xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_win.cpp (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 //===-- sanitizer_win.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements windows-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_platform.h"
15 #if SANITIZER_WINDOWS
16 
17 #define WIN32_LEAN_AND_MEAN
18 #define NOGDI
19 #include <windows.h>
20 #include <io.h>
21 #include <psapi.h>
22 #include <stdlib.h>
23 
24 #include "sanitizer_common.h"
25 #include "sanitizer_file.h"
26 #include "sanitizer_libc.h"
27 #include "sanitizer_mutex.h"
28 #include "sanitizer_placement_new.h"
29 #include "sanitizer_win_defs.h"
30 
31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32 #pragma comment(lib, "psapi")
33 #endif
34 #if SANITIZER_WIN_TRACE
35 #include <traceloggingprovider.h>
36 //  Windows trace logging provider init
37 #pragma comment(lib, "advapi32.lib")
38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41                              (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42                               0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43 #else
44 #define TraceLoggingUnregister(x)
45 #endif
46 
47 // A macro to tell the compiler that this part of the code cannot be reached,
48 // if the compiler supports this feature. Since we're using this in
49 // code that is called when terminating the process, the expansion of the
50 // macro should not terminate the process to avoid infinite recursion.
51 #if defined(__clang__)
52 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
53 #elif defined(__GNUC__) && \
54     (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
55 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
56 #elif defined(_MSC_VER)
57 # define BUILTIN_UNREACHABLE() __assume(0)
58 #else
59 # define BUILTIN_UNREACHABLE()
60 #endif
61 
62 namespace __sanitizer {
63 
64 #include "sanitizer_syscall_generic.inc"
65 
66 // --------------------- sanitizer_common.h
67 uptr GetPageSize() {
68   SYSTEM_INFO si;
69   GetSystemInfo(&si);
70   return si.dwPageSize;
71 }
72 
73 uptr GetMmapGranularity() {
74   SYSTEM_INFO si;
75   GetSystemInfo(&si);
76   return si.dwAllocationGranularity;
77 }
78 
79 uptr GetMaxUserVirtualAddress() {
80   SYSTEM_INFO si;
81   GetSystemInfo(&si);
82   return (uptr)si.lpMaximumApplicationAddress;
83 }
84 
85 uptr GetMaxVirtualAddress() {
86   return GetMaxUserVirtualAddress();
87 }
88 
89 bool FileExists(const char *filename) {
90   return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
91 }
92 
93 uptr internal_getpid() {
94   return GetProcessId(GetCurrentProcess());
95 }
96 
97 int internal_dlinfo(void *handle, int request, void *p) {
98   UNIMPLEMENTED();
99 }
100 
101 // In contrast to POSIX, on Windows GetCurrentThreadId()
102 // returns a system-unique identifier.
103 tid_t GetTid() {
104   return GetCurrentThreadId();
105 }
106 
107 uptr GetThreadSelf() {
108   return GetTid();
109 }
110 
111 #if !SANITIZER_GO
112 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
113                                 uptr *stack_bottom) {
114   CHECK(stack_top);
115   CHECK(stack_bottom);
116   MEMORY_BASIC_INFORMATION mbi;
117   CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
118   // FIXME: is it possible for the stack to not be a single allocation?
119   // Are these values what ASan expects to get (reserved, not committed;
120   // including stack guard page) ?
121   *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
122   *stack_bottom = (uptr)mbi.AllocationBase;
123 }
124 #endif  // #if !SANITIZER_GO
125 
126 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
127   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
128   if (rv == 0)
129     ReportMmapFailureAndDie(size, mem_type, "allocate",
130                             GetLastError(), raw_report);
131   return rv;
132 }
133 
134 void UnmapOrDie(void *addr, uptr size) {
135   if (!size || !addr)
136     return;
137 
138   MEMORY_BASIC_INFORMATION mbi;
139   CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
140 
141   // MEM_RELEASE can only be used to unmap whole regions previously mapped with
142   // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
143   // fails try MEM_DECOMMIT.
144   if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
145     if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
146       Report("ERROR: %s failed to "
147              "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
148              SanitizerToolName, size, size, addr, GetLastError());
149       CHECK("unable to unmap" && 0);
150     }
151   }
152 }
153 
154 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
155                                      const char *mmap_type) {
156   error_t last_error = GetLastError();
157   if (last_error == ERROR_NOT_ENOUGH_MEMORY)
158     return nullptr;
159   ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
160 }
161 
162 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
163   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
164   if (rv == 0)
165     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
166   return rv;
167 }
168 
169 // We want to map a chunk of address space aligned to 'alignment'.
170 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
171                                    const char *mem_type) {
172   CHECK(IsPowerOfTwo(size));
173   CHECK(IsPowerOfTwo(alignment));
174 
175   // Windows will align our allocations to at least 64K.
176   alignment = Max(alignment, GetMmapGranularity());
177 
178   uptr mapped_addr =
179       (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
180   if (!mapped_addr)
181     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
182 
183   // If we got it right on the first try, return. Otherwise, unmap it and go to
184   // the slow path.
185   if (IsAligned(mapped_addr, alignment))
186     return (void*)mapped_addr;
187   if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
188     ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
189 
190   // If we didn't get an aligned address, overallocate, find an aligned address,
191   // unmap, and try to allocate at that aligned address.
192   int retries = 0;
193   const int kMaxRetries = 10;
194   for (; retries < kMaxRetries &&
195          (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
196        retries++) {
197     // Overallocate size + alignment bytes.
198     mapped_addr =
199         (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
200     if (!mapped_addr)
201       return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
202 
203     // Find the aligned address.
204     uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
205 
206     // Free the overallocation.
207     if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
208       ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
209 
210     // Attempt to allocate exactly the number of bytes we need at the aligned
211     // address. This may fail for a number of reasons, in which case we continue
212     // the loop.
213     mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
214                                      MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
215   }
216 
217   // Fail if we can't make this work quickly.
218   if (retries == kMaxRetries && mapped_addr == 0)
219     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
220 
221   return (void *)mapped_addr;
222 }
223 
224 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
225   // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
226   // but on Win64 it does.
227   (void)name;  // unsupported
228 #if !SANITIZER_GO && SANITIZER_WINDOWS64
229   // On asan/Windows64, use MEM_COMMIT would result in error
230   // 1455:ERROR_COMMITMENT_LIMIT.
231   // Asan uses exception handler to commit page on demand.
232   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
233 #else
234   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
235                          PAGE_READWRITE);
236 #endif
237   if (p == 0) {
238     Report("ERROR: %s failed to "
239            "allocate %p (%zd) bytes at %p (error code: %d)\n",
240            SanitizerToolName, size, size, fixed_addr, GetLastError());
241     return false;
242   }
243   return true;
244 }
245 
246 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
247   // FIXME: Windows support large pages too. Might be worth checking
248   return MmapFixedNoReserve(fixed_addr, size, name);
249 }
250 
251 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
252 // 'MmapFixedNoAccess'.
253 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
254   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
255       MEM_COMMIT, PAGE_READWRITE);
256   if (p == 0) {
257     char mem_type[30];
258     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
259                       fixed_addr);
260     ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
261   }
262   return p;
263 }
264 
265 // Uses fixed_addr for now.
266 // Will use offset instead once we've implemented this function for real.
267 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
268   return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
269 }
270 
271 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
272                                     const char *name) {
273   return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
274 }
275 
276 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
277   // Only unmap if it covers the entire range.
278   CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
279   // We unmap the whole range, just null out the base.
280   base_ = nullptr;
281   size_ = 0;
282   UnmapOrDie(reinterpret_cast<void*>(addr), size);
283 }
284 
285 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
286   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
287       MEM_COMMIT, PAGE_READWRITE);
288   if (p == 0) {
289     char mem_type[30];
290     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
291                       fixed_addr);
292     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
293   }
294   return p;
295 }
296 
297 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
298   // FIXME: make this really NoReserve?
299   return MmapOrDie(size, mem_type);
300 }
301 
302 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
303   base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
304   size_ = size;
305   name_ = name;
306   (void)os_handle_;  // unsupported
307   return reinterpret_cast<uptr>(base_);
308 }
309 
310 
311 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
312   (void)name; // unsupported
313   void *res = VirtualAlloc((LPVOID)fixed_addr, size,
314                            MEM_RESERVE, PAGE_NOACCESS);
315   if (res == 0)
316     Report("WARNING: %s failed to "
317            "mprotect %p (%zd) bytes at %p (error code: %d)\n",
318            SanitizerToolName, size, size, fixed_addr, GetLastError());
319   return res;
320 }
321 
322 void *MmapNoAccess(uptr size) {
323   void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
324   if (res == 0)
325     Report("WARNING: %s failed to "
326            "mprotect %p (%zd) bytes (error code: %d)\n",
327            SanitizerToolName, size, size, GetLastError());
328   return res;
329 }
330 
331 bool MprotectNoAccess(uptr addr, uptr size) {
332   DWORD old_protection;
333   return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
334 }
335 
336 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
337   // This is almost useless on 32-bits.
338   // FIXME: add madvise-analog when we move to 64-bits.
339 }
340 
341 void SetShadowRegionHugePageMode(uptr addr, uptr size) {
342   // FIXME: probably similar to ReleaseMemoryToOS.
343 }
344 
345 bool DontDumpShadowMemory(uptr addr, uptr length) {
346   // This is almost useless on 32-bits.
347   // FIXME: add madvise-analog when we move to 64-bits.
348   return true;
349 }
350 
351 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
352                       uptr min_shadow_base_alignment,
353                       UNUSED uptr &high_mem_end) {
354   const uptr granularity = GetMmapGranularity();
355   const uptr alignment =
356       Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
357   const uptr left_padding =
358       Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
359   uptr space_size = shadow_size_bytes + left_padding;
360   uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
361                                                granularity, nullptr, nullptr);
362   CHECK_NE((uptr)0, shadow_start);
363   CHECK(IsAligned(shadow_start, alignment));
364   return shadow_start;
365 }
366 
367 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
368                               uptr *largest_gap_found,
369                               uptr *max_occupied_addr) {
370   uptr address = 0;
371   while (true) {
372     MEMORY_BASIC_INFORMATION info;
373     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
374       return 0;
375 
376     if (info.State == MEM_FREE) {
377       uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
378                                       alignment);
379       if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
380         return shadow_address;
381     }
382 
383     // Move to the next region.
384     address = (uptr)info.BaseAddress + info.RegionSize;
385   }
386   return 0;
387 }
388 
389 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
390   MEMORY_BASIC_INFORMATION mbi;
391   CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
392   return mbi.Protect == PAGE_NOACCESS &&
393          (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
394 }
395 
396 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
397   UNIMPLEMENTED();
398 }
399 
400 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
401   UNIMPLEMENTED();
402 }
403 
404 static const int kMaxEnvNameLength = 128;
405 static const DWORD kMaxEnvValueLength = 32767;
406 
407 namespace {
408 
409 struct EnvVariable {
410   char name[kMaxEnvNameLength];
411   char value[kMaxEnvValueLength];
412 };
413 
414 }  // namespace
415 
416 static const int kEnvVariables = 5;
417 static EnvVariable env_vars[kEnvVariables];
418 static int num_env_vars;
419 
420 const char *GetEnv(const char *name) {
421   // Note: this implementation caches the values of the environment variables
422   // and limits their quantity.
423   for (int i = 0; i < num_env_vars; i++) {
424     if (0 == internal_strcmp(name, env_vars[i].name))
425       return env_vars[i].value;
426   }
427   CHECK_LT(num_env_vars, kEnvVariables);
428   DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
429                                      kMaxEnvValueLength);
430   if (rv > 0 && rv < kMaxEnvValueLength) {
431     CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
432     internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
433     num_env_vars++;
434     return env_vars[num_env_vars - 1].value;
435   }
436   return 0;
437 }
438 
439 const char *GetPwd() {
440   UNIMPLEMENTED();
441 }
442 
443 u32 GetUid() {
444   UNIMPLEMENTED();
445 }
446 
447 namespace {
448 struct ModuleInfo {
449   const char *filepath;
450   uptr base_address;
451   uptr end_address;
452 };
453 
454 #if !SANITIZER_GO
455 int CompareModulesBase(const void *pl, const void *pr) {
456   const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
457   if (l->base_address < r->base_address)
458     return -1;
459   return l->base_address > r->base_address;
460 }
461 #endif
462 }  // namespace
463 
464 #if !SANITIZER_GO
465 void DumpProcessMap() {
466   Report("Dumping process modules:\n");
467   ListOfModules modules;
468   modules.init();
469   uptr num_modules = modules.size();
470 
471   InternalMmapVector<ModuleInfo> module_infos(num_modules);
472   for (size_t i = 0; i < num_modules; ++i) {
473     module_infos[i].filepath = modules[i].full_name();
474     module_infos[i].base_address = modules[i].ranges().front()->beg;
475     module_infos[i].end_address = modules[i].ranges().back()->end;
476   }
477   qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
478         CompareModulesBase);
479 
480   for (size_t i = 0; i < num_modules; ++i) {
481     const ModuleInfo &mi = module_infos[i];
482     if (mi.end_address != 0) {
483       Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
484              mi.filepath[0] ? mi.filepath : "[no name]");
485     } else if (mi.filepath[0]) {
486       Printf("\t??\?-??? %s\n", mi.filepath);
487     } else {
488       Printf("\t???\n");
489     }
490   }
491 }
492 #endif
493 
494 void DisableCoreDumperIfNecessary() {
495   // Do nothing.
496 }
497 
498 void ReExec() {
499   UNIMPLEMENTED();
500 }
501 
502 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
503 
504 bool StackSizeIsUnlimited() {
505   UNIMPLEMENTED();
506 }
507 
508 void SetStackSizeLimitInBytes(uptr limit) {
509   UNIMPLEMENTED();
510 }
511 
512 bool AddressSpaceIsUnlimited() {
513   UNIMPLEMENTED();
514 }
515 
516 void SetAddressSpaceUnlimited() {
517   UNIMPLEMENTED();
518 }
519 
520 bool IsPathSeparator(const char c) {
521   return c == '\\' || c == '/';
522 }
523 
524 static bool IsAlpha(char c) {
525   c = ToLower(c);
526   return c >= 'a' && c <= 'z';
527 }
528 
529 bool IsAbsolutePath(const char *path) {
530   return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
531          IsPathSeparator(path[2]);
532 }
533 
534 void SleepForSeconds(int seconds) {
535   Sleep(seconds * 1000);
536 }
537 
538 void SleepForMillis(int millis) {
539   Sleep(millis);
540 }
541 
542 u64 NanoTime() {
543   static LARGE_INTEGER frequency = {};
544   LARGE_INTEGER counter;
545   if (UNLIKELY(frequency.QuadPart == 0)) {
546     QueryPerformanceFrequency(&frequency);
547     CHECK_NE(frequency.QuadPart, 0);
548   }
549   QueryPerformanceCounter(&counter);
550   counter.QuadPart *= 1000ULL * 1000000ULL;
551   counter.QuadPart /= frequency.QuadPart;
552   return counter.QuadPart;
553 }
554 
555 u64 MonotonicNanoTime() { return NanoTime(); }
556 
557 void Abort() {
558   internal__exit(3);
559 }
560 
561 #if !SANITIZER_GO
562 // Read the file to extract the ImageBase field from the PE header. If ASLR is
563 // disabled and this virtual address is available, the loader will typically
564 // load the image at this address. Therefore, we call it the preferred base. Any
565 // addresses in the DWARF typically assume that the object has been loaded at
566 // this address.
567 static uptr GetPreferredBase(const char *modname) {
568   fd_t fd = OpenFile(modname, RdOnly, nullptr);
569   if (fd == kInvalidFd)
570     return 0;
571   FileCloser closer(fd);
572 
573   // Read just the DOS header.
574   IMAGE_DOS_HEADER dos_header;
575   uptr bytes_read;
576   if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
577       bytes_read != sizeof(dos_header))
578     return 0;
579 
580   // The file should start with the right signature.
581   if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
582     return 0;
583 
584   // The layout at e_lfanew is:
585   // "PE\0\0"
586   // IMAGE_FILE_HEADER
587   // IMAGE_OPTIONAL_HEADER
588   // Seek to e_lfanew and read all that data.
589   char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
590   if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
591       INVALID_SET_FILE_POINTER)
592     return 0;
593   if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
594       bytes_read != sizeof(buf))
595     return 0;
596 
597   // Check for "PE\0\0" before the PE header.
598   char *pe_sig = &buf[0];
599   if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
600     return 0;
601 
602   // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
603   IMAGE_OPTIONAL_HEADER *pe_header =
604       (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
605 
606   // Check for more magic in the PE header.
607   if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
608     return 0;
609 
610   // Finally, return the ImageBase.
611   return (uptr)pe_header->ImageBase;
612 }
613 
614 #ifdef __clang__
615 #pragma clang diagnostic push
616 #pragma clang diagnostic ignored "-Wframe-larger-than="
617 #endif
618 void ListOfModules::init() {
619   clearOrInit();
620   HANDLE cur_process = GetCurrentProcess();
621 
622   // Query the list of modules.  Start by assuming there are no more than 256
623   // modules and retry if that's not sufficient.
624   HMODULE *hmodules = 0;
625   uptr modules_buffer_size = sizeof(HMODULE) * 256;
626   DWORD bytes_required;
627   while (!hmodules) {
628     hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
629     CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
630                              &bytes_required));
631     if (bytes_required > modules_buffer_size) {
632       // Either there turned out to be more than 256 hmodules, or new hmodules
633       // could have loaded since the last try.  Retry.
634       UnmapOrDie(hmodules, modules_buffer_size);
635       hmodules = 0;
636       modules_buffer_size = bytes_required;
637     }
638   }
639 
640   // |num_modules| is the number of modules actually present,
641   size_t num_modules = bytes_required / sizeof(HMODULE);
642   for (size_t i = 0; i < num_modules; ++i) {
643     HMODULE handle = hmodules[i];
644     MODULEINFO mi;
645     if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
646       continue;
647 
648     // Get the UTF-16 path and convert to UTF-8.
649     wchar_t modname_utf16[kMaxPathLength];
650     int modname_utf16_len =
651         GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
652     if (modname_utf16_len == 0)
653       modname_utf16[0] = '\0';
654     char module_name[kMaxPathLength];
655     int module_name_len =
656         ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
657                               &module_name[0], kMaxPathLength, NULL, NULL);
658     module_name[module_name_len] = '\0';
659 
660     uptr base_address = (uptr)mi.lpBaseOfDll;
661     uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
662 
663     // Adjust the base address of the module so that we get a VA instead of an
664     // RVA when computing the module offset. This helps llvm-symbolizer find the
665     // right DWARF CU. In the common case that the image is loaded at it's
666     // preferred address, we will now print normal virtual addresses.
667     uptr preferred_base = GetPreferredBase(&module_name[0]);
668     uptr adjusted_base = base_address - preferred_base;
669 
670     LoadedModule cur_module;
671     cur_module.set(module_name, adjusted_base);
672     // We add the whole module as one single address range.
673     cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
674                                /*writable*/ true);
675     modules_.push_back(cur_module);
676   }
677   UnmapOrDie(hmodules, modules_buffer_size);
678 }
679 #ifdef __clang__
680 #pragma clang diagnostic pop
681 #endif
682 
683 void ListOfModules::fallbackInit() { clear(); }
684 
685 // We can't use atexit() directly at __asan_init time as the CRT is not fully
686 // initialized at this point.  Place the functions into a vector and use
687 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
688 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
689 
690 int Atexit(void (*function)(void)) {
691   atexit_functions.push_back(function);
692   return 0;
693 }
694 
695 static int RunAtexit() {
696   TraceLoggingUnregister(g_asan_provider);
697   int ret = 0;
698   for (uptr i = 0; i < atexit_functions.size(); ++i) {
699     ret |= atexit(atexit_functions[i]);
700   }
701   return ret;
702 }
703 
704 #pragma section(".CRT$XID", long, read)
705 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
706 #endif
707 
708 // ------------------ sanitizer_libc.h
709 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
710   // FIXME: Use the wide variants to handle Unicode filenames.
711   fd_t res;
712   if (mode == RdOnly) {
713     res = CreateFileA(filename, GENERIC_READ,
714                       FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
715                       nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
716   } else if (mode == WrOnly) {
717     res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
718                       FILE_ATTRIBUTE_NORMAL, nullptr);
719   } else {
720     UNIMPLEMENTED();
721   }
722   CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
723   CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
724   if (res == kInvalidFd && last_error)
725     *last_error = GetLastError();
726   return res;
727 }
728 
729 void CloseFile(fd_t fd) {
730   CloseHandle(fd);
731 }
732 
733 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
734                   error_t *error_p) {
735   CHECK(fd != kInvalidFd);
736 
737   // bytes_read can't be passed directly to ReadFile:
738   // uptr is unsigned long long on 64-bit Windows.
739   unsigned long num_read_long;
740 
741   bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
742   if (!success && error_p)
743     *error_p = GetLastError();
744   if (bytes_read)
745     *bytes_read = num_read_long;
746   return success;
747 }
748 
749 bool SupportsColoredOutput(fd_t fd) {
750   // FIXME: support colored output.
751   return false;
752 }
753 
754 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
755                  error_t *error_p) {
756   CHECK(fd != kInvalidFd);
757 
758   // Handle null optional parameters.
759   error_t dummy_error;
760   error_p = error_p ? error_p : &dummy_error;
761   uptr dummy_bytes_written;
762   bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
763 
764   // Initialize output parameters in case we fail.
765   *error_p = 0;
766   *bytes_written = 0;
767 
768   // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
769   // closed, in which case this will fail.
770   if (fd == kStdoutFd || fd == kStderrFd) {
771     fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
772     if (fd == 0) {
773       *error_p = ERROR_INVALID_HANDLE;
774       return false;
775     }
776   }
777 
778   DWORD bytes_written_32;
779   if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
780     *error_p = GetLastError();
781     return false;
782   } else {
783     *bytes_written = bytes_written_32;
784     return true;
785   }
786 }
787 
788 uptr internal_sched_yield() {
789   Sleep(0);
790   return 0;
791 }
792 
793 void internal__exit(int exitcode) {
794   TraceLoggingUnregister(g_asan_provider);
795   // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
796   // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
797   // so add our own breakpoint here.
798   if (::IsDebuggerPresent())
799     __debugbreak();
800   TerminateProcess(GetCurrentProcess(), exitcode);
801   BUILTIN_UNREACHABLE();
802 }
803 
804 uptr internal_ftruncate(fd_t fd, uptr size) {
805   UNIMPLEMENTED();
806 }
807 
808 uptr GetRSS() {
809   PROCESS_MEMORY_COUNTERS counters;
810   if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
811     return 0;
812   return counters.WorkingSetSize;
813 }
814 
815 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
816 void internal_join_thread(void *th) { }
817 
818 // ---------------------- BlockingMutex ---------------- {{{1
819 
820 BlockingMutex::BlockingMutex() {
821   CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
822   internal_memset(this, 0, sizeof(*this));
823 }
824 
825 void BlockingMutex::Lock() {
826   AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
827   CHECK_EQ(owner_, 0);
828   owner_ = GetThreadSelf();
829 }
830 
831 void BlockingMutex::Unlock() {
832   CheckLocked();
833   owner_ = 0;
834   ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
835 }
836 
837 void BlockingMutex::CheckLocked() {
838   CHECK_EQ(owner_, GetThreadSelf());
839 }
840 
841 uptr GetTlsSize() {
842   return 0;
843 }
844 
845 void InitTlsSize() {
846 }
847 
848 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
849                           uptr *tls_addr, uptr *tls_size) {
850 #if SANITIZER_GO
851   *stk_addr = 0;
852   *stk_size = 0;
853   *tls_addr = 0;
854   *tls_size = 0;
855 #else
856   uptr stack_top, stack_bottom;
857   GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
858   *stk_addr = stack_bottom;
859   *stk_size = stack_top - stack_bottom;
860   *tls_addr = 0;
861   *tls_size = 0;
862 #endif
863 }
864 
865 void ReportFile::Write(const char *buffer, uptr length) {
866   SpinMutexLock l(mu);
867   ReopenIfNecessary();
868   if (!WriteToFile(fd, buffer, length)) {
869     // stderr may be closed, but we may be able to print to the debugger
870     // instead.  This is the case when launching a program from Visual Studio,
871     // and the following routine should write to its console.
872     OutputDebugStringA(buffer);
873   }
874 }
875 
876 void SetAlternateSignalStack() {
877   // FIXME: Decide what to do on Windows.
878 }
879 
880 void UnsetAlternateSignalStack() {
881   // FIXME: Decide what to do on Windows.
882 }
883 
884 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
885   (void)handler;
886   // FIXME: Decide what to do on Windows.
887 }
888 
889 HandleSignalMode GetHandleSignalMode(int signum) {
890   // FIXME: Decide what to do on Windows.
891   return kHandleSignalNo;
892 }
893 
894 // Check based on flags if we should handle this exception.
895 bool IsHandledDeadlyException(DWORD exceptionCode) {
896   switch (exceptionCode) {
897     case EXCEPTION_ACCESS_VIOLATION:
898     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
899     case EXCEPTION_STACK_OVERFLOW:
900     case EXCEPTION_DATATYPE_MISALIGNMENT:
901     case EXCEPTION_IN_PAGE_ERROR:
902       return common_flags()->handle_segv;
903     case EXCEPTION_ILLEGAL_INSTRUCTION:
904     case EXCEPTION_PRIV_INSTRUCTION:
905     case EXCEPTION_BREAKPOINT:
906       return common_flags()->handle_sigill;
907     case EXCEPTION_FLT_DENORMAL_OPERAND:
908     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
909     case EXCEPTION_FLT_INEXACT_RESULT:
910     case EXCEPTION_FLT_INVALID_OPERATION:
911     case EXCEPTION_FLT_OVERFLOW:
912     case EXCEPTION_FLT_STACK_CHECK:
913     case EXCEPTION_FLT_UNDERFLOW:
914     case EXCEPTION_INT_DIVIDE_BY_ZERO:
915     case EXCEPTION_INT_OVERFLOW:
916       return common_flags()->handle_sigfpe;
917   }
918   return false;
919 }
920 
921 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
922   SYSTEM_INFO si;
923   GetNativeSystemInfo(&si);
924   uptr page_size = si.dwPageSize;
925   uptr page_mask = ~(page_size - 1);
926 
927   for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
928        page <= end;) {
929     MEMORY_BASIC_INFORMATION info;
930     if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
931       return false;
932 
933     if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
934         info.Protect == PAGE_EXECUTE)
935       return false;
936 
937     if (info.RegionSize == 0)
938       return false;
939 
940     page += info.RegionSize;
941   }
942 
943   return true;
944 }
945 
946 bool SignalContext::IsStackOverflow() const {
947   return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
948 }
949 
950 void SignalContext::InitPcSpBp() {
951   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
952   CONTEXT *context_record = (CONTEXT *)context;
953 
954   pc = (uptr)exception_record->ExceptionAddress;
955 #ifdef _WIN64
956   bp = (uptr)context_record->Rbp;
957   sp = (uptr)context_record->Rsp;
958 #else
959   bp = (uptr)context_record->Ebp;
960   sp = (uptr)context_record->Esp;
961 #endif
962 }
963 
964 uptr SignalContext::GetAddress() const {
965   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
966   if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
967     return exception_record->ExceptionInformation[1];
968   return (uptr)exception_record->ExceptionAddress;
969 }
970 
971 bool SignalContext::IsMemoryAccess() const {
972   return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
973          EXCEPTION_ACCESS_VIOLATION;
974 }
975 
976 bool SignalContext::IsTrueFaultingAddress() const { return true; }
977 
978 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
979   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
980 
981   // The write flag is only available for access violation exceptions.
982   if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
983     return SignalContext::UNKNOWN;
984 
985   // The contents of this array are documented at
986   // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
987   // The first element indicates read as 0, write as 1, or execute as 8.  The
988   // second element is the faulting address.
989   switch (exception_record->ExceptionInformation[0]) {
990     case 0:
991       return SignalContext::READ;
992     case 1:
993       return SignalContext::WRITE;
994     case 8:
995       return SignalContext::UNKNOWN;
996   }
997   return SignalContext::UNKNOWN;
998 }
999 
1000 void SignalContext::DumpAllRegisters(void *context) {
1001   // FIXME: Implement this.
1002 }
1003 
1004 int SignalContext::GetType() const {
1005   return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
1006 }
1007 
1008 const char *SignalContext::Describe() const {
1009   unsigned code = GetType();
1010   // Get the string description of the exception if this is a known deadly
1011   // exception.
1012   switch (code) {
1013     case EXCEPTION_ACCESS_VIOLATION:
1014       return "access-violation";
1015     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1016       return "array-bounds-exceeded";
1017     case EXCEPTION_STACK_OVERFLOW:
1018       return "stack-overflow";
1019     case EXCEPTION_DATATYPE_MISALIGNMENT:
1020       return "datatype-misalignment";
1021     case EXCEPTION_IN_PAGE_ERROR:
1022       return "in-page-error";
1023     case EXCEPTION_ILLEGAL_INSTRUCTION:
1024       return "illegal-instruction";
1025     case EXCEPTION_PRIV_INSTRUCTION:
1026       return "priv-instruction";
1027     case EXCEPTION_BREAKPOINT:
1028       return "breakpoint";
1029     case EXCEPTION_FLT_DENORMAL_OPERAND:
1030       return "flt-denormal-operand";
1031     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1032       return "flt-divide-by-zero";
1033     case EXCEPTION_FLT_INEXACT_RESULT:
1034       return "flt-inexact-result";
1035     case EXCEPTION_FLT_INVALID_OPERATION:
1036       return "flt-invalid-operation";
1037     case EXCEPTION_FLT_OVERFLOW:
1038       return "flt-overflow";
1039     case EXCEPTION_FLT_STACK_CHECK:
1040       return "flt-stack-check";
1041     case EXCEPTION_FLT_UNDERFLOW:
1042       return "flt-underflow";
1043     case EXCEPTION_INT_DIVIDE_BY_ZERO:
1044       return "int-divide-by-zero";
1045     case EXCEPTION_INT_OVERFLOW:
1046       return "int-overflow";
1047   }
1048   return "unknown exception";
1049 }
1050 
1051 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1052   // FIXME: Actually implement this function.
1053   CHECK_GT(buf_len, 0);
1054   buf[0] = 0;
1055   return 0;
1056 }
1057 
1058 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1059   return ReadBinaryName(buf, buf_len);
1060 }
1061 
1062 void CheckVMASize() {
1063   // Do nothing.
1064 }
1065 
1066 void InitializePlatformEarly() {
1067   // Do nothing.
1068 }
1069 
1070 void MaybeReexec() {
1071   // No need to re-exec on Windows.
1072 }
1073 
1074 void CheckASLR() {
1075   // Do nothing
1076 }
1077 
1078 void CheckMPROTECT() {
1079   // Do nothing
1080 }
1081 
1082 char **GetArgv() {
1083   // FIXME: Actually implement this function.
1084   return 0;
1085 }
1086 
1087 char **GetEnviron() {
1088   // FIXME: Actually implement this function.
1089   return 0;
1090 }
1091 
1092 pid_t StartSubprocess(const char *program, const char *const argv[],
1093                       const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1094                       fd_t stderr_fd) {
1095   // FIXME: implement on this platform
1096   // Should be implemented based on
1097   // SymbolizerProcess::StarAtSymbolizerSubprocess
1098   // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1099   return -1;
1100 }
1101 
1102 bool IsProcessRunning(pid_t pid) {
1103   // FIXME: implement on this platform.
1104   return false;
1105 }
1106 
1107 int WaitForProcess(pid_t pid) { return -1; }
1108 
1109 // FIXME implement on this platform.
1110 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
1111 
1112 void CheckNoDeepBind(const char *filename, int flag) {
1113   // Do nothing.
1114 }
1115 
1116 // FIXME: implement on this platform.
1117 bool GetRandom(void *buffer, uptr length, bool blocking) {
1118   UNIMPLEMENTED();
1119 }
1120 
1121 u32 GetNumberOfCPUs() {
1122   SYSTEM_INFO sysinfo = {};
1123   GetNativeSystemInfo(&sysinfo);
1124   return sysinfo.dwNumberOfProcessors;
1125 }
1126 
1127 #if SANITIZER_WIN_TRACE
1128 // TODO(mcgov): Rename this project-wide to PlatformLogInit
1129 void AndroidLogInit(void) {
1130   HRESULT hr = TraceLoggingRegister(g_asan_provider);
1131   if (!SUCCEEDED(hr))
1132     return;
1133 }
1134 
1135 void SetAbortMessage(const char *) {}
1136 
1137 void LogFullErrorReport(const char *buffer) {
1138   if (common_flags()->log_to_syslog) {
1139     InternalMmapVector<wchar_t> filename;
1140     DWORD filename_length = 0;
1141     do {
1142       filename.resize(filename.size() + 0x100);
1143       filename_length =
1144           GetModuleFileNameW(NULL, filename.begin(), filename.size());
1145     } while (filename_length >= filename.size());
1146     TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1147                       TraceLoggingValue(filename.begin(), "ExecutableName"),
1148                       TraceLoggingValue(buffer, "AsanReportContents"));
1149   }
1150 }
1151 #endif // SANITIZER_WIN_TRACE
1152 
1153 void InitializePlatformCommonFlags(CommonFlags *cf) {}
1154 
1155 }  // namespace __sanitizer
1156 
1157 #endif  // _WIN32
1158