITE); 256 if (p == 0) { 257 char mem_type[30]; 258 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx", 259 fixed_addr); 260 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError()); 261 } 262 return p; 263 } 264 265 // Uses fixed_addr for now. 266 // Will use offset instead once we've implemented this function for real. 267 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) { 268 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size)); 269 } 270 271 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size, 272 const char *name) { 273 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size)); 274 } 275 276 void ReservedAddressRange::Unmap(uptr addr, uptr size) { 277 // Only unmap if it covers the entire range. 278 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_)); 279 // We unmap the whole range, just null out the base. 280 base_ = nullptr; 281 size_ = 0; 282 UnmapOrDie(reinterpret_cast<void*>(addr), size); 283 } 284 285 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) { 286 void *p = VirtualAlloc((LPVOID)fixed_addr, size, 287 MEM_COMMIT, PAGE_READWRITE); 288 if (p == 0) { 289 char mem_type[30]; 290 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx", 291 fixed_addr); 292 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate"); 293 } 294 return p; 295 } 296 297 void *MmapNoReserveOrDie(uptr size, const char *mem_type) { 298 // FIXME: make this really NoReserve? 299 return MmapOrDie(size, mem_type); 300 } 301 302 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) { 303 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size); 304 size_ = size; 305 name_ = name; 306 (void)os_handle_; // unsupported 307 return reinterpret_cast<uptr>(base_); 308 } 309 310 311 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { 312 (void)name; // unsupported 313 void *res = VirtualAlloc((LPVOID)fixed_addr, size, 314 MEM_RESERVE, PAGE_NOACCESS); 315 if (res == 0) 316 Report("WARNING: %s failed to " 317 "mprotect %p (%zd) bytes at %p (error code: %d)\n", 318 SanitizerToolName, size, size, fixed_addr, GetLastError()); 319 return res; 320 } 321 322 void *MmapNoAccess(uptr size) { 323 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS); 324 if (res == 0) 325 Report("WARNING: %s failed to " 326 "mprotect %p (%zd) bytes (error code: %d)\n", 327 SanitizerToolName, size, size, GetLastError()); 328 return res; 329 } 330 331 bool MprotectNoAccess(uptr addr, uptr size) { 332 DWORD old_protection; 333 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection); 334 } 335 336 void ReleaseMemoryPagesToOS(uptr beg, uptr end) { 337 // This is almost useless on 32-bits. 338 // FIXME: add madvise-analog when we move to 64-bits. 339 } 340 341 void SetShadowRegionHugePageMode(uptr addr, uptr size) { 342 // FIXME: probably similar to ReleaseMemoryToOS. 343 } 344 345 bool DontDumpShadowMemory(uptr addr, uptr length) { 346 // This is almost useless on 32-bits. 347 // FIXME: add madvise-analog when we move to 64-bits. 348 return true; 349 } 350 351 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, 352 uptr *largest_gap_found, 353 uptr *max_occupied_addr) { 354 uptr address = 0; 355 while (true) { 356 MEMORY_BASIC_INFORMATION info; 357 if (!::VirtualQuery((void*)address, &info, sizeof(info))) 358 return 0; 359 360 if (info.State == MEM_FREE) { 361 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding, 362 alignment); 363 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize) 364 return shadow_address; 365 } 366 367 // Move to the next region. 368 address = (uptr)info.BaseAddress + info.RegionSize; 369 } 370 return 0; 371 } 372 373 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) { 374 MEMORY_BASIC_INFORMATION mbi; 375 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi))); 376 return mbi.Protect == PAGE_NOACCESS && 377 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end; 378 } 379 380 void *MapFileToMemory(const char *file_name, uptr *buff_size) { 381 UNIMPLEMENTED(); 382 } 383 384 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) { 385 UNIMPLEMENTED(); 386 } 387 388 static const int kMaxEnvNameLength = 128; 389 static const DWORD kMaxEnvValueLength = 32767; 390 391 namespace { 392 393 struct EnvVariable { 394 char name[kMaxEnvNameLength]; 395 char value[kMaxEnvValueLength]; 396 }; 397 398 } // namespace 399 400 static const int kEnvVariables = 5; 401 static EnvVariable env_vars[kEnvVariables]; 402 static int num_env_vars; 403 404 const char *GetEnv(const char *name) { 405 // Note: this implementation caches the values of the environment variables 406 // and limits their quantity. 407 for (int i = 0; i < num_env_vars; i++) { 408 if (0 == internal_strcmp(name, env_vars[i].name)) 409 return env_vars[i].value; 410 } 411 CHECK_LT(num_env_vars, kEnvVariables); 412 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value, 413 kMaxEnvValueLength); 414 if (rv > 0 && rv < kMaxEnvValueLength) { 415 CHECK_LT(internal_strlen(name), kMaxEnvNameLength); 416 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength); 417 num_env_vars++; 418 return env_vars[num_env_vars - 1].value; 419 } 420 return 0; 421 } 422 423 const char *GetPwd() { 424 UNIMPLEMENTED(); 425 } 426 427 u32 GetUid() { 428 UNIMPLEMENTED(); 429 } 430 431 namespace { 432 struct ModuleInfo { 433 const char *filepath; 434 uptr base_address; 435 uptr end_address; 436 }; 437 438 #if !SANITIZER_GO 439 int CompareModulesBase(const void *pl, const void *pr) { 440 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr; 441 if (l->base_address < r->base_address) 442 return -1; 443 return l->base_address > r->base_address; 444 } 445 #endif 446 } // namespace 447 448 #if !SANITIZER_GO 449 void DumpProcessMap() { 450 Report("Dumping process modules:\n"); 451 ListOfModules modules; 452 modules.init(); 453 uptr num_modules = modules.size(); 454 455 InternalMmapVector<ModuleInfo> module_infos(num_modules); 456 for (size_t i = 0; i < num_modules; ++i) { 457 module_infos[i].filepath = modules[i].full_name(); 458 module_infos[i].base_address = modules[i].ranges().front()->beg; 459 module_infos[i].end_address = modules[i].ranges().back()->end; 460 } 461 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo), 462 CompareModulesBase); 463 464 for (size_t i = 0; i < num_modules; ++i) { 465 const ModuleInfo &mi = module_infos[i]; 466 if (mi.end_address != 0) { 467 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address, 468 mi.filepath[0] ? mi.filepath : "[no name]"); 469 } else if (mi.filepath[0]) { 470 Printf("\t??\?-??? %s\n", mi.filepath); 471 } else { 472 Printf("\t???\n"); 473 } 474 } 475 } 476 #endif 477 478 void PrintModuleMap() { } 479 480 void DisableCoreDumperIfNecessary() { 481 // Do nothing. 482 } 483 484 void ReExec() { 485 UNIMPLEMENTED(); 486 } 487 488 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {} 489 490 bool StackSizeIsUnlimited() { 491 UNIMPLEMENTED(); 492 } 493 494 void SetStackSizeLimitInBytes(uptr limit) { 495 UNIMPLEMENTED(); 496 } 497 498 bool AddressSpaceIsUnlimited() { 499 UNIMPLEMENTED(); 500 } 501 502 void SetAddressSpaceUnlimited() { 503 UNIMPLEMENTED(); 504 } 505 506 bool IsPathSeparator(const char c) { 507 return c == '\\' || c == '/'; 508 } 509 510 static bool IsAlpha(char c) { 511 c = ToLower(c); 512 return c >= 'a' && c <= 'z'; 513 } 514 515 bool IsAbsolutePath(const char *path) { 516 return path != nullptr && IsAlpha(path[0]) && path[1] == ':' && 517 IsPathSeparator(path[2]); 518 } 519 520 void SleepForSeconds(int seconds) { 521 Sleep(seconds * 1000); 522 } 523 524 void SleepForMillis(int millis) { 525 Sleep(millis); 526 } 527 528 u64 NanoTime() { 529 static LARGE_INTEGER frequency = {}; 530 LARGE_INTEGER counter; 531 if (UNLIKELY(frequency.QuadPart == 0)) { 532 QueryPerformanceFrequency(&frequency); 533 CHECK_NE(frequency.QuadPart, 0); 534 } 535 QueryPerformanceCounter(&counter); 536 counter.QuadPart *= 1000ULL * 1000000ULL; 537 counter.QuadPart /= frequency.QuadPart; 538 return counter.QuadPart; 539 } 540 541 u64 MonotonicNanoTime() { return NanoTime(); } 542 543 void Abort() { 544 internal__exit(3); 545 } 546 547 #if !SANITIZER_GO 548 // Read the file to extract the ImageBase field from the PE header. If ASLR is 549 // disabled and this virtual address is available, the loader will typically 550 // load the image at this address. Therefore, we call it the preferred base. Any 551 // addresses in the DWARF typically assume that the object has been loaded at 552 // this address. 553 static uptr GetPreferredBase(const char *modname) { 554 fd_t fd = OpenFile(modname, RdOnly, nullptr); 555 if (fd == kInvalidFd) 556 return 0; 557 FileCloser closer(fd); 558 559 // Read just the DOS header. 560 IMAGE_DOS_HEADER dos_header; 561 uptr bytes_read; 562 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) || 563 bytes_read != sizeof(dos_header)) 564 return 0; 565 566 // The file should start with the right signature. 567 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE) 568 return 0; 569 570 // The layout at e_lfanew is: 571 // "PE\0\0" 572 // IMAGE_FILE_HEADER 573 // IMAGE_OPTIONAL_HEADER 574 // Seek to e_lfanew and read all that data. 575 char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)]; 576 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) == 577 INVALID_SET_FILE_POINTER) 578 return 0; 579 if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) || 580 bytes_read != sizeof(buf)) 581 return 0; 582 583 // Check for "PE\0\0" before the PE header. 584 char *pe_sig = &buf[0]; 585 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0) 586 return 0; 587 588 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted. 589 IMAGE_OPTIONAL_HEADER *pe_header = 590 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER)); 591 592 // Check for more magic in the PE header. 593 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC) 594 return 0; 595 596 // Finally, return the ImageBase. 597 return (uptr)pe_header->ImageBase; 598 } 599 600 void ListOfModules::init() { 601 clearOrInit(); 602 HANDLE cur_process = GetCurrentProcess(); 603 604 // Query the list of modules. Start by assuming there are no more than 256 605 // modules and retry if that's not sufficient. 606 HMODULE *hmodules = 0; 607 uptr modules_buffer_size = sizeof(HMODULE) * 256; 608 DWORD bytes_required; 609 while (!hmodules) { 610 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__); 611 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size, 612 &bytes_required)); 613 if (bytes_required > modules_buffer_size) { 614 // Either there turned out to be more than 256 hmodules, or new hmodules 615 // could have loaded since the last try. Retry. 616 UnmapOrDie(hmodules, modules_buffer_size); 617 hmodules = 0; 618 modules_buffer_size = bytes_required; 619 } 620 } 621 622 // |num_modules| is the number of modules actually present, 623 size_t num_modules = bytes_required / sizeof(HMODULE); 624 for (size_t i = 0; i < num_modules; ++i) { 625 HMODULE handle = hmodules[i]; 626 MODULEINFO mi; 627 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi))) 628 continue; 629 630 // Get the UTF-16 path and convert to UTF-8. 631 wchar_t modname_utf16[kMaxPathLength]; 632 int modname_utf16_len = 633 GetModuleFileNameW(handle, modname_utf16, kMaxPathLength); 634 if (modname_utf16_len == 0) 635 modname_utf16[0] = '\0'; 636 char module_name[kMaxPathLength]; 637 int module_name_len = 638 ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1, 639 &module_name[0], kMaxPathLength, NULL, NULL); 640 module_name[module_name_len] = '\0'; 641 642 uptr base_address = (uptr)mi.lpBaseOfDll; 643 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage; 644 645 // Adjust the base address of the module so that we get a VA instead of an 646 // RVA when computing the module offset. This helps llvm-symbolizer find the 647 // right DWARF CU. In the common case that the image is loaded at it's 648 // preferred address, we will now print normal virtual addresses. 649 uptr preferred_base = GetPreferredBase(&module_name[0]); 650 uptr adjusted_base = base_address - preferred_base; 651 652 LoadedModule cur_module; 653 cur_module.set(module_name, adjusted_base); 654 // We add the whole module as one single address range. 655 cur_module.addAddressRange(base_address, end_address, /*executable*/ true, 656 /*writable*/ true); 657 modules_.push_back(cur_module); 658 } 659 UnmapOrDie(hmodules, modules_buffer_size); 660 } 661 662 void ListOfModules::fallbackInit() { clear(); } 663 664 // We can't use atexit() directly at __asan_init time as the CRT is not fully 665 // initialized at this point. Place the functions into a vector and use 666 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers). 667 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions; 668 669 int Atexit(void (*function)(void)) { 670 atexit_functions.push_back(function); 671 return 0; 672 } 673 674 static int RunAtexit() { 675 TraceLoggingUnregister(g_asan_provider); 676 int ret = 0; 677 for (uptr i = 0; i < atexit_functions.size(); ++i) { 678 ret |= atexit(atexit_functions[i]); 679 } 680 return ret; 681 } 682 683 #pragma section(".CRT$XID", long, read) 684 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit; 685 #endif 686 687 // ------------------ sanitizer_libc.h 688 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) { 689 // FIXME: Use the wide variants to handle Unicode filenames. 690 fd_t res; 691 if (mode == RdOnly) { 692 res = CreateFileA(filename, GENERIC_READ, 693 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, 694 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); 695 } else if (mode == WrOnly) { 696 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS, 697 FILE_ATTRIBUTE_NORMAL, nullptr); 698 } else { 699 UNIMPLEMENTED(); 700 } 701 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd); 702 CHECK(res != kStderrFd || kStderrFd == kInvalidFd); 703 if (res == kInvalidFd && last_error) 704 *last_error = GetLastError(); 705 return res; 706 } 707 708 void CloseFile(fd_t fd) { 709 CloseHandle(fd); 710 } 711 712 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read, 713 error_t *error_p) { 714 CHECK(fd != kInvalidFd); 715 716 // bytes_read can't be passed directly to ReadFile: 717 // uptr is unsigned long long on 64-bit Windows. 718 unsigned long num_read_long; 719 720 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr); 721 if (!success && error_p) 722 *error_p = GetLastError(); 723 if (bytes_read) 724 *bytes_read = num_read_long; 725 return success; 726 } 727 728 bool SupportsColoredOutput(fd_t fd) { 729 // FIXME: support colored output. 730 return false; 731 } 732 733 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written, 734 error_t *error_p) { 735 CHECK(fd != kInvalidFd); 736 737 // Handle null optional parameters. 738 error_t dummy_error; 739 error_p = error_p ? error_p : &dummy_error; 740 uptr dummy_bytes_written; 741 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written; 742 743 // Initialize output parameters in case we fail. 744 *error_p = 0; 745 *bytes_written = 0; 746 747 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be 748 // closed, in which case this will fail. 749 if (fd == kStdoutFd || fd == kStderrFd) { 750 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE); 751 if (fd == 0) { 752 *error_p = ERROR_INVALID_HANDLE; 753 return false; 754 } 755 } 756 757 DWORD bytes_written_32; 758 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) { 759 *error_p = GetLastError(); 760 return false; 761 } else { 762 *bytes_written = bytes_written_32; 763 return true; 764 } 765 } 766 767 uptr internal_sched_yield() { 768 Sleep(0); 769 return 0; 770 } 771 772 void internal__exit(int exitcode) { 773 TraceLoggingUnregister(g_asan_provider); 774 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that. 775 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess, 776 // so add our own breakpoint here. 777 if (::IsDebuggerPresent()) 778 __debugbreak(); 779 TerminateProcess(GetCurrentProcess(), exitcode); 780 BUILTIN_UNREACHABLE(); 781 } 782 783 uptr internal_ftruncate(fd_t fd, uptr size) { 784 UNIMPLEMENTED(); 785 } 786 787 uptr GetRSS() { 788 PROCESS_MEMORY_COUNTERS counters; 789 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters))) 790 return 0; 791 return counters.WorkingSetSize; 792 } 793 794 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; } 795 void internal_join_thread(void *th) { } 796 797 // ---------------------- BlockingMutex ---------------- {{{1 798 799 BlockingMutex::BlockingMutex() { 800 CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_)); 801 internal_memset(this, 0, sizeof(*this)); 802 } 803 804 void BlockingMutex::Lock() { 805 AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_); 806 CHECK_EQ(owner_, 0); 807 owner_ = GetThreadSelf(); 808 } 809 810 void BlockingMutex::Unlock() { 811 CheckLocked(); 812 owner_ = 0; 813 ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_); 814 } 815 816 void BlockingMutex::CheckLocked() { 817 CHECK_EQ(owner_, GetThreadSelf()); 818 } 819 820 uptr GetTlsSize() { 821 return 0; 822 } 823 824 void InitTlsSize() { 825 } 826 827 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, 828 uptr *tls_addr, uptr *tls_size) { 829 #if SANITIZER_GO 830 *stk_addr = 0; 831 *stk_size = 0; 832 *tls_addr = 0; 833 *tls_size = 0; 834 #else 835 uptr stack_top, stack_bottom; 836 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); 837 *stk_addr = stack_bottom; 838 *stk_size = stack_top - stack_bottom; 839 *tls_addr = 0; 840 *tls_size = 0; 841 #endif 842 } 843 844 void ReportFile::Write(const char *buffer, uptr length) { 845 SpinMutexLock l(mu); 846 ReopenIfNecessary(); 847 if (!WriteToFile(fd, buffer, length)) { 848 // stderr may be closed, but we may be able to print to the debugger 849 // instead. This is the case when launching a program from Visual Studio, 850 // and the following routine should write to its console. 851 OutputDebugStringA(buffer); 852 } 853 } 854 855 void SetAlternateSignalStack() { 856 // FIXME: Decide what to do on Windows. 857 } 858 859 void UnsetAlternateSignalStack() { 860 // FIXME: Decide what to do on Windows. 861 } 862 863 void InstallDeadlySignalHandlers(SignalHandlerType handler) { 864 (void)handler; 865 // FIXME: Decide what to do on Windows. 866 } 867 868 HandleSignalMode GetHandleSignalMode(int signum) { 869 // FIXME: Decide what to do on Windows. 870 return kHandleSignalNo; 871 } 872 873 // Check based on flags if we should handle this exception. 874 bool IsHandledDeadlyException(DWORD exceptionCode) { 875 switch (exceptionCode) { 876 case EXCEPTION_ACCESS_VIOLATION: 877 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: 878 case EXCEPTION_STACK_OVERFLOW: 879 case EXCEPTION_DATATYPE_MISALIGNMENT: 880 case EXCEPTION_IN_PAGE_ERROR: 881 return common_flags()->handle_segv; 882 case EXCEPTION_ILLEGAL_INSTRUCTION: 883 case EXCEPTION_PRIV_INSTRUCTION: 884 case EXCEPTION_BREAKPOINT: 885 return common_flags()->handle_sigill; 886 case EXCEPTION_FLT_DENORMAL_OPERAND: 887 case EXCEPTION_FLT_DIVIDE_BY_ZERO: 888 case EXCEPTION_FLT_INEXACT_RESULT: 889 case EXCEPTION_FLT_INVALID_OPERATION: 890 case EXCEPTION_FLT_OVERFLOW: 891 case EXCEPTION_FLT_STACK_CHECK: 892 case EXCEPTION_FLT_UNDERFLOW: 893 case EXCEPTION_INT_DIVIDE_BY_ZERO: 894 case EXCEPTION_INT_OVERFLOW: 895 return common_flags()->handle_sigfpe; 896 } 897 return false; 898 } 899 900 bool IsAccessibleMemoryRange(uptr beg, uptr size) { 901 SYSTEM_INFO si; 902 GetNativeSystemInfo(&si); 903 uptr page_size = si.dwPageSize; 904 uptr page_mask = ~(page_size - 1); 905 906 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask; 907 page <= end;) { 908 MEMORY_BASIC_INFORMATION info; 909 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info)) 910 return false; 911 912 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS || 913 info.Protect == PAGE_EXECUTE) 914 return false; 915 916 if (info.RegionSize == 0) 917 return false; 918 919 page += info.RegionSize; 920 } 921 922 return true; 923 } 924 925 bool SignalContext::IsStackOverflow() const { 926 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW; 927 } 928 929 void SignalContext::InitPcSpBp() { 930 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 931 CONTEXT *context_record = (CONTEXT *)context; 932 933 pc = (uptr)exception_record->ExceptionAddress; 934 #ifdef _WIN64 935 bp = (uptr)context_record->Rbp; 936 sp = (uptr)context_record->Rsp; 937 #else 938 bp = (uptr)context_record->Ebp; 939 sp = (uptr)context_record->Esp; 940 #endif 941 } 942 943 uptr SignalContext::GetAddress() const { 944 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 945 return exception_record->ExceptionInformation[1]; 946 } 947 948 bool SignalContext::IsMemoryAccess() const { 949 return GetWriteFlag() != SignalContext::UNKNOWN; 950 } 951 952 bool SignalContext::IsTrueFaultingAddress() const { 953 // FIXME: Provide real implementation for this. See Linux and Mac variants. 954 return IsMemoryAccess(); 955 } 956 957 SignalContext::WriteFlag SignalContext::GetWriteFlag() const { 958 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 959 // The contents of this array are documented at 960 // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx 961 // The first element indicates read as 0, write as 1, or execute as 8. The 962 // second element is the faulting address. 963 switch (exception_record->ExceptionInformation[0]) { 964 case 0: 965 return SignalContext::READ; 966 case 1: 967 return SignalContext::WRITE; 968 case 8: 969 return SignalContext::UNKNOWN; 970 } 971 return SignalContext::UNKNOWN; 972 } 973 974 void SignalContext::DumpAllRegisters(void *context) { 975 // FIXME: Implement this. 976 } 977 978 int SignalContext::GetType() const { 979 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode; 980 } 981 982 const char *SignalContext::Describe() const { 983 unsigned code = GetType(); 984 // Get the string description of the exception if this is a known deadly 985 // exception. 986 switch (code) { 987 case EXCEPTION_ACCESS_VIOLATION: 988 return "access-violation"; 989 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: 990 return "array-bounds-exceeded"; 991 case EXCEPTION_STACK_OVERFLOW: 992 return "stack-overflow"; 993 case EXCEPTION_DATATYPE_MISALIGNMENT: 994 return "datatype-misalignment"; 995 case EXCEPTION_IN_PAGE_ERROR: 996 return "in-page-error"; 997 case EXCEPTION_ILLEGAL_INSTRUCTION: 998 return "illegal-instruction"; 999 case EXCEPTION_PRIV_INSTRUCTION: 1000 return "priv-instruction"; 1001 case EXCEPTION_BREAKPOINT: 1002 return "breakpoint"; 1003 case EXCEPTION_FLT_DENORMAL_OPERAND: 1004 return "flt-denormal-operand"; 1005 case EXCEPTION_FLT_DIVIDE_BY_ZERO: 1006 return "flt-divide-by-zero"; 1007 case EXCEPTION_FLT_INEXACT_RESULT: 1008 return "flt-inexact-result"; 1009 case EXCEPTION_FLT_INVALID_OPERATION: 1010 return "flt-invalid-operation"; 1011 case EXCEPTION_FLT_OVERFLOW: 1012 return "flt-overflow"; 1013 case EXCEPTION_FLT_STACK_CHECK: 1014 return "flt-stack-check"; 1015 case EXCEPTION_FLT_UNDERFLOW: 1016 return "flt-underflow"; 1017 case EXCEPTION_INT_DIVIDE_BY_ZERO: 1018 return "int-divide-by-zero"; 1019 case EXCEPTION_INT_OVERFLOW: 1020 return "int-overflow"; 1021 } 1022 return "unknown exception"; 1023 } 1024 1025 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) { 1026 // FIXME: Actually implement this function. 1027 CHECK_GT(buf_len, 0); 1028 buf[0] = 0; 1029 return 0; 1030 } 1031 1032 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) { 1033 return ReadBinaryName(buf, buf_len); 1034 } 1035 1036 void CheckVMASize() { 1037 // Do nothing. 1038 } 1039 1040 void InitializePlatformEarly() { 1041 // Do nothing. 1042 } 1043 1044 void MaybeReexec() { 1045 // No need to re-exec on Windows. 1046 } 1047 1048 void CheckASLR() { 1049 // Do nothing 1050 } 1051 1052 void CheckMPROTECT() { 1053 // Do nothing 1054 } 1055 1056 char **GetArgv() { 1057 // FIXME: Actually implement this function. 1058 return 0; 1059 } 1060 1061 char **GetEnviron() { 1062 // FIXME: Actually implement this function. 1063 return 0; 1064 } 1065 1066 pid_t StartSubprocess(const char *program, const char *const argv[], 1067 const char *const envp[], fd_t stdin_fd, fd_t stdout_fd, 1068 fd_t stderr_fd) { 1069 // FIXME: implement on this platform 1070 // Should be implemented based on 1071 // SymbolizerProcess::StarAtSymbolizerSubprocess 1072 // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp. 1073 return -1; 1074 } 1075 1076 bool IsProcessRunning(pid_t pid) { 1077 // FIXME: implement on this platform. 1078 return false; 1079 } 1080 1081 int WaitForProcess(pid_t pid) { return -1; } 1082 1083 // FIXME implement on this platform. 1084 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { } 1085 1086 void CheckNoDeepBind(const char *filename, int flag) { 1087 // Do nothing. 1088 } 1089 1090 // FIXME: implement on this platform. 1091 bool GetRandom(void *buffer, uptr length, bool blocking) { 1092 UNIMPLEMENTED(); 1093 } 1094 1095 u32 GetNumberOfCPUs() { 1096 SYSTEM_INFO sysinfo = {}; 1097 GetNativeSystemInfo(&sysinfo); 1098 return sysinfo.dwNumberOfProcessors; 1099 } 1100 1101 #if SANITIZER_WIN_TRACE 1102 // TODO(mcgov): Rename this project-wide to PlatformLogInit 1103 void AndroidLogInit(void) { 1104 HRESULT hr = TraceLoggingRegister(g_asan_provider); 1105 if (!SUCCEEDED(hr)) 1106 return; 1107 } 1108 1109 void SetAbortMessage(const char *) {} 1110 1111 void LogFullErrorReport(const char *buffer) { 1112 if (common_flags()->log_to_syslog) { 1113 InternalMmapVector<wchar_t> filename; 1114 DWORD filename_length = 0; 1115 do { 1116 filename.resize(filename.size() + 0x100); 1117 filename_length = 1118 GetModuleFileNameW(NULL, filename.begin(), filename.size()); 1119 } while (filename_length >= filename.size()); 1120 TraceLoggingWrite(g_asan_provider, "AsanReportEvent", 1121 TraceLoggingValue(filename.begin(), "ExecutableName"), 1122 TraceLoggingValue(buffer, "AsanReportContents")); 1123 } 1124 } 1125 #endif // SANITIZER_WIN_TRACE 1126 1127 } // namespace __sanitizer 1128 1129 #endif // _WIN32 1130