xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_win.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- sanitizer_win.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements windows-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_platform.h"
15 #if SANITIZER_WINDOWS
16 
17 #define WIN32_LEAN_AND_MEAN
18 #define NOGDI
19 #include <windows.h>
20 #include <io.h>
21 #include <psapi.h>
22 #include <stdlib.h>
23 
24 #include "sanitizer_common.h"
25 #include "sanitizer_file.h"
26 #include "sanitizer_libc.h"
27 #include "sanitizer_mutex.h"
28 #include "sanitizer_placement_new.h"
29 #include "sanitizer_win_defs.h"
30 
31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32 #pragma comment(lib, "psapi")
33 #endif
34 #if SANITIZER_WIN_TRACE
35 #include <traceloggingprovider.h>
36 //  Windows trace logging provider init
37 #pragma comment(lib, "advapi32.lib")
38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41                              (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42                               0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43 #else
44 #define TraceLoggingUnregister(x)
45 #endif
46 
47 // For WaitOnAddress
48 #  pragma comment(lib, "synchronization.lib")
49 
50 // A macro to tell the compiler that this part of the code cannot be reached,
51 // if the compiler supports this feature. Since we're using this in
52 // code that is called when terminating the process, the expansion of the
53 // macro should not terminate the process to avoid infinite recursion.
54 #if defined(__clang__)
55 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
56 #elif defined(__GNUC__) && \
57     (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
58 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
59 #elif defined(_MSC_VER)
60 # define BUILTIN_UNREACHABLE() __assume(0)
61 #else
62 # define BUILTIN_UNREACHABLE()
63 #endif
64 
65 namespace __sanitizer {
66 
67 #include "sanitizer_syscall_generic.inc"
68 
69 // --------------------- sanitizer_common.h
70 uptr GetPageSize() {
71   SYSTEM_INFO si;
72   GetSystemInfo(&si);
73   return si.dwPageSize;
74 }
75 
76 uptr GetMmapGranularity() {
77   SYSTEM_INFO si;
78   GetSystemInfo(&si);
79   return si.dwAllocationGranularity;
80 }
81 
82 uptr GetMaxUserVirtualAddress() {
83   SYSTEM_INFO si;
84   GetSystemInfo(&si);
85   return (uptr)si.lpMaximumApplicationAddress;
86 }
87 
88 uptr GetMaxVirtualAddress() {
89   return GetMaxUserVirtualAddress();
90 }
91 
92 bool FileExists(const char *filename) {
93   return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
94 }
95 
96 bool DirExists(const char *path) {
97   auto attr = ::GetFileAttributesA(path);
98   return (attr != INVALID_FILE_ATTRIBUTES) && (attr & FILE_ATTRIBUTE_DIRECTORY);
99 }
100 
101 uptr internal_getpid() {
102   return GetProcessId(GetCurrentProcess());
103 }
104 
105 int internal_dlinfo(void *handle, int request, void *p) {
106   UNIMPLEMENTED();
107 }
108 
109 // In contrast to POSIX, on Windows GetCurrentThreadId()
110 // returns a system-unique identifier.
111 tid_t GetTid() {
112   return GetCurrentThreadId();
113 }
114 
115 uptr GetThreadSelf() {
116   return GetTid();
117 }
118 
119 #if !SANITIZER_GO
120 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
121                                 uptr *stack_bottom) {
122   CHECK(stack_top);
123   CHECK(stack_bottom);
124   MEMORY_BASIC_INFORMATION mbi;
125   CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
126   // FIXME: is it possible for the stack to not be a single allocation?
127   // Are these values what ASan expects to get (reserved, not committed;
128   // including stack guard page) ?
129   *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
130   *stack_bottom = (uptr)mbi.AllocationBase;
131 }
132 #endif  // #if !SANITIZER_GO
133 
134 bool ErrorIsOOM(error_t err) {
135   // TODO: This should check which `err`s correspond to OOM.
136   return false;
137 }
138 
139 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
140   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
141   if (rv == 0)
142     ReportMmapFailureAndDie(size, mem_type, "allocate",
143                             GetLastError(), raw_report);
144   return rv;
145 }
146 
147 void UnmapOrDie(void *addr, uptr size, bool raw_report) {
148   if (!size || !addr)
149     return;
150 
151   MEMORY_BASIC_INFORMATION mbi;
152   CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
153 
154   // MEM_RELEASE can only be used to unmap whole regions previously mapped with
155   // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
156   // fails try MEM_DECOMMIT.
157   if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
158     if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
159       ReportMunmapFailureAndDie(addr, size, GetLastError(), raw_report);
160     }
161   }
162 }
163 
164 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
165                                      const char *mmap_type) {
166   error_t last_error = GetLastError();
167   if (last_error == ERROR_NOT_ENOUGH_MEMORY)
168     return nullptr;
169   ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
170 }
171 
172 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
173   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
174   if (rv == 0)
175     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
176   return rv;
177 }
178 
179 // We want to map a chunk of address space aligned to 'alignment'.
180 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
181                                    const char *mem_type) {
182   CHECK(IsPowerOfTwo(size));
183   CHECK(IsPowerOfTwo(alignment));
184 
185   // Windows will align our allocations to at least 64K.
186   alignment = Max(alignment, GetMmapGranularity());
187 
188   uptr mapped_addr =
189       (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
190   if (!mapped_addr)
191     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
192 
193   // If we got it right on the first try, return. Otherwise, unmap it and go to
194   // the slow path.
195   if (IsAligned(mapped_addr, alignment))
196     return (void*)mapped_addr;
197   if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
198     ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
199 
200   // If we didn't get an aligned address, overallocate, find an aligned address,
201   // unmap, and try to allocate at that aligned address.
202   int retries = 0;
203   const int kMaxRetries = 10;
204   for (; retries < kMaxRetries &&
205          (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
206        retries++) {
207     // Overallocate size + alignment bytes.
208     mapped_addr =
209         (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
210     if (!mapped_addr)
211       return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
212 
213     // Find the aligned address.
214     uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
215 
216     // Free the overallocation.
217     if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
218       ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
219 
220     // Attempt to allocate exactly the number of bytes we need at the aligned
221     // address. This may fail for a number of reasons, in which case we continue
222     // the loop.
223     mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
224                                      MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
225   }
226 
227   // Fail if we can't make this work quickly.
228   if (retries == kMaxRetries && mapped_addr == 0)
229     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
230 
231   return (void *)mapped_addr;
232 }
233 
234 // ZeroMmapFixedRegion zero's out a region of memory previously returned from a
235 // call to one of the MmapFixed* helpers. On non-windows systems this would be
236 // done with another mmap, but on windows remapping is not an option.
237 // VirtualFree(DECOMMIT)+VirtualAlloc(RECOMMIT) would also be a way to zero the
238 // memory, but we can't do this atomically, so instead we fall back to using
239 // internal_memset.
240 bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) {
241   internal_memset((void*) fixed_addr, 0, size);
242   return true;
243 }
244 
245 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
246   // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
247   // but on Win64 it does.
248   (void)name;  // unsupported
249 #if !SANITIZER_GO && SANITIZER_WINDOWS64
250   // On asan/Windows64, use MEM_COMMIT would result in error
251   // 1455:ERROR_COMMITMENT_LIMIT.
252   // Asan uses exception handler to commit page on demand.
253   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
254 #else
255   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
256                          PAGE_READWRITE);
257 #endif
258   if (p == 0) {
259     Report("ERROR: %s failed to "
260            "allocate %p (%zd) bytes at %p (error code: %d)\n",
261            SanitizerToolName, size, size, fixed_addr, GetLastError());
262     return false;
263   }
264   return true;
265 }
266 
267 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
268   // FIXME: Windows support large pages too. Might be worth checking
269   return MmapFixedNoReserve(fixed_addr, size, name);
270 }
271 
272 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
273 // 'MmapFixedNoAccess'.
274 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
275   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
276       MEM_COMMIT, PAGE_READWRITE);
277   if (p == 0) {
278     char mem_type[30];
279     internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p",
280                       (void *)fixed_addr);
281     ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
282   }
283   return p;
284 }
285 
286 // Uses fixed_addr for now.
287 // Will use offset instead once we've implemented this function for real.
288 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
289   return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
290 }
291 
292 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
293                                     const char *name) {
294   return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
295 }
296 
297 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
298   // Only unmap if it covers the entire range.
299   CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
300   // We unmap the whole range, just null out the base.
301   base_ = nullptr;
302   size_ = 0;
303   UnmapOrDie(reinterpret_cast<void*>(addr), size);
304 }
305 
306 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
307   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
308       MEM_COMMIT, PAGE_READWRITE);
309   if (p == 0) {
310     char mem_type[30];
311     internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p",
312                       (void *)fixed_addr);
313     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
314   }
315   return p;
316 }
317 
318 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
319   // FIXME: make this really NoReserve?
320   return MmapOrDie(size, mem_type);
321 }
322 
323 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
324   base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
325   size_ = size;
326   name_ = name;
327   (void)os_handle_;  // unsupported
328   return reinterpret_cast<uptr>(base_);
329 }
330 
331 
332 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
333   (void)name; // unsupported
334   void *res = VirtualAlloc((LPVOID)fixed_addr, size,
335                            MEM_RESERVE, PAGE_NOACCESS);
336   if (res == 0)
337     Report("WARNING: %s failed to "
338            "mprotect %p (%zd) bytes at %p (error code: %d)\n",
339            SanitizerToolName, size, size, fixed_addr, GetLastError());
340   return res;
341 }
342 
343 void *MmapNoAccess(uptr size) {
344   void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
345   if (res == 0)
346     Report("WARNING: %s failed to "
347            "mprotect %p (%zd) bytes (error code: %d)\n",
348            SanitizerToolName, size, size, GetLastError());
349   return res;
350 }
351 
352 bool MprotectNoAccess(uptr addr, uptr size) {
353   DWORD old_protection;
354   return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
355 }
356 
357 bool MprotectReadOnly(uptr addr, uptr size) {
358   DWORD old_protection;
359   return VirtualProtect((LPVOID)addr, size, PAGE_READONLY, &old_protection);
360 }
361 
362 bool MprotectReadWrite(uptr addr, uptr size) {
363   DWORD old_protection;
364   return VirtualProtect((LPVOID)addr, size, PAGE_READWRITE, &old_protection);
365 }
366 
367 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
368   uptr beg_aligned = RoundDownTo(beg, GetPageSizeCached()),
369        end_aligned = RoundDownTo(end, GetPageSizeCached());
370   CHECK(beg < end);                // make sure the region is sane
371   if (beg_aligned == end_aligned)  // make sure we're freeing at least 1 page;
372     return;
373   UnmapOrDie((void *)beg, end_aligned - beg_aligned);
374 }
375 
376 void SetShadowRegionHugePageMode(uptr addr, uptr size) {
377   // FIXME: probably similar to ReleaseMemoryToOS.
378 }
379 
380 bool DontDumpShadowMemory(uptr addr, uptr length) {
381   // This is almost useless on 32-bits.
382   // FIXME: add madvise-analog when we move to 64-bits.
383   return true;
384 }
385 
386 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
387                       uptr min_shadow_base_alignment, UNUSED uptr &high_mem_end,
388                       uptr granularity) {
389   const uptr alignment =
390       Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
391   const uptr left_padding =
392       Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
393   uptr space_size = shadow_size_bytes + left_padding;
394   uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
395                                                granularity, nullptr, nullptr);
396   CHECK_NE((uptr)0, shadow_start);
397   CHECK(IsAligned(shadow_start, alignment));
398   return shadow_start;
399 }
400 
401 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
402                               uptr *largest_gap_found,
403                               uptr *max_occupied_addr) {
404   uptr address = 0;
405   while (true) {
406     MEMORY_BASIC_INFORMATION info;
407     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
408       return 0;
409 
410     if (info.State == MEM_FREE) {
411       uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
412                                       alignment);
413       if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
414         return shadow_address;
415     }
416 
417     // Move to the next region.
418     address = (uptr)info.BaseAddress + info.RegionSize;
419   }
420   return 0;
421 }
422 
423 uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
424                                 uptr num_aliases, uptr ring_buffer_size) {
425   CHECK(false && "HWASan aliasing is unimplemented on Windows");
426   return 0;
427 }
428 
429 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
430   MEMORY_BASIC_INFORMATION mbi;
431   CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
432   return mbi.Protect == PAGE_NOACCESS &&
433          (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
434 }
435 
436 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
437   UNIMPLEMENTED();
438 }
439 
440 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
441   UNIMPLEMENTED();
442 }
443 
444 static const int kMaxEnvNameLength = 128;
445 static const DWORD kMaxEnvValueLength = 32767;
446 
447 namespace {
448 
449 struct EnvVariable {
450   char name[kMaxEnvNameLength];
451   char value[kMaxEnvValueLength];
452 };
453 
454 }  // namespace
455 
456 static const int kEnvVariables = 5;
457 static EnvVariable env_vars[kEnvVariables];
458 static int num_env_vars;
459 
460 const char *GetEnv(const char *name) {
461   // Note: this implementation caches the values of the environment variables
462   // and limits their quantity.
463   for (int i = 0; i < num_env_vars; i++) {
464     if (0 == internal_strcmp(name, env_vars[i].name))
465       return env_vars[i].value;
466   }
467   CHECK_LT(num_env_vars, kEnvVariables);
468   DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
469                                      kMaxEnvValueLength);
470   if (rv > 0 && rv < kMaxEnvValueLength) {
471     CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
472     internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
473     num_env_vars++;
474     return env_vars[num_env_vars - 1].value;
475   }
476   return 0;
477 }
478 
479 const char *GetPwd() {
480   UNIMPLEMENTED();
481 }
482 
483 u32 GetUid() {
484   UNIMPLEMENTED();
485 }
486 
487 namespace {
488 struct ModuleInfo {
489   const char *filepath;
490   uptr base_address;
491   uptr end_address;
492 };
493 
494 #if !SANITIZER_GO
495 int CompareModulesBase(const void *pl, const void *pr) {
496   const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
497   if (l->base_address < r->base_address)
498     return -1;
499   return l->base_address > r->base_address;
500 }
501 #endif
502 }  // namespace
503 
504 #if !SANITIZER_GO
505 void DumpProcessMap() {
506   Report("Dumping process modules:\n");
507   ListOfModules modules;
508   modules.init();
509   uptr num_modules = modules.size();
510 
511   InternalMmapVector<ModuleInfo> module_infos(num_modules);
512   for (size_t i = 0; i < num_modules; ++i) {
513     module_infos[i].filepath = modules[i].full_name();
514     module_infos[i].base_address = modules[i].ranges().front()->beg;
515     module_infos[i].end_address = modules[i].ranges().back()->end;
516   }
517   qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
518         CompareModulesBase);
519 
520   for (size_t i = 0; i < num_modules; ++i) {
521     const ModuleInfo &mi = module_infos[i];
522     if (mi.end_address != 0) {
523       Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
524              mi.filepath[0] ? mi.filepath : "[no name]");
525     } else if (mi.filepath[0]) {
526       Printf("\t??\?-??? %s\n", mi.filepath);
527     } else {
528       Printf("\t???\n");
529     }
530   }
531 }
532 #endif
533 
534 void DisableCoreDumperIfNecessary() {
535   // Do nothing.
536 }
537 
538 void ReExec() {
539   UNIMPLEMENTED();
540 }
541 
542 void PlatformPrepareForSandboxing(void *args) {}
543 
544 bool StackSizeIsUnlimited() {
545   UNIMPLEMENTED();
546 }
547 
548 void SetStackSizeLimitInBytes(uptr limit) {
549   UNIMPLEMENTED();
550 }
551 
552 bool AddressSpaceIsUnlimited() {
553   UNIMPLEMENTED();
554 }
555 
556 void SetAddressSpaceUnlimited() {
557   UNIMPLEMENTED();
558 }
559 
560 bool IsPathSeparator(const char c) {
561   return c == '\\' || c == '/';
562 }
563 
564 static bool IsAlpha(char c) {
565   c = ToLower(c);
566   return c >= 'a' && c <= 'z';
567 }
568 
569 bool IsAbsolutePath(const char *path) {
570   return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
571          IsPathSeparator(path[2]);
572 }
573 
574 void internal_usleep(u64 useconds) { Sleep(useconds / 1000); }
575 
576 u64 NanoTime() {
577   static LARGE_INTEGER frequency = {};
578   LARGE_INTEGER counter;
579   if (UNLIKELY(frequency.QuadPart == 0)) {
580     QueryPerformanceFrequency(&frequency);
581     CHECK_NE(frequency.QuadPart, 0);
582   }
583   QueryPerformanceCounter(&counter);
584   counter.QuadPart *= 1000ULL * 1000000ULL;
585   counter.QuadPart /= frequency.QuadPart;
586   return counter.QuadPart;
587 }
588 
589 u64 MonotonicNanoTime() { return NanoTime(); }
590 
591 void Abort() {
592   internal__exit(3);
593 }
594 
595 bool CreateDir(const char *pathname) {
596   return CreateDirectoryA(pathname, nullptr) != 0;
597 }
598 
599 #if !SANITIZER_GO
600 // Read the file to extract the ImageBase field from the PE header. If ASLR is
601 // disabled and this virtual address is available, the loader will typically
602 // load the image at this address. Therefore, we call it the preferred base. Any
603 // addresses in the DWARF typically assume that the object has been loaded at
604 // this address.
605 static uptr GetPreferredBase(const char *modname, char *buf, size_t buf_size) {
606   fd_t fd = OpenFile(modname, RdOnly, nullptr);
607   if (fd == kInvalidFd)
608     return 0;
609   FileCloser closer(fd);
610 
611   // Read just the DOS header.
612   IMAGE_DOS_HEADER dos_header;
613   uptr bytes_read;
614   if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
615       bytes_read != sizeof(dos_header))
616     return 0;
617 
618   // The file should start with the right signature.
619   if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
620     return 0;
621 
622   // The layout at e_lfanew is:
623   // "PE\0\0"
624   // IMAGE_FILE_HEADER
625   // IMAGE_OPTIONAL_HEADER
626   // Seek to e_lfanew and read all that data.
627   if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
628       INVALID_SET_FILE_POINTER)
629     return 0;
630   if (!ReadFromFile(fd, buf, buf_size, &bytes_read) || bytes_read != buf_size)
631     return 0;
632 
633   // Check for "PE\0\0" before the PE header.
634   char *pe_sig = &buf[0];
635   if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
636     return 0;
637 
638   // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
639   IMAGE_OPTIONAL_HEADER *pe_header =
640       (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
641 
642   // Check for more magic in the PE header.
643   if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
644     return 0;
645 
646   // Finally, return the ImageBase.
647   return (uptr)pe_header->ImageBase;
648 }
649 
650 void ListOfModules::init() {
651   clearOrInit();
652   HANDLE cur_process = GetCurrentProcess();
653 
654   // Query the list of modules.  Start by assuming there are no more than 256
655   // modules and retry if that's not sufficient.
656   HMODULE *hmodules = 0;
657   uptr modules_buffer_size = sizeof(HMODULE) * 256;
658   DWORD bytes_required;
659   while (!hmodules) {
660     hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
661     CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
662                              &bytes_required));
663     if (bytes_required > modules_buffer_size) {
664       // Either there turned out to be more than 256 hmodules, or new hmodules
665       // could have loaded since the last try.  Retry.
666       UnmapOrDie(hmodules, modules_buffer_size);
667       hmodules = 0;
668       modules_buffer_size = bytes_required;
669     }
670   }
671 
672   InternalMmapVector<char> buf(4 + sizeof(IMAGE_FILE_HEADER) +
673                                sizeof(IMAGE_OPTIONAL_HEADER));
674   InternalMmapVector<wchar_t> modname_utf16(kMaxPathLength);
675   InternalMmapVector<char> module_name(kMaxPathLength);
676   // |num_modules| is the number of modules actually present,
677   size_t num_modules = bytes_required / sizeof(HMODULE);
678   for (size_t i = 0; i < num_modules; ++i) {
679     HMODULE handle = hmodules[i];
680     MODULEINFO mi;
681     if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
682       continue;
683 
684     // Get the UTF-16 path and convert to UTF-8.
685     int modname_utf16_len =
686         GetModuleFileNameW(handle, &modname_utf16[0], kMaxPathLength);
687     if (modname_utf16_len == 0)
688       modname_utf16[0] = '\0';
689     int module_name_len = ::WideCharToMultiByte(
690         CP_UTF8, 0, &modname_utf16[0], modname_utf16_len + 1, &module_name[0],
691         kMaxPathLength, NULL, NULL);
692     module_name[module_name_len] = '\0';
693 
694     uptr base_address = (uptr)mi.lpBaseOfDll;
695     uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
696 
697     // Adjust the base address of the module so that we get a VA instead of an
698     // RVA when computing the module offset. This helps llvm-symbolizer find the
699     // right DWARF CU. In the common case that the image is loaded at it's
700     // preferred address, we will now print normal virtual addresses.
701     uptr preferred_base =
702         GetPreferredBase(&module_name[0], &buf[0], buf.size());
703     uptr adjusted_base = base_address - preferred_base;
704 
705     modules_.push_back(LoadedModule());
706     LoadedModule &cur_module = modules_.back();
707     cur_module.set(&module_name[0], adjusted_base);
708     // We add the whole module as one single address range.
709     cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
710                                /*writable*/ true);
711   }
712   UnmapOrDie(hmodules, modules_buffer_size);
713 }
714 
715 void ListOfModules::fallbackInit() { clear(); }
716 
717 // We can't use atexit() directly at __asan_init time as the CRT is not fully
718 // initialized at this point.  Place the functions into a vector and use
719 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
720 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
721 
722 static int queueAtexit(void (*function)(void)) {
723   atexit_functions.push_back(function);
724   return 0;
725 }
726 
727 // If Atexit() is being called after RunAtexit() has already been run, it needs
728 // to be able to call atexit() directly. Here we use a function ponter to
729 // switch out its behaviour.
730 // An example of where this is needed is the asan_dynamic runtime on MinGW-w64.
731 // On this environment, __asan_init is called during global constructor phase,
732 // way after calling the .CRT$XID initializer.
733 static int (*volatile queueOrCallAtExit)(void (*)(void)) = &queueAtexit;
734 
735 int Atexit(void (*function)(void)) { return queueOrCallAtExit(function); }
736 
737 static int RunAtexit() {
738   TraceLoggingUnregister(g_asan_provider);
739   queueOrCallAtExit = &atexit;
740   int ret = 0;
741   for (uptr i = 0; i < atexit_functions.size(); ++i) {
742     ret |= atexit(atexit_functions[i]);
743   }
744   return ret;
745 }
746 
747 #pragma section(".CRT$XID", long, read)
748 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
749 #endif
750 
751 // ------------------ sanitizer_libc.h
752 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
753   // FIXME: Use the wide variants to handle Unicode filenames.
754   fd_t res;
755   if (mode == RdOnly) {
756     res = CreateFileA(filename, GENERIC_READ,
757                       FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
758                       nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
759   } else if (mode == WrOnly) {
760     res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
761                       FILE_ATTRIBUTE_NORMAL, nullptr);
762   } else {
763     UNIMPLEMENTED();
764   }
765   CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
766   CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
767   if (res == kInvalidFd && last_error)
768     *last_error = GetLastError();
769   return res;
770 }
771 
772 void CloseFile(fd_t fd) {
773   CloseHandle(fd);
774 }
775 
776 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
777                   error_t *error_p) {
778   CHECK(fd != kInvalidFd);
779 
780   // bytes_read can't be passed directly to ReadFile:
781   // uptr is unsigned long long on 64-bit Windows.
782   unsigned long num_read_long;
783 
784   bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
785   if (!success && error_p)
786     *error_p = GetLastError();
787   if (bytes_read)
788     *bytes_read = num_read_long;
789   return success;
790 }
791 
792 bool SupportsColoredOutput(fd_t fd) {
793   // FIXME: support colored output.
794   return false;
795 }
796 
797 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
798                  error_t *error_p) {
799   CHECK(fd != kInvalidFd);
800 
801   // Handle null optional parameters.
802   error_t dummy_error;
803   error_p = error_p ? error_p : &dummy_error;
804   uptr dummy_bytes_written;
805   bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
806 
807   // Initialize output parameters in case we fail.
808   *error_p = 0;
809   *bytes_written = 0;
810 
811   // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
812   // closed, in which case this will fail.
813   if (fd == kStdoutFd || fd == kStderrFd) {
814     fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
815     if (fd == 0) {
816       *error_p = ERROR_INVALID_HANDLE;
817       return false;
818     }
819   }
820 
821   DWORD bytes_written_32;
822   if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
823     *error_p = GetLastError();
824     return false;
825   } else {
826     *bytes_written = bytes_written_32;
827     return true;
828   }
829 }
830 
831 uptr internal_sched_yield() {
832   Sleep(0);
833   return 0;
834 }
835 
836 void internal__exit(int exitcode) {
837   TraceLoggingUnregister(g_asan_provider);
838   // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
839   // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
840   // so add our own breakpoint here.
841   if (::IsDebuggerPresent())
842     __debugbreak();
843   TerminateProcess(GetCurrentProcess(), exitcode);
844   BUILTIN_UNREACHABLE();
845 }
846 
847 uptr internal_ftruncate(fd_t fd, uptr size) {
848   UNIMPLEMENTED();
849 }
850 
851 uptr GetRSS() {
852   PROCESS_MEMORY_COUNTERS counters;
853   if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
854     return 0;
855   return counters.WorkingSetSize;
856 }
857 
858 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
859 void internal_join_thread(void *th) { }
860 
861 void FutexWait(atomic_uint32_t *p, u32 cmp) {
862   WaitOnAddress(p, &cmp, sizeof(cmp), INFINITE);
863 }
864 
865 void FutexWake(atomic_uint32_t *p, u32 count) {
866   if (count == 1)
867     WakeByAddressSingle(p);
868   else
869     WakeByAddressAll(p);
870 }
871 
872 uptr GetTlsSize() {
873   return 0;
874 }
875 
876 void InitTlsSize() {
877 }
878 
879 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
880                           uptr *tls_addr, uptr *tls_size) {
881 #if SANITIZER_GO
882   *stk_addr = 0;
883   *stk_size = 0;
884   *tls_addr = 0;
885   *tls_size = 0;
886 #else
887   uptr stack_top, stack_bottom;
888   GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
889   *stk_addr = stack_bottom;
890   *stk_size = stack_top - stack_bottom;
891   *tls_addr = 0;
892   *tls_size = 0;
893 #endif
894 }
895 
896 void ReportFile::Write(const char *buffer, uptr length) {
897   SpinMutexLock l(mu);
898   ReopenIfNecessary();
899   if (!WriteToFile(fd, buffer, length)) {
900     // stderr may be closed, but we may be able to print to the debugger
901     // instead.  This is the case when launching a program from Visual Studio,
902     // and the following routine should write to its console.
903     OutputDebugStringA(buffer);
904   }
905 }
906 
907 void SetAlternateSignalStack() {
908   // FIXME: Decide what to do on Windows.
909 }
910 
911 void UnsetAlternateSignalStack() {
912   // FIXME: Decide what to do on Windows.
913 }
914 
915 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
916   (void)handler;
917   // FIXME: Decide what to do on Windows.
918 }
919 
920 HandleSignalMode GetHandleSignalMode(int signum) {
921   // FIXME: Decide what to do on Windows.
922   return kHandleSignalNo;
923 }
924 
925 // Check based on flags if we should handle this exception.
926 bool IsHandledDeadlyException(DWORD exceptionCode) {
927   switch (exceptionCode) {
928     case EXCEPTION_ACCESS_VIOLATION:
929     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
930     case EXCEPTION_STACK_OVERFLOW:
931     case EXCEPTION_DATATYPE_MISALIGNMENT:
932     case EXCEPTION_IN_PAGE_ERROR:
933       return common_flags()->handle_segv;
934     case EXCEPTION_ILLEGAL_INSTRUCTION:
935     case EXCEPTION_PRIV_INSTRUCTION:
936     case EXCEPTION_BREAKPOINT:
937       return common_flags()->handle_sigill;
938     case EXCEPTION_FLT_DENORMAL_OPERAND:
939     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
940     case EXCEPTION_FLT_INEXACT_RESULT:
941     case EXCEPTION_FLT_INVALID_OPERATION:
942     case EXCEPTION_FLT_OVERFLOW:
943     case EXCEPTION_FLT_STACK_CHECK:
944     case EXCEPTION_FLT_UNDERFLOW:
945     case EXCEPTION_INT_DIVIDE_BY_ZERO:
946     case EXCEPTION_INT_OVERFLOW:
947       return common_flags()->handle_sigfpe;
948   }
949   return false;
950 }
951 
952 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
953   SYSTEM_INFO si;
954   GetNativeSystemInfo(&si);
955   uptr page_size = si.dwPageSize;
956   uptr page_mask = ~(page_size - 1);
957 
958   for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
959        page <= end;) {
960     MEMORY_BASIC_INFORMATION info;
961     if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
962       return false;
963 
964     if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
965         info.Protect == PAGE_EXECUTE)
966       return false;
967 
968     if (info.RegionSize == 0)
969       return false;
970 
971     page += info.RegionSize;
972   }
973 
974   return true;
975 }
976 
977 bool SignalContext::IsStackOverflow() const {
978   return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
979 }
980 
981 void SignalContext::InitPcSpBp() {
982   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
983   CONTEXT *context_record = (CONTEXT *)context;
984 
985   pc = (uptr)exception_record->ExceptionAddress;
986 #  if SANITIZER_WINDOWS64
987 #    if SANITIZER_ARM64
988   bp = (uptr)context_record->Fp;
989   sp = (uptr)context_record->Sp;
990 #    else
991   bp = (uptr)context_record->Rbp;
992   sp = (uptr)context_record->Rsp;
993 #    endif
994 #  else
995 #    if SANITIZER_ARM
996   bp = (uptr)context_record->R11;
997   sp = (uptr)context_record->Sp;
998 #    else
999   bp = (uptr)context_record->Ebp;
1000   sp = (uptr)context_record->Esp;
1001 #    endif
1002 #  endif
1003 }
1004 
1005 uptr SignalContext::GetAddress() const {
1006   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1007   if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
1008     return exception_record->ExceptionInformation[1];
1009   return (uptr)exception_record->ExceptionAddress;
1010 }
1011 
1012 bool SignalContext::IsMemoryAccess() const {
1013   return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
1014          EXCEPTION_ACCESS_VIOLATION;
1015 }
1016 
1017 bool SignalContext::IsTrueFaultingAddress() const { return true; }
1018 
1019 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
1020   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1021 
1022   // The write flag is only available for access violation exceptions.
1023   if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
1024     return SignalContext::Unknown;
1025 
1026   // The contents of this array are documented at
1027   // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
1028   // The first element indicates read as 0, write as 1, or execute as 8.  The
1029   // second element is the faulting address.
1030   switch (exception_record->ExceptionInformation[0]) {
1031     case 0:
1032       return SignalContext::Read;
1033     case 1:
1034       return SignalContext::Write;
1035     case 8:
1036       return SignalContext::Unknown;
1037   }
1038   return SignalContext::Unknown;
1039 }
1040 
1041 void SignalContext::DumpAllRegisters(void *context) {
1042   // FIXME: Implement this.
1043 }
1044 
1045 int SignalContext::GetType() const {
1046   return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
1047 }
1048 
1049 const char *SignalContext::Describe() const {
1050   unsigned code = GetType();
1051   // Get the string description of the exception if this is a known deadly
1052   // exception.
1053   switch (code) {
1054     case EXCEPTION_ACCESS_VIOLATION:
1055       return "access-violation";
1056     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1057       return "array-bounds-exceeded";
1058     case EXCEPTION_STACK_OVERFLOW:
1059       return "stack-overflow";
1060     case EXCEPTION_DATATYPE_MISALIGNMENT:
1061       return "datatype-misalignment";
1062     case EXCEPTION_IN_PAGE_ERROR:
1063       return "in-page-error";
1064     case EXCEPTION_ILLEGAL_INSTRUCTION:
1065       return "illegal-instruction";
1066     case EXCEPTION_PRIV_INSTRUCTION:
1067       return "priv-instruction";
1068     case EXCEPTION_BREAKPOINT:
1069       return "breakpoint";
1070     case EXCEPTION_FLT_DENORMAL_OPERAND:
1071       return "flt-denormal-operand";
1072     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1073       return "flt-divide-by-zero";
1074     case EXCEPTION_FLT_INEXACT_RESULT:
1075       return "flt-inexact-result";
1076     case EXCEPTION_FLT_INVALID_OPERATION:
1077       return "flt-invalid-operation";
1078     case EXCEPTION_FLT_OVERFLOW:
1079       return "flt-overflow";
1080     case EXCEPTION_FLT_STACK_CHECK:
1081       return "flt-stack-check";
1082     case EXCEPTION_FLT_UNDERFLOW:
1083       return "flt-underflow";
1084     case EXCEPTION_INT_DIVIDE_BY_ZERO:
1085       return "int-divide-by-zero";
1086     case EXCEPTION_INT_OVERFLOW:
1087       return "int-overflow";
1088   }
1089   return "unknown exception";
1090 }
1091 
1092 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1093   if (buf_len == 0)
1094     return 0;
1095 
1096   // Get the UTF-16 path and convert to UTF-8.
1097   InternalMmapVector<wchar_t> binname_utf16(kMaxPathLength);
1098   int binname_utf16_len =
1099       GetModuleFileNameW(NULL, &binname_utf16[0], kMaxPathLength);
1100   if (binname_utf16_len == 0) {
1101     buf[0] = '\0';
1102     return 0;
1103   }
1104   int binary_name_len =
1105       ::WideCharToMultiByte(CP_UTF8, 0, &binname_utf16[0], binname_utf16_len,
1106                             buf, buf_len, NULL, NULL);
1107   if ((unsigned)binary_name_len == buf_len)
1108     --binary_name_len;
1109   buf[binary_name_len] = '\0';
1110   return binary_name_len;
1111 }
1112 
1113 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1114   return ReadBinaryName(buf, buf_len);
1115 }
1116 
1117 void CheckVMASize() {
1118   // Do nothing.
1119 }
1120 
1121 void InitializePlatformEarly() {
1122   // Do nothing.
1123 }
1124 
1125 void CheckASLR() {
1126   // Do nothing
1127 }
1128 
1129 void CheckMPROTECT() {
1130   // Do nothing
1131 }
1132 
1133 char **GetArgv() {
1134   // FIXME: Actually implement this function.
1135   return 0;
1136 }
1137 
1138 char **GetEnviron() {
1139   // FIXME: Actually implement this function.
1140   return 0;
1141 }
1142 
1143 pid_t StartSubprocess(const char *program, const char *const argv[],
1144                       const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1145                       fd_t stderr_fd) {
1146   // FIXME: implement on this platform
1147   // Should be implemented based on
1148   // SymbolizerProcess::StarAtSymbolizerSubprocess
1149   // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1150   return -1;
1151 }
1152 
1153 bool IsProcessRunning(pid_t pid) {
1154   // FIXME: implement on this platform.
1155   return false;
1156 }
1157 
1158 int WaitForProcess(pid_t pid) { return -1; }
1159 
1160 // FIXME implement on this platform.
1161 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
1162 
1163 void CheckNoDeepBind(const char *filename, int flag) {
1164   // Do nothing.
1165 }
1166 
1167 // FIXME: implement on this platform.
1168 bool GetRandom(void *buffer, uptr length, bool blocking) {
1169   UNIMPLEMENTED();
1170 }
1171 
1172 u32 GetNumberOfCPUs() {
1173   SYSTEM_INFO sysinfo = {};
1174   GetNativeSystemInfo(&sysinfo);
1175   return sysinfo.dwNumberOfProcessors;
1176 }
1177 
1178 #if SANITIZER_WIN_TRACE
1179 // TODO(mcgov): Rename this project-wide to PlatformLogInit
1180 void AndroidLogInit(void) {
1181   HRESULT hr = TraceLoggingRegister(g_asan_provider);
1182   if (!SUCCEEDED(hr))
1183     return;
1184 }
1185 
1186 void SetAbortMessage(const char *) {}
1187 
1188 void LogFullErrorReport(const char *buffer) {
1189   if (common_flags()->log_to_syslog) {
1190     InternalMmapVector<wchar_t> filename;
1191     DWORD filename_length = 0;
1192     do {
1193       filename.resize(filename.size() + 0x100);
1194       filename_length =
1195           GetModuleFileNameW(NULL, filename.begin(), filename.size());
1196     } while (filename_length >= filename.size());
1197     TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1198                       TraceLoggingValue(filename.begin(), "ExecutableName"),
1199                       TraceLoggingValue(buffer, "AsanReportContents"));
1200   }
1201 }
1202 #endif // SANITIZER_WIN_TRACE
1203 
1204 void InitializePlatformCommonFlags(CommonFlags *cf) {}
1205 
1206 }  // namespace __sanitizer
1207 
1208 #endif  // _WIN32
1209