1 //===-- sanitizer_win.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between AddressSanitizer and ThreadSanitizer 10 // run-time libraries and implements windows-specific functions from 11 // sanitizer_libc.h. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_platform.h" 15 #if SANITIZER_WINDOWS 16 17 #define WIN32_LEAN_AND_MEAN 18 #define NOGDI 19 #include <windows.h> 20 #include <io.h> 21 #include <psapi.h> 22 #include <stdlib.h> 23 24 #include "sanitizer_common.h" 25 #include "sanitizer_file.h" 26 #include "sanitizer_libc.h" 27 #include "sanitizer_mutex.h" 28 #include "sanitizer_placement_new.h" 29 #include "sanitizer_win_defs.h" 30 31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1 32 #pragma comment(lib, "psapi") 33 #endif 34 #if SANITIZER_WIN_TRACE 35 #include <traceloggingprovider.h> 36 // Windows trace logging provider init 37 #pragma comment(lib, "advapi32.lib") 38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider); 39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp 40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider", 41 (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b, 42 0x53, 0x0b, 0xd0, 0xf3, 0xfa)); 43 #else 44 #define TraceLoggingUnregister(x) 45 #endif 46 47 // A macro to tell the compiler that this part of the code cannot be reached, 48 // if the compiler supports this feature. Since we're using this in 49 // code that is called when terminating the process, the expansion of the 50 // macro should not terminate the process to avoid infinite recursion. 51 #if defined(__clang__) 52 # define BUILTIN_UNREACHABLE() __builtin_unreachable() 53 #elif defined(__GNUC__) && \ 54 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)) 55 # define BUILTIN_UNREACHABLE() __builtin_unreachable() 56 #elif defined(_MSC_VER) 57 # define BUILTIN_UNREACHABLE() __assume(0) 58 #else 59 # define BUILTIN_UNREACHABLE() 60 #endif 61 62 namespace __sanitizer { 63 64 #include "sanitizer_syscall_generic.inc" 65 66 // --------------------- sanitizer_common.h 67 uptr GetPageSize() { 68 SYSTEM_INFO si; 69 GetSystemInfo(&si); 70 return si.dwPageSize; 71 } 72 73 uptr GetMmapGranularity() { 74 SYSTEM_INFO si; 75 GetSystemInfo(&si); 76 return si.dwAllocationGranularity; 77 } 78 79 uptr GetMaxUserVirtualAddress() { 80 SYSTEM_INFO si; 81 GetSystemInfo(&si); 82 return (uptr)si.lpMaximumApplicationAddress; 83 } 84 85 uptr GetMaxVirtualAddress() { 86 return GetMaxUserVirtualAddress(); 87 } 88 89 bool FileExists(const char *filename) { 90 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES; 91 } 92 93 uptr internal_getpid() { 94 return GetProcessId(GetCurrentProcess()); 95 } 96 97 // In contrast to POSIX, on Windows GetCurrentThreadId() 98 // returns a system-unique identifier. 99 tid_t GetTid() { 100 return GetCurrentThreadId(); 101 } 102 103 uptr GetThreadSelf() { 104 return GetTid(); 105 } 106 107 #if !SANITIZER_GO 108 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, 109 uptr *stack_bottom) { 110 CHECK(stack_top); 111 CHECK(stack_bottom); 112 MEMORY_BASIC_INFORMATION mbi; 113 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0); 114 // FIXME: is it possible for the stack to not be a single allocation? 115 // Are these values what ASan expects to get (reserved, not committed; 116 // including stack guard page) ? 117 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize; 118 *stack_bottom = (uptr)mbi.AllocationBase; 119 } 120 #endif // #if !SANITIZER_GO 121 122 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { 123 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 124 if (rv == 0) 125 ReportMmapFailureAndDie(size, mem_type, "allocate", 126 GetLastError(), raw_report); 127 return rv; 128 } 129 130 void UnmapOrDie(void *addr, uptr size) { 131 if (!size || !addr) 132 return; 133 134 MEMORY_BASIC_INFORMATION mbi; 135 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi))); 136 137 // MEM_RELEASE can only be used to unmap whole regions previously mapped with 138 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that 139 // fails try MEM_DECOMMIT. 140 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) { 141 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) { 142 Report("ERROR: %s failed to " 143 "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n", 144 SanitizerToolName, size, size, addr, GetLastError()); 145 CHECK("unable to unmap" && 0); 146 } 147 } 148 } 149 150 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type, 151 const char *mmap_type) { 152 error_t last_error = GetLastError(); 153 if (last_error == ERROR_NOT_ENOUGH_MEMORY) 154 return nullptr; 155 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error); 156 } 157 158 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { 159 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 160 if (rv == 0) 161 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate"); 162 return rv; 163 } 164 165 // We want to map a chunk of address space aligned to 'alignment'. 166 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 167 const char *mem_type) { 168 CHECK(IsPowerOfTwo(size)); 169 CHECK(IsPowerOfTwo(alignment)); 170 171 // Windows will align our allocations to at least 64K. 172 alignment = Max(alignment, GetMmapGranularity()); 173 174 uptr mapped_addr = 175 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 176 if (!mapped_addr) 177 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 178 179 // If we got it right on the first try, return. Otherwise, unmap it and go to 180 // the slow path. 181 if (IsAligned(mapped_addr, alignment)) 182 return (void*)mapped_addr; 183 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) 184 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); 185 186 // If we didn't get an aligned address, overallocate, find an aligned address, 187 // unmap, and try to allocate at that aligned address. 188 int retries = 0; 189 const int kMaxRetries = 10; 190 for (; retries < kMaxRetries && 191 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment)); 192 retries++) { 193 // Overallocate size + alignment bytes. 194 mapped_addr = 195 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS); 196 if (!mapped_addr) 197 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 198 199 // Find the aligned address. 200 uptr aligned_addr = RoundUpTo(mapped_addr, alignment); 201 202 // Free the overallocation. 203 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) 204 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); 205 206 // Attempt to allocate exactly the number of bytes we need at the aligned 207 // address. This may fail for a number of reasons, in which case we continue 208 // the loop. 209 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size, 210 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 211 } 212 213 // Fail if we can't make this work quickly. 214 if (retries == kMaxRetries && mapped_addr == 0) 215 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 216 217 return (void *)mapped_addr; 218 } 219 220 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) { 221 // FIXME: is this really "NoReserve"? On Win32 this does not matter much, 222 // but on Win64 it does. 223 (void)name; // unsupported 224 #if !SANITIZER_GO && SANITIZER_WINDOWS64 225 // On asan/Windows64, use MEM_COMMIT would result in error 226 // 1455:ERROR_COMMITMENT_LIMIT. 227 // Asan uses exception handler to commit page on demand. 228 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE); 229 #else 230 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT, 231 PAGE_READWRITE); 232 #endif 233 if (p == 0) { 234 Report("ERROR: %s failed to " 235 "allocate %p (%zd) bytes at %p (error code: %d)\n", 236 SanitizerToolName, size, size, fixed_addr, GetLastError()); 237 return false; 238 } 239 return true; 240 } 241 242 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) { 243 // FIXME: Windows support large pages too. Might be worth checking 244 return MmapFixedNoReserve(fixed_addr, size, name); 245 } 246 247 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by 248 // 'MmapFixedNoAccess'. 249 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) { 250 void *p = VirtualAlloc((LPVOID)fixed_addr, size, 251 MEM_COMMIT, PAGE_READWRITE); 252 if (p == 0) { 253 char mem_type[30]; 254 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx", 255 fixed_addr); 256 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError()); 257 } 258 return p; 259 } 260 261 // Uses fixed_addr for now. 262 // Will use offset instead once we've implemented this function for real. 263 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) { 264 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size)); 265 } 266 267 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size, 268 const char *name) { 269 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size)); 270 } 271 272 void ReservedAddressRange::Unmap(uptr addr, uptr size) { 273 // Only unmap if it covers the entire range. 274 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_)); 275 // We unmap the whole range, just null out the base. 276 base_ = nullptr; 277 size_ = 0; 278 UnmapOrDie(reinterpret_cast<void*>(addr), size); 279 } 280 281 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) { 282 void *p = VirtualAlloc((LPVOID)fixed_addr, size, 283 MEM_COMMIT, PAGE_READWRITE); 284 if (p == 0) { 285 char mem_type[30]; 286 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx", 287 fixed_addr); 288 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate"); 289 } 290 return p; 291 } 292 293 void *MmapNoReserveOrDie(uptr size, const char *mem_type) { 294 // FIXME: make this really NoReserve? 295 return MmapOrDie(size, mem_type); 296 } 297 298 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) { 299 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size); 300 size_ = size; 301 name_ = name; 302 (void)os_handle_; // unsupported 303 return reinterpret_cast<uptr>(base_); 304 } 305 306 307 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { 308 (void)name; // unsupported 309 void *res = VirtualAlloc((LPVOID)fixed_addr, size, 310 MEM_RESERVE, PAGE_NOACCESS); 311 if (res == 0) 312 Report("WARNING: %s failed to " 313 "mprotect %p (%zd) bytes at %p (error code: %d)\n", 314 SanitizerToolName, size, size, fixed_addr, GetLastError()); 315 return res; 316 } 317 318 void *MmapNoAccess(uptr size) { 319 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS); 320 if (res == 0) 321 Report("WARNING: %s failed to " 322 "mprotect %p (%zd) bytes (error code: %d)\n", 323 SanitizerToolName, size, size, GetLastError()); 324 return res; 325 } 326 327 bool MprotectNoAccess(uptr addr, uptr size) { 328 DWORD old_protection; 329 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection); 330 } 331 332 void ReleaseMemoryPagesToOS(uptr beg, uptr end) { 333 // This is almost useless on 32-bits. 334 // FIXME: add madvise-analog when we move to 64-bits. 335 } 336 337 void SetShadowRegionHugePageMode(uptr addr, uptr size) { 338 // FIXME: probably similar to ReleaseMemoryToOS. 339 } 340 341 bool DontDumpShadowMemory(uptr addr, uptr length) { 342 // This is almost useless on 32-bits. 343 // FIXME: add madvise-analog when we move to 64-bits. 344 return true; 345 } 346 347 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, 348 uptr *largest_gap_found, 349 uptr *max_occupied_addr) { 350 uptr address = 0; 351 while (true) { 352 MEMORY_BASIC_INFORMATION info; 353 if (!::VirtualQuery((void*)address, &info, sizeof(info))) 354 return 0; 355 356 if (info.State == MEM_FREE) { 357 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding, 358 alignment); 359 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize) 360 return shadow_address; 361 } 362 363 // Move to the next region. 364 address = (uptr)info.BaseAddress + info.RegionSize; 365 } 366 return 0; 367 } 368 369 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) { 370 MEMORY_BASIC_INFORMATION mbi; 371 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi))); 372 return mbi.Protect == PAGE_NOACCESS && 373 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end; 374 } 375 376 void *MapFileToMemory(const char *file_name, uptr *buff_size) { 377 UNIMPLEMENTED(); 378 } 379 380 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) { 381 UNIMPLEMENTED(); 382 } 383 384 static const int kMaxEnvNameLength = 128; 385 static const DWORD kMaxEnvValueLength = 32767; 386 387 namespace { 388 389 struct EnvVariable { 390 char name[kMaxEnvNameLength]; 391 char value[kMaxEnvValueLength]; 392 }; 393 394 } // namespace 395 396 static const int kEnvVariables = 5; 397 static EnvVariable env_vars[kEnvVariables]; 398 static int num_env_vars; 399 400 const char *GetEnv(const char *name) { 401 // Note: this implementation caches the values of the environment variables 402 // and limits their quantity. 403 for (int i = 0; i < num_env_vars; i++) { 404 if (0 == internal_strcmp(name, env_vars[i].name)) 405 return env_vars[i].value; 406 } 407 CHECK_LT(num_env_vars, kEnvVariables); 408 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value, 409 kMaxEnvValueLength); 410 if (rv > 0 && rv < kMaxEnvValueLength) { 411 CHECK_LT(internal_strlen(name), kMaxEnvNameLength); 412 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength); 413 num_env_vars++; 414 return env_vars[num_env_vars - 1].value; 415 } 416 return 0; 417 } 418 419 const char *GetPwd() { 420 UNIMPLEMENTED(); 421 } 422 423 u32 GetUid() { 424 UNIMPLEMENTED(); 425 } 426 427 namespace { 428 struct ModuleInfo { 429 const char *filepath; 430 uptr base_address; 431 uptr end_address; 432 }; 433 434 #if !SANITIZER_GO 435 int CompareModulesBase(const void *pl, const void *pr) { 436 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr; 437 if (l->base_address < r->base_address) 438 return -1; 439 return l->base_address > r->base_address; 440 } 441 #endif 442 } // namespace 443 444 #if !SANITIZER_GO 445 void DumpProcessMap() { 446 Report("Dumping process modules:\n"); 447 ListOfModules modules; 448 modules.init(); 449 uptr num_modules = modules.size(); 450 451 InternalMmapVector<ModuleInfo> module_infos(num_modules); 452 for (size_t i = 0; i < num_modules; ++i) { 453 module_infos[i].filepath = modules[i].full_name(); 454 module_infos[i].base_address = modules[i].ranges().front()->beg; 455 module_infos[i].end_address = modules[i].ranges().back()->end; 456 } 457 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo), 458 CompareModulesBase); 459 460 for (size_t i = 0; i < num_modules; ++i) { 461 const ModuleInfo &mi = module_infos[i]; 462 if (mi.end_address != 0) { 463 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address, 464 mi.filepath[0] ? mi.filepath : "[no name]"); 465 } else if (mi.filepath[0]) { 466 Printf("\t??\?-??? %s\n", mi.filepath); 467 } else { 468 Printf("\t???\n"); 469 } 470 } 471 } 472 #endif 473 474 void PrintModuleMap() { } 475 476 void DisableCoreDumperIfNecessary() { 477 // Do nothing. 478 } 479 480 void ReExec() { 481 UNIMPLEMENTED(); 482 } 483 484 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {} 485 486 bool StackSizeIsUnlimited() { 487 UNIMPLEMENTED(); 488 } 489 490 void SetStackSizeLimitInBytes(uptr limit) { 491 UNIMPLEMENTED(); 492 } 493 494 bool AddressSpaceIsUnlimited() { 495 UNIMPLEMENTED(); 496 } 497 498 void SetAddressSpaceUnlimited() { 499 UNIMPLEMENTED(); 500 } 501 502 bool IsPathSeparator(const char c) { 503 return c == '\\' || c == '/'; 504 } 505 506 static bool IsAlpha(char c) { 507 c = ToLower(c); 508 return c >= 'a' && c <= 'z'; 509 } 510 511 bool IsAbsolutePath(const char *path) { 512 return path != nullptr && IsAlpha(path[0]) && path[1] == ':' && 513 IsPathSeparator(path[2]); 514 } 515 516 void SleepForSeconds(int seconds) { 517 Sleep(seconds * 1000); 518 } 519 520 void SleepForMillis(int millis) { 521 Sleep(millis); 522 } 523 524 u64 NanoTime() { 525 static LARGE_INTEGER frequency = {}; 526 LARGE_INTEGER counter; 527 if (UNLIKELY(frequency.QuadPart == 0)) { 528 QueryPerformanceFrequency(&frequency); 529 CHECK_NE(frequency.QuadPart, 0); 530 } 531 QueryPerformanceCounter(&counter); 532 counter.QuadPart *= 1000ULL * 1000000ULL; 533 counter.QuadPart /= frequency.QuadPart; 534 return counter.QuadPart; 535 } 536 537 u64 MonotonicNanoTime() { return NanoTime(); } 538 539 void Abort() { 540 internal__exit(3); 541 } 542 543 #if !SANITIZER_GO 544 // Read the file to extract the ImageBase field from the PE header. If ASLR is 545 // disabled and this virtual address is available, the loader will typically 546 // load the image at this address. Therefore, we call it the preferred base. Any 547 // addresses in the DWARF typically assume that the object has been loaded at 548 // this address. 549 static uptr GetPreferredBase(const char *modname) { 550 fd_t fd = OpenFile(modname, RdOnly, nullptr); 551 if (fd == kInvalidFd) 552 return 0; 553 FileCloser closer(fd); 554 555 // Read just the DOS header. 556 IMAGE_DOS_HEADER dos_header; 557 uptr bytes_read; 558 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) || 559 bytes_read != sizeof(dos_header)) 560 return 0; 561 562 // The file should start with the right signature. 563 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE) 564 return 0; 565 566 // The layout at e_lfanew is: 567 // "PE\0\0" 568 // IMAGE_FILE_HEADER 569 // IMAGE_OPTIONAL_HEADER 570 // Seek to e_lfanew and read all that data. 571 char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)]; 572 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) == 573 INVALID_SET_FILE_POINTER) 574 return 0; 575 if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) || 576 bytes_read != sizeof(buf)) 577 return 0; 578 579 // Check for "PE\0\0" before the PE header. 580 char *pe_sig = &buf[0]; 581 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0) 582 return 0; 583 584 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted. 585 IMAGE_OPTIONAL_HEADER *pe_header = 586 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER)); 587 588 // Check for more magic in the PE header. 589 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC) 590 return 0; 591 592 // Finally, return the ImageBase. 593 return (uptr)pe_header->ImageBase; 594 } 595 596 void ListOfModules::init() { 597 clearOrInit(); 598 HANDLE cur_process = GetCurrentProcess(); 599 600 // Query the list of modules. Start by assuming there are no more than 256 601 // modules and retry if that's not sufficient. 602 HMODULE *hmodules = 0; 603 uptr modules_buffer_size = sizeof(HMODULE) * 256; 604 DWORD bytes_required; 605 while (!hmodules) { 606 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__); 607 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size, 608 &bytes_required)); 609 if (bytes_required > modules_buffer_size) { 610 // Either there turned out to be more than 256 hmodules, or new hmodules 611 // could have loaded since the last try. Retry. 612 UnmapOrDie(hmodules, modules_buffer_size); 613 hmodules = 0; 614 modules_buffer_size = bytes_required; 615 } 616 } 617 618 // |num_modules| is the number of modules actually present, 619 size_t num_modules = bytes_required / sizeof(HMODULE); 620 for (size_t i = 0; i < num_modules; ++i) { 621 HMODULE handle = hmodules[i]; 622 MODULEINFO mi; 623 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi))) 624 continue; 625 626 // Get the UTF-16 path and convert to UTF-8. 627 wchar_t modname_utf16[kMaxPathLength]; 628 int modname_utf16_len = 629 GetModuleFileNameW(handle, modname_utf16, kMaxPathLength); 630 if (modname_utf16_len == 0) 631 modname_utf16[0] = '\0'; 632 char module_name[kMaxPathLength]; 633 int module_name_len = 634 ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1, 635 &module_name[0], kMaxPathLength, NULL, NULL); 636 module_name[module_name_len] = '\0'; 637 638 uptr base_address = (uptr)mi.lpBaseOfDll; 639 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage; 640 641 // Adjust the base address of the module so that we get a VA instead of an 642 // RVA when computing the module offset. This helps llvm-symbolizer find the 643 // right DWARF CU. In the common case that the image is loaded at it's 644 // preferred address, we will now print normal virtual addresses. 645 uptr preferred_base = GetPreferredBase(&module_name[0]); 646 uptr adjusted_base = base_address - preferred_base; 647 648 LoadedModule cur_module; 649 cur_module.set(module_name, adjusted_base); 650 // We add the whole module as one single address range. 651 cur_module.addAddressRange(base_address, end_address, /*executable*/ true, 652 /*writable*/ true); 653 modules_.push_back(cur_module); 654 } 655 UnmapOrDie(hmodules, modules_buffer_size); 656 } 657 658 void ListOfModules::fallbackInit() { clear(); } 659 660 // We can't use atexit() directly at __asan_init time as the CRT is not fully 661 // initialized at this point. Place the functions into a vector and use 662 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers). 663 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions; 664 665 int Atexit(void (*function)(void)) { 666 atexit_functions.push_back(function); 667 return 0; 668 } 669 670 static int RunAtexit() { 671 TraceLoggingUnregister(g_asan_provider); 672 int ret = 0; 673 for (uptr i = 0; i < atexit_functions.size(); ++i) { 674 ret |= atexit(atexit_functions[i]); 675 } 676 return ret; 677 } 678 679 #pragma section(".CRT$XID", long, read) 680 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit; 681 #endif 682 683 // ------------------ sanitizer_libc.h 684 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) { 685 // FIXME: Use the wide variants to handle Unicode filenames. 686 fd_t res; 687 if (mode == RdOnly) { 688 res = CreateFileA(filename, GENERIC_READ, 689 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, 690 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); 691 } else if (mode == WrOnly) { 692 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS, 693 FILE_ATTRIBUTE_NORMAL, nullptr); 694 } else { 695 UNIMPLEMENTED(); 696 } 697 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd); 698 CHECK(res != kStderrFd || kStderrFd == kInvalidFd); 699 if (res == kInvalidFd && last_error) 700 *last_error = GetLastError(); 701 return res; 702 } 703 704 void CloseFile(fd_t fd) { 705 CloseHandle(fd); 706 } 707 708 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read, 709 error_t *error_p) { 710 CHECK(fd != kInvalidFd); 711 712 // bytes_read can't be passed directly to ReadFile: 713 // uptr is unsigned long long on 64-bit Windows. 714 unsigned long num_read_long; 715 716 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr); 717 if (!success && error_p) 718 *error_p = GetLastError(); 719 if (bytes_read) 720 *bytes_read = num_read_long; 721 return success; 722 } 723 724 bool SupportsColoredOutput(fd_t fd) { 725 // FIXME: support colored output. 726 return false; 727 } 728 729 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written, 730 error_t *error_p) { 731 CHECK(fd != kInvalidFd); 732 733 // Handle null optional parameters. 734 error_t dummy_error; 735 error_p = error_p ? error_p : &dummy_error; 736 uptr dummy_bytes_written; 737 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written; 738 739 // Initialize output parameters in case we fail. 740 *error_p = 0; 741 *bytes_written = 0; 742 743 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be 744 // closed, in which case this will fail. 745 if (fd == kStdoutFd || fd == kStderrFd) { 746 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE); 747 if (fd == 0) { 748 *error_p = ERROR_INVALID_HANDLE; 749 return false; 750 } 751 } 752 753 DWORD bytes_written_32; 754 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) { 755 *error_p = GetLastError(); 756 return false; 757 } else { 758 *bytes_written = bytes_written_32; 759 return true; 760 } 761 } 762 763 uptr internal_sched_yield() { 764 Sleep(0); 765 return 0; 766 } 767 768 void internal__exit(int exitcode) { 769 TraceLoggingUnregister(g_asan_provider); 770 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that. 771 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess, 772 // so add our own breakpoint here. 773 if (::IsDebuggerPresent()) 774 __debugbreak(); 775 TerminateProcess(GetCurrentProcess(), exitcode); 776 BUILTIN_UNREACHABLE(); 777 } 778 779 uptr internal_ftruncate(fd_t fd, uptr size) { 780 UNIMPLEMENTED(); 781 } 782 783 uptr GetRSS() { 784 PROCESS_MEMORY_COUNTERS counters; 785 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters))) 786 return 0; 787 return counters.WorkingSetSize; 788 } 789 790 void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; } 791 void internal_join_thread(void *th) { } 792 793 // ---------------------- BlockingMutex ---------------- {{{1 794 795 BlockingMutex::BlockingMutex() { 796 CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_)); 797 internal_memset(this, 0, sizeof(*this)); 798 } 799 800 void BlockingMutex::Lock() { 801 AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_); 802 CHECK_EQ(owner_, 0); 803 owner_ = GetThreadSelf(); 804 } 805 806 void BlockingMutex::Unlock() { 807 CheckLocked(); 808 owner_ = 0; 809 ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_); 810 } 811 812 void BlockingMutex::CheckLocked() { 813 CHECK_EQ(owner_, GetThreadSelf()); 814 } 815 816 uptr GetTlsSize() { 817 return 0; 818 } 819 820 void InitTlsSize() { 821 } 822 823 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, 824 uptr *tls_addr, uptr *tls_size) { 825 #if SANITIZER_GO 826 *stk_addr = 0; 827 *stk_size = 0; 828 *tls_addr = 0; 829 *tls_size = 0; 830 #else 831 uptr stack_top, stack_bottom; 832 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); 833 *stk_addr = stack_bottom; 834 *stk_size = stack_top - stack_bottom; 835 *tls_addr = 0; 836 *tls_size = 0; 837 #endif 838 } 839 840 void ReportFile::Write(const char *buffer, uptr length) { 841 SpinMutexLock l(mu); 842 ReopenIfNecessary(); 843 if (!WriteToFile(fd, buffer, length)) { 844 // stderr may be closed, but we may be able to print to the debugger 845 // instead. This is the case when launching a program from Visual Studio, 846 // and the following routine should write to its console. 847 OutputDebugStringA(buffer); 848 } 849 } 850 851 void SetAlternateSignalStack() { 852 // FIXME: Decide what to do on Windows. 853 } 854 855 void UnsetAlternateSignalStack() { 856 // FIXME: Decide what to do on Windows. 857 } 858 859 void InstallDeadlySignalHandlers(SignalHandlerType handler) { 860 (void)handler; 861 // FIXME: Decide what to do on Windows. 862 } 863 864 HandleSignalMode GetHandleSignalMode(int signum) { 865 // FIXME: Decide what to do on Windows. 866 return kHandleSignalNo; 867 } 868 869 // Check based on flags if we should handle this exception. 870 bool IsHandledDeadlyException(DWORD exceptionCode) { 871 switch (exceptionCode) { 872 case EXCEPTION_ACCESS_VIOLATION: 873 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: 874 case EXCEPTION_STACK_OVERFLOW: 875 case EXCEPTION_DATATYPE_MISALIGNMENT: 876 case EXCEPTION_IN_PAGE_ERROR: 877 return common_flags()->handle_segv; 878 case EXCEPTION_ILLEGAL_INSTRUCTION: 879 case EXCEPTION_PRIV_INSTRUCTION: 880 case EXCEPTION_BREAKPOINT: 881 return common_flags()->handle_sigill; 882 case EXCEPTION_FLT_DENORMAL_OPERAND: 883 case EXCEPTION_FLT_DIVIDE_BY_ZERO: 884 case EXCEPTION_FLT_INEXACT_RESULT: 885 case EXCEPTION_FLT_INVALID_OPERATION: 886 case EXCEPTION_FLT_OVERFLOW: 887 case EXCEPTION_FLT_STACK_CHECK: 888 case EXCEPTION_FLT_UNDERFLOW: 889 case EXCEPTION_INT_DIVIDE_BY_ZERO: 890 case EXCEPTION_INT_OVERFLOW: 891 return common_flags()->handle_sigfpe; 892 } 893 return false; 894 } 895 896 bool IsAccessibleMemoryRange(uptr beg, uptr size) { 897 SYSTEM_INFO si; 898 GetNativeSystemInfo(&si); 899 uptr page_size = si.dwPageSize; 900 uptr page_mask = ~(page_size - 1); 901 902 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask; 903 page <= end;) { 904 MEMORY_BASIC_INFORMATION info; 905 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info)) 906 return false; 907 908 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS || 909 info.Protect == PAGE_EXECUTE) 910 return false; 911 912 if (info.RegionSize == 0) 913 return false; 914 915 page += info.RegionSize; 916 } 917 918 return true; 919 } 920 921 bool SignalContext::IsStackOverflow() const { 922 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW; 923 } 924 925 void SignalContext::InitPcSpBp() { 926 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 927 CONTEXT *context_record = (CONTEXT *)context; 928 929 pc = (uptr)exception_record->ExceptionAddress; 930 #ifdef _WIN64 931 bp = (uptr)context_record->Rbp; 932 sp = (uptr)context_record->Rsp; 933 #else 934 bp = (uptr)context_record->Ebp; 935 sp = (uptr)context_record->Esp; 936 #endif 937 } 938 939 uptr SignalContext::GetAddress() const { 940 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 941 return exception_record->ExceptionInformation[1]; 942 } 943 944 bool SignalContext::IsMemoryAccess() const { 945 return GetWriteFlag() != SignalContext::UNKNOWN; 946 } 947 948 bool SignalContext::IsTrueFaultingAddress() const { 949 // FIXME: Provide real implementation for this. See Linux and Mac variants. 950 return IsMemoryAccess(); 951 } 952 953 SignalContext::WriteFlag SignalContext::GetWriteFlag() const { 954 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 955 // The contents of this array are documented at 956 // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx 957 // The first element indicates read as 0, write as 1, or execute as 8. The 958 // second element is the faulting address. 959 switch (exception_record->ExceptionInformation[0]) { 960 case 0: 961 return SignalContext::READ; 962 case 1: 963 return SignalContext::WRITE; 964 case 8: 965 return SignalContext::UNKNOWN; 966 } 967 return SignalContext::UNKNOWN; 968 } 969 970 void SignalContext::DumpAllRegisters(void *context) { 971 // FIXME: Implement this. 972 } 973 974 int SignalContext::GetType() const { 975 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode; 976 } 977 978 const char *SignalContext::Describe() const { 979 unsigned code = GetType(); 980 // Get the string description of the exception if this is a known deadly 981 // exception. 982 switch (code) { 983 case EXCEPTION_ACCESS_VIOLATION: 984 return "access-violation"; 985 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: 986 return "array-bounds-exceeded"; 987 case EXCEPTION_STACK_OVERFLOW: 988 return "stack-overflow"; 989 case EXCEPTION_DATATYPE_MISALIGNMENT: 990 return "datatype-misalignment"; 991 case EXCEPTION_IN_PAGE_ERROR: 992 return "in-page-error"; 993 case EXCEPTION_ILLEGAL_INSTRUCTION: 994 return "illegal-instruction"; 995 case EXCEPTION_PRIV_INSTRUCTION: 996 return "priv-instruction"; 997 case EXCEPTION_BREAKPOINT: 998 return "breakpoint"; 999 case EXCEPTION_FLT_DENORMAL_OPERAND: 1000 return "flt-denormal-operand"; 1001 case EXCEPTION_FLT_DIVIDE_BY_ZERO: 1002 return "flt-divide-by-zero"; 1003 case EXCEPTION_FLT_INEXACT_RESULT: 1004 return "flt-inexact-result"; 1005 case EXCEPTION_FLT_INVALID_OPERATION: 1006 return "flt-invalid-operation"; 1007 case EXCEPTION_FLT_OVERFLOW: 1008 return "flt-overflow"; 1009 case EXCEPTION_FLT_STACK_CHECK: 1010 return "flt-stack-check"; 1011 case EXCEPTION_FLT_UNDERFLOW: 1012 return "flt-underflow"; 1013 case EXCEPTION_INT_DIVIDE_BY_ZERO: 1014 return "int-divide-by-zero"; 1015 case EXCEPTION_INT_OVERFLOW: 1016 return "int-overflow"; 1017 } 1018 return "unknown exception"; 1019 } 1020 1021 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) { 1022 // FIXME: Actually implement this function. 1023 CHECK_GT(buf_len, 0); 1024 buf[0] = 0; 1025 return 0; 1026 } 1027 1028 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) { 1029 return ReadBinaryName(buf, buf_len); 1030 } 1031 1032 void CheckVMASize() { 1033 // Do nothing. 1034 } 1035 1036 void InitializePlatformEarly() { 1037 // Do nothing. 1038 } 1039 1040 void MaybeReexec() { 1041 // No need to re-exec on Windows. 1042 } 1043 1044 void CheckASLR() { 1045 // Do nothing 1046 } 1047 1048 void CheckMPROTECT() { 1049 // Do nothing 1050 } 1051 1052 char **GetArgv() { 1053 // FIXME: Actually implement this function. 1054 return 0; 1055 } 1056 1057 char **GetEnviron() { 1058 // FIXME: Actually implement this function. 1059 return 0; 1060 } 1061 1062 pid_t StartSubprocess(const char *program, const char *const argv[], 1063 fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) { 1064 // FIXME: implement on this platform 1065 // Should be implemented based on 1066 // SymbolizerProcess::StarAtSymbolizerSubprocess 1067 // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp. 1068 return -1; 1069 } 1070 1071 bool IsProcessRunning(pid_t pid) { 1072 // FIXME: implement on this platform. 1073 return false; 1074 } 1075 1076 int WaitForProcess(pid_t pid) { return -1; } 1077 1078 // FIXME implement on this platform. 1079 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { } 1080 1081 void CheckNoDeepBind(const char *filename, int flag) { 1082 // Do nothing. 1083 } 1084 1085 // FIXME: implement on this platform. 1086 bool GetRandom(void *buffer, uptr length, bool blocking) { 1087 UNIMPLEMENTED(); 1088 } 1089 1090 u32 GetNumberOfCPUs() { 1091 SYSTEM_INFO sysinfo = {}; 1092 GetNativeSystemInfo(&sysinfo); 1093 return sysinfo.dwNumberOfProcessors; 1094 } 1095 1096 #if SANITIZER_WIN_TRACE 1097 // TODO(mcgov): Rename this project-wide to PlatformLogInit 1098 void AndroidLogInit(void) { 1099 HRESULT hr = TraceLoggingRegister(g_asan_provider); 1100 if (!SUCCEEDED(hr)) 1101 return; 1102 } 1103 1104 void SetAbortMessage(const char *) {} 1105 1106 void LogFullErrorReport(const char *buffer) { 1107 if (common_flags()->log_to_syslog) { 1108 InternalMmapVector<wchar_t> filename; 1109 DWORD filename_length = 0; 1110 do { 1111 filename.resize(filename.size() + 0x100); 1112 filename_length = 1113 GetModuleFileNameW(NULL, filename.begin(), filename.size()); 1114 } while (filename_length >= filename.size()); 1115 TraceLoggingWrite(g_asan_provider, "AsanReportEvent", 1116 TraceLoggingValue(filename.begin(), "ExecutableName"), 1117 TraceLoggingValue(buffer, "AsanReportContents")); 1118 } 1119 } 1120 #endif // SANITIZER_WIN_TRACE 1121 1122 } // namespace __sanitizer 1123 1124 #endif // _WIN32 1125